
Genomic evidence for shared common ancestry of East
African hunting-gathering populations and insights
into local adaptation
Laura B. Scheinfeldta,1,2, Sameer Soia,b,1, Charla Lamberta,3, Wen-Ya Koa,4, Aoua Coulibalya, Alessia Ranciaroa,
Simon Thompsona, Jibril Hirboa,5, William Beggsa, Muntaser Ibrahimc, Thomas Nyambod, Sabah Omare,
Dawit Woldemeskelf, Gurja Belayf, Alain Fromentg, Junhyong Kimh, and Sarah A. Tishkoffa,h,6

aDepartment of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; bGenomics and Computational Biology
Graduate Program, University of Pennsylvania, Philadelphia, PA 19104; cDepartment of Molecular Biology, Institute of Endemic Diseases, University of
Khartoum, Khartoum, Sudan; dDepartment of Biochemistry, St. Joseph University College of Health Sciences, Dar es Salaam, Tanzania; eKenya Medical
Research Institute, Center for Biotechnology Research and Development, Nairobi, Kenya; fDepartment of Biology, Addis Ababa University, Addis Ababa,
Ethiopia; gUMR 208, Institut de Recherche pour le Développement-Muséum National d’Histoire Naturelle, Musée de l’Homme, 75116 Paris, France;
and hDepartment of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104

Contributed by Sarah A. Tishkoff, January 5, 2019 (sent for review October 15, 2018; reviewed by Rob J. Kulathinal and Mark D. Shriver)

Anatomically modern humans arose in Africa ∼300,000 years ago,
but the demographic and adaptive histories of African populations
are not well-characterized. Here, we have generated a genome-
wide dataset from 840 Africans, residing in western, eastern,
southern, and northern Africa, belonging to 50 ethnicities, and
speaking languages belonging to four language families. In addi-
tion to agriculturalists and pastoralists, our study includes 16 popula-
tions that practice, or until recently have practiced, a hunting-
gathering (HG) lifestyle. We observe that genetic structure in Africa
is broadly correlated not only with geography, but to a lesser extent,
with linguistic affiliation and subsistence strategy. Four East African
HG (EHG) populations that are geographically distant from each
other show evidence of common ancestry: the Hadza and Sandawe
in Tanzania, who speak languages with clicks classified as Khoisan;
the Dahalo in Kenya, whose language has remnant clicks; and the
Sabue in Ethiopia, who speak an unclassified language. Addition-
ally, we observed common ancestry between central African rain-
forest HGs and southern African San, the latter of whom speak
languages with clicks classified as Khoisan. With the exception of
the EHG, central African rainforest HGs, and San, other HG groups
in Africa appear genetically similar to neighboring agriculturalist or
pastoralist populations. We additionally demonstrate that infec-
tious disease, immune response, and diet have played important
roles in the adaptive landscape of African history. However, while
the broad biological processes involved in recent human adaptation
in Africa are often consistent across populations, the specific loci
affected by selective pressures more often vary across populations.
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Genetic, archaeological, and linguistic evidence reflect a com-
plex demographic history for populations in Africa. Ana-

tomically modern humans emerged in Africa ∼300 kya (1–3) and
lived in Africa for tens of thousands of years before a subset mi-
grated out of Africa 80–40 kya (4). Many studies have focused on
when, where, and how modern humans colonized the rest of the
globe, but relatively few have characterized prehistoric demogra-
phy within Africa during the Late Pleistocene 70–10 kya (4). This is
likely because the archaeological and paleo-biological record is
incomplete during that time period (5), linguistic reconstruction
does not extend much beyond 10 kya (6), and recent demographic
events, such as historical migrations, complicate genomic signa-
tures of older population movements and interactions.
Relatively more is known about population histories in Africa

during the recent past due to linguistic reconstructions. One of
the most striking recent demographic events in Africa was the
expansion of Bantu peoples (speakers of Bantu languages) from
West Africa accompanying agricultural innovation in the Neo-

lithic ∼5 kya (7). This expansion, commonly referred to as the
“Bantu expansion,” significantly impacted the landscape of ge-
netic and cultural diversity in Africa (8, 9). While Bantu lan-
guages, which belong to the Niger-Congo (NC) language family,
are widely spoken across Africa, languages belonging to two
additional language families, Nilo-Saharan (NS) and Afro-
Asiatic (AA), are spoken by populations primarily located in
central, eastern, and northern Africa who practice pastoralism
and agriculture (10). A fourth language family, Khoisan, which
contains click phonemes, includes several languages spoken by
hunter-gatherer populations in southern Africa, as well as two
languages spoken by hunter-gatherer populations in eastern
Africa, the Hadza and Sandawe (11). While the Sandawe lan-
guage has been identified as linguistically more similar to the
Khoisan languages spoken in southern Africa than it is to the
Hadza language, the inclusion of the latter two languages within
the Khoisan language family is generally contentious, arguably
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because the relationships between the eastern and southern
African Khoisan languages are older than 10 kya (12).
Several languages spoken throughout Africa remain un-

classified and are considered “language isolates.” One such ex-
ample is the Shabo language, also referred to as Mikeyir, spoken
by the people of Ethiopia who self-identify as Sabue (also known
as Sabu). While proto-Shabo is thought to be an early branch of
the NS languages, the classification of Shabo into any linguistic
family is unresolved (13, 14). The language spoken by the Dahalo,
also referred to as Sanye, of Kenya is another such example. Some
linguists classify Dahalo as AA, but it also shares a dental click
phoneme with Khoisan languages (12). The shared presence of
clicks has led linguists to hypothesize that the Dahalo share recent
common ancestry with the Hadza and Sandawe or that ancestors
of the Dahalo, speaking a proto-Dahalo language, came into
contact with and subsequently borrowed linguistic features from
individuals speaking a proto-Khoisan language in East Africa (15).
The archaeological evidence for a common ancestry of East
African hunting-gathering (HG) populations and the Khoisan-
speaking populations of southern Africa is debated: while there
has been some evidence of a genetic connection, the archaeo-
logical data are not conclusive (16–19). However, there have
been no prior genetic studies of the Sabue or Dahalo. Here, we
examine the genetic relationships of the Sabue, Dahalo, and the
Khoisan-speaking populations of eastern Africa to shed light on
the history of East African HG populations.
In addition to the linguistic diversity found in Africa—over

2,000 languages are spoken in the continent—African pop-
ulations practice diverse subsistence strategies (11). As pre-
viously noted, agricultural technologies spread throughout sub-
Saharan Africa with the Bantu expansion 5–3 kya. Before that,
pastoralism spread from northeastern Africa southward into
central and eastern Africa 6–3 kya (10). Populations speaking
Khoisan languages, including the Hadza and Sandawe, engage,
or until recently engaged, in an HG subsistence strategy. The
Dahalo, Boni, El Molo, Yaaku, Sengwer, and Ogiek populations
living in Kenya, and the Wata from Ethiopia, also practice an
HG lifestyle, as do the Sabue of Ethiopia. Anthropologists have
debated whether these East African HG populations represent
distinct groups or whether they represent descendants of com-
munities that were displaced due to past political, economic, and
social phenomena (20). Other African populations traditionally
practicing HG include the western (e.g., Biaka, Baka, Bakola,
Bedzan) and eastern (e.g., Mbuti) rain forest hunters and gath-
erers (WRHG and ERHG, respectively), commonly referred
to as “Pygmies,” who have adopted the languages of neigh-
boring populations, and the Khoisan-speaking San from southern
Africa. Here, we analyze the genetic diversity of 16 ethnic groups
in Africa that practice a foraging life-style to better under-
stand their relationships with each other and with neighboring
populations.
Taken together, linguistic, archaeological, and genetic data

have led to a proposed wide range for Khoisan-speaking HG
populations throughout southern and eastern Africa, extending
from Ethiopia to southern Africa (6, 15, 21, 22). However, this
hypothesis remains contentious, and the origins of East African
HG populations remain unknown largely because of the limits of
linguistic reconstruction, archaeological data, and sparse sam-
pling of genomic diversity in East Africa (12, 16). To explore this
question further, we have genotyped 724 individuals from 46 di-
verse ethno-linguistic populations living in central and eastern
Africa with the Illumina 1M-Duo SNP array (Fig. 1A), including
all of the eastern African and WRHG populations described
above. We merged these data with publicly available data from
population samples including Mbuti ERHG living in the Dem-
ocratic Republic of Congo, San living in Namibia and South
Africa, Mandenka living in Senegal, and Mozabite living in
Algeria (23, 24). In total, the merged dataset is comprised of
840 individuals sampled from 50 populations living throughout
sub-Saharan Africa and genotyped for a set of ∼621,000 markers
present on all platforms (SI Appendix, Table S1).

Results
Genome-Wide Patterns of Diversity. To characterize genome-wide
patterns of diversity in Africa, we employed principal compo-
nents analysis (PCA) of individuals at 621,000 biallelic SNPs (25,
26) (Fig. 1 B and C and SI Appendix, Fig. S1). The first principal
component (PC1), which explains 2.11% of the genotypic vari-
ance, is well predicted by a linear model with latitude, longitude,
and linguistic affiliation variables (R2 = 0.86; P < 1.0 × 10−16 )
(SI Appendix, Fig. S2A). On one extreme end of the PC1 axis are
North African Mozabite (Algeria) individuals, and on the other
end of the axis are Mbuti ERHG (Democratic Republic of
Congo) and San (southern Africa) individuals (Fig. 1B). We also
observed a good fit between PC2, which explains 0.91% of the
genotypic variance, and a linear model with latitude, longitude,
and linguistic affiliation variables (adjusted R2 = 0.58, P < 1.0 ×
10−16), albeit less strongly than PC1 (SI Appendix, Fig. S2B).
Individuals speaking NC languages are represented at one end of
the PC2 axis and San individuals at the other end. Thus, geog-
raphy and language are significantly correlated with patterns of
genetic variation in Africa.
To explore our hypothesis of a possible common ancestry of

the Hadza, Sandawe, Sabue, and Dahalo, heretofore referred to
as the eastern HG (EHG), we tested whether they cluster more
closely to each other in the PCA compared with other pop-
ulations. We observed that they cluster significantly closer to each
other than to any other populations on PC1 and PC2 based on a
comparison of Euclidean distances among EHG and among EHG
and non-EHG individuals (Wilcoxon rank-sum test: W =
52,704,648; P < 1.0 × 10−16) (SI Appendix, Fig. S3A). In addition,
the Sabue, Hadza, and Dinka individuals significantly cluster to-
gether at one extreme of PC3 (Wilcoxon rank-sum test, W =
30,247.5; P < 1.0 × 10−16) (Fig. 1C and SI Appendix, Fig. S3B).
These observations are consistent with possible shared ancestry
between the Hadza and Sabue, and some evidence for shared an-
cestry of these populations with the Dinka (NS language) (27), as
well as linguistic evidence supporting a relationship between the
Shabo language and proto-NS (13). PCs explaining a smaller pro-
portion of the genetic variance in the data are presented in SI
Appendix, Fig. S1.
We explored patterns of population structure in African

population samples using STRUCTURE analysis (28) (Fig. 1D)
with a set of 20,000 SNPs, pruned to reduce linkage disequilib-
rium (LD). We also used haplotype clusters inferred by
BEAGLE (29) as a k-allele system at the same 20,000 loci (SI
Appendix, Fig. S4). We found that K = 9 was the number of
ancestral allele clusters (AAC) that consistently produced the
highest data likelihoods across runs for both genotypes (SI Ap-
pendix, Fig. S5A) and haplotypes (SI Appendix, Fig. S5B) without
producing multiple modes (i.e., inferring different ancestral al-
lele clusters across runs). Additionally, we observed lower vari-
ance in likelihood scores at K = 9 compared with higher values of
K. At K = 9 (Fig. 1D), we find that individuals from populations
that speak languages belonging to the same language family have
significantly similar AAC proportions (Mantel test: M = 0.473;
P = 0.001) (SI Appendix). However, several population samples
are distinguished by unique AACs at K = 9. These include the
North African Mozabite (Fig. 1D, dark blue) who have the
greatest proportion of Saharan ancestry compared with other
populations (Wilcoxon rank-sum test: W = 191; P < 1.0 × 10−16).
The other AACs at K = 9 distinguish HG populations: San (Fig.
1D, light green), WRHG and ERHG (Fig. 1D, dark green),
Hadza (Fig. 1D, yellow), Dahalo (Fig. 1D, pink), and Sabue (Fig.
1D, light blue) populations, respectively. Distinct AACs corre-
sponding to HG populations may be explained by genetic drift
caused by isolation of these populations or persistently small ef-
fective population sizes (Ne) (30). Unlike other EHG populations,
the Sandawe are not enriched for a particular AAC at K = 9; rather,
they have considerable AA (Fig. 1D, dark purple) and NC (Fig. 1D,
orange) ancestry: 37.1% and 26.4% on average, respectively. In
contrast, the Elmolo, Yaaku, Boni, Wata, Ogiek, and Sengwer from
East Africa share ancestry with neighboring agriculturalist or
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pastoralist populations. Patterns of clustering at lower AACs,
which support ancient common ancestry between the rain forest
HG and San and between the Hadza and Sabue, as well as the
genetic relationship between AACs based on the inferred an-
cestral allele frequencies, are described in the SI Appendix.

Historical changes in population size contributes to contem-
porary genetic variation; therefore, we used patterns of LD decay
to estimate Ne in population samples with at least 10 individuals
(SI Appendix, Figs. S6 and S7A) (31). Several of the EHG, the
Hadza, Dahalo, and Sabue, have relatively low estimates of Ne

DA

B

C

Fig. 1. Geographic distribution of populations studied and summaries of population structure. (A) The geographic distribution of populations included in the
study presented on a map of Africa. The legend indicates the colors assigned to each language family and the number and unique combination of color and
symbol for each ethno-linguistic population. (B) PCA was performed using individuals’ genotypes; PC1, which explains 2.11% of the genotypic variance and
shows a North–South cline, was plotted against PC2, which explains 0.91% of the genotypic variance and separates individuals with NC ancestry. (C) Hadza
and Sabue individuals cluster at one extreme end of PC3, which explains 0.73% of variance in individuals’ genotypes; NS-speaking individuals are also found
clustering near the Hadza and Sabue. (D) Population structure was inferred using the STRUCTURE software using 20,000 unlinked loci; results are shown from
K = 2 to K = 9, the latter of which was identified as having the best, most stable fit to the data. The STRUCTURE analysis revealed K = 9 AAC. Supporting the
PCA, two AAC’s corresponded to NC ancestry (orange); that is, correlated with the Bantu expansion, and North African ancestry (blue). In addition, the other
AACs identify structure between HG populations: San (light green), WRHG (dark green), Hadza (yellow), Dahalo (light purple), and Sabue (light blue). Results
from K = 2 to K = 8 are discussed in SI Appendix.
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(∼9,000–11,000), consistent with their relatively smaller census
population sizes (∼1,000–3,000) (32). In contrast, the Sandawe
and WRHG have maintained relatively higher Ne (on the order of
17,000 and 19,000, respectively), consistent with their larger cen-
sus sizes (∼30K) (33, 34). The estimates of Ne from LD in the
Hadza, WRHG, and Sandawe are consistent with estimates of Ne
based on levels of genetic diversity from whole-genome sequence
data in the same populations (35). The largest Ne estimates are for
agriculturalist and pastoralist populations, which is also consistent
with prior studies (35, 36).
To examine the influence of demographic history on patterns

of haplotype sharing within populations, we examined sharing of
identity-by-descent (IBD) regions, which are stretches of DNA
between individuals inherited from a common ancestor, and runs
of homozygosity (ROH), which are stretches of DNA that are
identical between the two haploid chromosomes of an individual.
For each population, we calculated the average of the total IBD
between all pairs of individuals, which we refer to as cumulative
IBD (cIBD) and cumulative ROH (cROH) within individuals.
Comparing cROH with cIBD for each population (SI Appendix,
Fig. S7B), we find that the Hadandawa-Beja have the greatest
cROH (195 cM) but are only the 15th highest for cIBD (45 cM);
the high cROH is consistent with the documented practice of
consanguineous marriages in this population (37). In contrast,
the Hadza have the greatest cIBD (398 cM) as well as the second
greatest cROH (158 cM). The presence of elevated cIBD and
cROH in the Hadza is consistent with a small census size (∼1,000),
a low Ne and long-term endogamy (24, 35).

Historical Relationships Among African Populations. We recon-
structed a population tree using pairwise estimates of genetic
distance based on the FST statistic (Fig. 2A). We assessed sta-
tistical support for internal nodes in the neighbor-joining (NJ)
population tree by bootstrapping loci with 1,000 replicates (SI
Appendix). Broadly, the tree reflects geographic residence and
linguistic affiliation as observed in the previous results. In ad-
dition, four geographically dispersed EHG populations—the
Hadza, Sabue, Sandawe, and Dahalo—form a clade. The Hadza

form a subclade with the Sabue with 97% bootstrap support.
Support for inclusion of the Dahalo and Sandawe in the EHG
clade is lower; however, examination of the bootstraps shows
that this is because >80% of the replicates show the Dahalo
cluster with the Boni, a neighboring population with whom they
share recent contact (see IBD results below). As noted above,
the linguistic relationships among these populations are unclear
and contentious. While evidence for recent common ancestry
between the neighboring Hadza and Sandawe has previously
been shown (17, 24, 27), our results represent genetic evidence
for a uniquely shared common ancestry of these populations with
the Dahalo and Sabue from Kenya and Ethiopia, respectively. It
is also noteworthy that other HG populations from central and
southern Africa cluster with high bootstrap support: the San and
Mbuti form a clade despite being geographically isolated from
each other, and both form a clade with the WRHG, supporting
results from PCA (Fig. 1 B and C) and STRUCTURE analyses
(Fig. 1D) (18, 36, 38, 39). In contrast, other HG populations
from East Africa (i.e., Ogiek, Dorobo, and so forth) cluster to-
gether with neighboring agriculturalist or pastoralist populations.
In addition to using FST to infer relationships between pop-

ulations, we examined the distribution of the number and length
of IBD tracts between individuals across populations to identify
recent shared ancestry (40, 41). We explored the possibility that
the signal of EHG common ancestry represents shared gene flow
with Cushitic- and Bantu-speaking populations who expanded
into East Africa within the past 5 kya (42). We used a distance
measure, based on the ratio of IBD tracts (≥2 cM) found within
and between populations, to construct a population tree (Fig.
2B). We compared FST- and IBD-based distances between pop-
ulations (SI Appendix), as the latter measure is more sensitive to
recent gene flow originating 25–50 generations ago (43). Unlike the
FST-based tree, the EHG populations do not form a clade in the
IBD-based tree, instead clustering with geographically proximate
populations (Fig. 2B), indicating an increase in interactions between
the EHG and neighboring agriculturalist and pastoralist pop-
ulations in the recent past (18). Notably, the Boni and Dahalo, who
neighbor each other, cluster together on the IBD tree, which

Fig. 2. Population trees. (A) An NJ population tree was inferred using estimates of pairwise genetic distances between populations based on FST values scaled
by Ne. Populations largely cluster by geography or language affiliation, with the notable exceptions of the clade consisting of the Hadza, Sabue, Sandawe,
and Dahalo and the clade consisting of the WRHG, ERHG, and San, whose populations cluster together despite being geographically distant. (B) An NJ
population tree based on pairwise distances based on the ratio of within-population to between-population haplotype sharing (i.e., IBD); this statistic is more
sensitive to recent demographic events, such as gene flow than FST. The EHG cluster most closely with neighboring populations.
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explains the frequency with which they appear together in
bootstrap replicates of the FST-based tree. Furthermore, in the
IBD tree, the Dinka form a clade with the Sabue, consistent
with the genotypic PCA (Fig. 1C), suggesting recent gene flow
and/or shared ancestry. These observations are consistent with a
model suggested by some linguists in which the Shabo language is
classified with the NS language family (13), although other lin-
guists (14) find inadequate evidence for a connection between the
Shabo language and proto-NS. This uncertainty could be due to
the age of the linguistic relationship between Shabo and proto-NS,
which may predate the upper bound for linguistic reconstruction
(∼10 kya) (44).
The lack of clustering of the EHG in the IBD-based distance

tree indicates that the pattern of shared ancestry among the
EHG populations observed in the reconstructed FST -based
population tree (Fig. 2A) is not due to recent events. We used an
approach introduced by Fearnhead and Prangle (45) to construct
summary statistics for approximate Bayesian computation
(ABC) inference based not only on allele frequency differences
between populations, but also on patterns of LD and admixture
LD (i.e., LD weighted by differences in allele frequencies be-
tween populations) to infer divergence times between pairs of
EHG populations (31, 46–51) (SI Appendix). The demographic
model we employed (SI Appendix, Fig. S8) included changes in
Ne, gene flow from populations speaking NC, NS, or AA lan-
guages, and ascertainment bias due to SNPs on the Illumina 1M
array that were identified primarily in non-African populations.
The maximum a posteriori estimate and 95% credible interval

for pairwise divergence time estimates are shown in Fig. 3. The
maximum a posteriori divergence time estimates for the Hadza
and Sandawe were 13 or 22 kya when accounting for different
primary sources of admixture based on STRUCTURE analysis
(Fig. 1D) (NC or AA, respectively); these estimates overlap with
previous studies (17). The Hadza split times with other pop-
ulations were older; the divergence time estimates with the
Sabue (NC or AA gene flow) were 44 or 61 kya, respectively, and
with the Dahalo (NC or AA gene flow) were 55 or 61 kya, re-
spectively. Sandawe population divergence time estimates with
the Sabue (NS or AA admixture) were 30 or 52 kya, respectively,
and with the Dahalo (NS or AA gene flow) were 50 or 57 kya,
respectively. The estimated times of divergence of the Sabue and
Dahalo (NC or AA gene flow) were 63 or 72 kya, respectively.
These results are consistent with a model in which population
divergence between the Dahalo and Sabue and the ancestors of
the Sandawe and Hadza occurred >30 kya, whereas the Hadza
and Sandawe divergence was more recent. Whole-genome se-
quence analyses will be informative for more accurately resolving
the time of population divergence among EHGs.

Genome-Wide Patterns of Adaptation. Over the past two decades,
several genome-wide scans for selection have been developed
and applied to worldwide human genetic data (52–54). Fewer
studies, however, have focused on variation within Africa (24, 35,
36, 38, 55–57). These studies have tended to focus on specific
regions (e.g., Southern Africa or Ethiopia) in Sub-Saharan Africa
(24, 36, 55) or specific populations of interest living in Africa
(35, 38, 57). Thus, the pattern and distribution of adaptive can-
didate loci among geographically and culturally diverse African
populations is not well understood. We used three comple-
mentary statistical tests of neutrality to characterize African genome-
wide signatures of adaptation. We combined individuals into
larger population groupings based on shared ethno-linguistic af-
filiation and on shared ancestry, as inferred from PCA clustering
(SI Appendix, Fig. S9) for the subsequent analyses.

Shared Adaptive Signals. Given the wide range of diverse pop-
ulations sampled in the study, we were interested in studying the
distribution of adaptive candidate genes within and among
population groupings. We first employed the D statistic, an ex-
tension of the locus-specific branch length statistic that includes
more than three population samples (58, 59), to identify signa-

tures of regionally restricted adaptation within population group-
ings. We identified genes near (within 100 kb) SNPs in the top 0.1%
of the empirical distribution of results for the D statistic test
(expected to be enriched for targets of natural selection) for
each population grouping, and we performed pathway-enrichment
analyses of these adaptive candidate genes (SI Appendix, Table S3).
Because the D statistic identifies SNPs with allele frequencies that
are unusual in one sample relative to all others in the analysis (58),
it was not surprising that the majority of top (0.1%) candidate genes
(93%) occur in only a single population grouping (SI Appendix, Fig.
S10 and Dataset S1).
We next employed the integrated haplotype score [iHS; a

within-population statistic (54)] to identify relatively recent sig-
natures of selective sweeps within population groupings based
on extended haplotype homozygosity, and a cross-population
composite likelihood ratio test [XP-CLR; a between-population
statistic using the NC-west grouping as the reference population
(60)] to identify older signatures of adaptation and signatures
of selection from standing variation (genes near SNPs in the top
0.1% of the empirical distributions are shown in Datasets S2 and
S3 for iHS and XP-CLR, respectively). When we looked at the
degree to which top iHS and XP-CLR candidate genes were
shared across population groupings, we found that the majority
occur in only a single grouping (57% and 66%, respectively) (SI
Appendix, Figs. S11 and S12), and this prevalence of population-
specific signatures is significantly more than would expected to
occur by chance (bootstrap P < 1e-06).
As expected, we identified the MCM6 locus upstream of lactase

(LCT), which contains SNPs associated with regulating lactase
gene expression (61, 62) in the top 0.1% of candidate loci identi-
fied by all three tests in several pastoral population groupings:
Eastern-Cushitic, Beja, Datog, Southern-Nilotic, and Fulani (as
well as in populations that have experienced recent gene flow with
pastoralists). This result supports previous work demonstrating the
MCM6 region to have one of the strongest signals of adaptation in
East African pastoralists (62, 63), and validates the sensitivity of
our chosen methods for detecting adaptation.
In addition, we identified a number of immune-related can-

didate loci that show shared signatures of selection in several
population groupings. Seven of the 52 candidate loci identified

Fig. 3. Divergence time estimates. The maximum a posteriori estimates and
95% credible intervals for pairwise divergence time estimates are displayed
for each set of population samples. Estimates incorporated shared gene flow
with the Yoruba, Iraqw, and Dinka, representing NC, AA, and NS source
populations, and are color-coded as yellow, purple, and red, respectively.
The closed circles represent population combinations for which we believe
the included source population likely contributed migrants to either HG
population in the past.
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using iHS candidate genes that are present in many population
groupings (≥10) belong to the histocompatibility complex (HLA)
gene family, which is known to be critical to immune function
(64), and 14 of the 32 XP-CLR candidate genes that are present
in at least 10 population groupings belong to the Igκ chain vari-
able (IGKV) gene cluster, which is known to have been subjected
to positive selection in humans (65) (Fig. 4). Because many of the
adaptive candidate genes across the population groupings in the
study are involved in immune function, we more formally tested
for enrichment of gene ontology (GO) immune system process
terms (GO:0002376) (66). We found significant enrichment in all
three sets of results (Methods): XP-CLR (P < 10e-05), iHS (P <
10e-05), and D (P < 10e-05).
Given the significant enrichment of GO immune system pro-

cess genes in each set (XP-CLR, iHS, D) of adaptive candidate
loci pooled across population groupings, we were interested in
testing whether particular environmental variables have impacted
the degree to which immune function genes are overrepresented
in adaptive candidate genes among population groupings. Because
our study includes populations living in diverse environments with
a range of malaria endemicities and practicing a wide range of
subsistence strategies, we tested whether these two variables were
associated with immune function enrichment (Methods). We
found that the degree to which adaptive candidate genes identi-
fied with iHS (which is sensitive to the most recent signals of
adaptation relative to the D statistic and XP-CLR) are enriched
for immune function genes is significantly correlated with both
subsistence and malaria endemicity (R2 = 0.59, P = 0.021)
(Methods). This result is also significant for adaptive candidate
genes identified with the D statistic (R2 = 0.52, P = 0.038), but is
not significant for adaptive candidate genes identified with XP-
CLR (R2 = 0.29, P = 0.42). One possible explanation for the lack
of XP-CLR significance is that this test is more sensitive to older
adaptive signatures (60) that may predate the emergence of
malaria as a strong selective pressure in Africa.

Adaptive Signals Present Within Population Groupings. Given the
extent of population-specific signals of adaptation in the data, we
explored the genes near (within 100 kb) SNPs in the extreme tails
(top 100 loci) of the population-specific results in more detail
(Dataset S1). As noted above, many of the strongest signals

of population-specific adaptation are involved in immune
function (Table 1). These include genes involved in innate and
adaptive immune function, which have been shown to be im-
portant in resistance to malaria and other infectious diseases
(67–75). More specifically, we have identified genes involved in
the production and regulation of B and T cells (76–80), genes
involved in resistance to malaria and viral infections (including
HIV-1) (81–85), genes involved in resistance to bacterial infection
(86, 87), and genes involved in inflammatory response (88, 89).
We additionally observed significant pathway enrichment of in-
flammation mediated by chemokine and cytokine signaling in the
El Molo population grouping (SI Appendix, Table S3).
In addition, we observed candidate loci that may play a role in

adaptation to diverse diets and climates (Datasets S1–S3). For
example, the D and the XP-CLR statistics identified loci near
CISH and DOCK3 on chromosome 3, which are highly differ-
entiated in WRHG and were previously identified as targets of
selection and associated with stature in the same population,
thought to be an adaptation to a tropical environment (38). The
D and XP-CLR statistics identified a cluster of taste receptor loci
on chromosome 12, and XP-CLR identified the amylase gene
cluster, which plays a role in starch digestion (90), as targets of
selection in the WRHG. Additionally, several of the strongest
candidates for selection we identified encode proteins involved in
insulin resistance (91–95), hypoglycemia (96), lactate dehydroge-
nase B deficiency (97), as well as lipid metabolism, transfer, and
storage (98–100) (Table 1). Additionally, we observed significant
enrichment of the cholesterol biosynthesis pathway in the southern-
Nilotic population grouping living in Kenya, who are predominantly
pastoralists (SI Appendix, Table S3).
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Fig. 4. Signatures of selection shared among population groupings. These
shared signals among population groupings include candidate loci in the top
0.01% of the empirical distribution of each neutrality test statistic (D, iHS,
XP-CLR, respectively). The HLA and IGKV gene families are displayed along
the x axis for each neutrality test. The y axis displays the number of pop-
ulation groupings that share signatures of selection at these loci.

Table 1. Signatures of adaptation within population groupings

Biological role and locus Population grouping

Innate and adaptive immune function
MYLK Fulani
TRAF3 Amhara
IL6 Bulala
TRAF3IP2 Hadza
RAG2 Niger-Congo–east
NFX1 Eastern-Cushitic
IL2RA Sandawe
LGALS3 Elmolo
NCAM1 Bulala
MAVS Eastern-Cushitic
GAB2 Niger-Congo–east
ISCU Dinka
ICAM1 Bulala
CD46 Sabue
FCGR3A Southern-Nilotic
FCGR2B Southern-Nilotic
IFNGR1 Eastern-Cushitic
COLEC11 Ogiek
ORM1 Sabue
TFCP2 Ogiek

Digestion and metabolism
SLC2A10 Boni
PPARGC1A Iraqw
IDE Luo
PSMB9 Mada
ALMS1 Niger-Congo–west
FBP1 Amhara
LDHB Iraqw
PNPLA2 Yaaku
LPIN2 Hadza
PLTP Southern Nilotic

These include genes within 100 kb of candidate loci in the most extreme
100 D test statistic results.
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Discussion
In this study we have characterized genomic variation in sub-
Saharan populations representing a breadth of cultural and
geographic diversity. The results of the study support the influ-
ence of geographic proximity, as well as cultural affiliation (e.g.,
language and subsistence patterns), in defining the complex
relationships among populations. In particular, the Hadza, Sandawe,
Dahalo, and Sabue live relatively far apart from each other in
Tanzania, Kenya, and Ethiopia; however, we show that there is a
closer genetic relationship among these populations than would
be expected based on their geographic residences alone. They all
either currently, or until very recently, have employed hunting
and gathering as a primary subsistence strategy, and three of the
languages spoken by these populations contain click consonants.
Our results indicate that these HG populations, like the San and
rain forest HG, are not impoverished agriculturalists or pasto-
ralists who have lost their land or livestock; instead, they likely
have remained relatively isolated for an extended period of time
and have only come into contact with other populations in the
more recent past. On the other hand, other East African pop-
ulations who practice an HG lifestyle and speak AA or NS lan-
guages, appear to be genetically similar to neighboring non-HG
populations. This could either be due to the loss of domestication
or may reflect older ancestral subsistence patterns (20).
These relationships are consistent with a demographic history

in which structure among EHG populations emerged before the
Last Glacial Maximum (∼21 kya). This period has been identified
as one of increased aridity and reduced temperatures in East
Africa; these climatic conditions were accompanied by shifts in
vegetation, particularly reduced forest coverage (101, 102), and
these environmental changes are thought to have triggered human
dispersals into environmental refugia (103). Thus, we have uncovered
a connection among geographically disparate HG populations in
East Africa, consistent with a broad geographic distribution of
their ancestors in the late Pleistocene before 30 kya.
Our analysis of signals of positive selection in geographically

and ethnically diverse African population samples highlights the
degree to which recent, regionally restricted positive selection
has shaped patterns of variation in contemporary Africans. We
have identified candidate loci that may be targets of natural
selection; future in vitro and in vivo studies will be necessary to
determine functional impact. We found that the majority of
genes near SNPs showing the strongest signals of positive se-
lection occurred in only one of the population groupings in-
cluded in the analysis. This result is consistent with previous
work that found a minority of overlapping signals of adaptation
across continental groups (44–12%) (104). Because of the as-
certainment strategy used for the Illumina 1M-Duo SNP array—
common variants were prioritized, and these variants tend to be
older (arose before the out of Africa migration) and may exclude
population-specific SNPs—future studies based on high coverage
whole-genome sequencing are likely to uncover additional loci
that play a role in adaptation to diverse diets, climates, and in-
fectious diseases across sub-Saharan Africa. Given our results,
we argue that the common practice of using only one or a
handful of population samples to represent an entire continent is
inadequate, and this is especially true for sub-Saharan Africa,
which harbors the largest proportion of human genetic variation
relative to other regions across the world.
Our study includes populations living in highly diverse envi-

ronments, with variable pathogen exposure, and practicing a
wide range of subsistence strategies. Therefore, we were able to
explore whether this diversity has had an impact on the ways in
which adaptation has shaped variation in Africa. The loci that
were identified as putative targets of selection are significantly
enriched for genes that play a role in immune function. It is not
especially surprising that loci that play a role in response to in-
fectious disease have had such a large impact on variation among
African genomes, given that infectious disease mortality is one
of the strongest selective pressures identified in contemporary
populations (105). Additionally, we identified candidate adaptive

loci that play a role in cholesterol and glucose metabolism, taste
perception, and starch digestion, many of which are specific to
population groupings. Loci that may be adaptive in indigenous
environments could be associated with disease in urban envi-
ronments (106); therefore, it is critical to include diverse pop-
ulations in studies of human adaptation, especially when the
results have implications for human health and disease.

Conclusion
Human demographic history in Africa involves a complex tap-
estry of population movements, admixture, and adaptations to
diverse environments that have shaped the genomic landscape of
Africa. We have used patterns of genomic variation to investigate
the demographic history of HG populations living in East Africa,
demonstrating ancient common ancestry. Changes in environ-
ment and subsistence within Africa have resulted in novel and
distinct selective pressures. While these biological pressures ap-
pear consistent across African populations, the specific genetic
regions affected by selective pressures often vary across pop-
ulations. These combined results demonstrate the importance of
including ethnically diverse sub-Saharan African populations in
human genetic studies to improve our understanding of complex
population histories. Finally, these data demonstrate the critical
importance of including African populations in biomedical studies
to best encompass the full range of human diversity.

Methods
Sample Acquisition and Genotyping. Institutional Review Board approval for
this project was obtained from theUniversity ofMaryland at College Park and
the University of Pennsylvania. Written informed consent was obtained from
all participants and research/ethics approval and permits were obtained from
the following institutions before sample collection: COSTECH (the Tanzania
Commission for Science and Technology) and the National Institute of
Medical Research in Dar es Salaam, Tanzania; the Kenya Medical Research
Institute in Nairobi, Kenya; the University of Khartoum in Sudan; the Nigerian
Institute for Research and Pharmacological Development, Abuja, Nigeria; the
Ministry of Health andNational Committee of Ethics, Cameroon; theUniversity
of Addis Ababa and the Federal Democratic Republic of Ethiopia Ministry of
Science and Technology National Health Research Ethics Review Committee. A
total of 816 samples were genotyped on the Illumina 1M-Duo Bead Array SNP
chip. We removed individuals with <95% successfully genotyped SNPs. We
also removed related individuals as inferred by PLINK (π̂ > 0.25). A total of
697 individuals passed these filters; this sample was then merged with data
from Li et al. (23) and Henn et al. (107), resulting in 840 individuals with
genotypes available at ∼621,000 SNPs used for further analyses.

Principal Components Analysis. The smartpca program provided in EIGEN-
SOFT 4.2 was used to calculate principal components of the sample genotype
matrix of all 840 individuals at all SNPS; to account for LD, the regress option
of smartpca was utilized.

Bayesian Clustering. For analysis with STRUCTURE, the full complement of
SNPs was pruned to a smaller set of 20,000 SNPs using PLINK with the goal of
minimizing LD. The model was run at K values from two through nine; each
chain was run 10 times. Results from different runs were aligned using the
CLUMPP software; the modal configuration for ancestry was identified vi-
sually and presented using the DISTRUCT software. Haplotypes were phased
using the algorithm implemented in the BEAGLE 3.3.2 software suite (29).
We inferred phase and haplotype clusters using all SNPs and then reran the
k-allele STRUCTURE analysis with haplotype clusters at the same sites as with
the biallelic STRUCTURE analysis.

LD Decay and Ne. LD decay was calculated by sampling pairs of SNPs within
20 kbp of each other and calculating the genotypic correlation, which ap-
proximates r2. SNPs were placed into bins based on their distance: SNPs
0–1 kbp apart were placed into one bin; SNPs 1–2 kbp were placed into an-
other bin, and so forth. The r2 values of pairs of SNPs within bins were then
averaged to obtain E[r2]. The relationship between E[r2] and Ne derived by
Tenesa et al. (46) was used to estimate Ne via nonlinear least squares.

Population Tree. The FST statistic as defined by Weir (108) was implemented
in R and calculated for population samples with ≥10 individuals using the
same set of 20,000 SNPs used for STRUCTURE analysis. The NJ algorithm was
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used to estimate a population tree from pairwise distances between pop-
ulations. The pairwise distance employed between populations i and j was
defined as follows: tij =−2Ne′ logð1− FST Þ; here, Ne′ is the harmonic mean of
the Ne estimates for populations i and j, which helps mitigate the potential
for long-branch attraction due to bottlenecks or population expansions and
concomitant changes in allele frequencies. The bootstrap support of the tree
was estimate by resampling SNPs as well as individuals.

Identity-By-Descent. Haplotypes were phased using the algorithm imple-
mented in the BEAGLE 3.3.2 software suite. To infer IBD tracts between pairs
of individuals, we used the GERMLINE v2.2 software. The lengths and number
of IBD tracts between pairs of individuals were used to calculate a distance
based on the model of Huff et al. (109). A statistic FIBD, analogous to FST, was
calculated between populations by averaging the IBD-based distances be-
tween pairs of individuals within populations and between populations. The
NJ algorithm was used to reconstruct a population tree from the IBD-based
distance matrix.

Inference of Divergence Time. We employed the ABC approach to infer the
time of divergence between EHG populations; specifically, we used rejection
sampling with local linear regression adjustment (110). For simulations, we
utilized a realistic demographic model representative of four contemporary
populations: two EHG populations, an agriculturalist or pastoralist (A/P) pop-
ulation, and a non-African population. The parameters of the demographic
history of the A/P population and the non-African population were based on
previous results (111, 112). The unknown parameters in this model included
not only time of divergence, but also gene flow rates from the A/P population
to the two simulated EHG populations as well as EHG Ne, the population size
of the population ancestral to the EHG, and finally the population size of the
simulated ancestral African population. Each of these parameters was sampled
from our prior distributions. Gene flow from the population representing the
A/P was introduced into the EHG populations 100–200 generations in the past,
approximately the time populations in Neolithic populations in African began
expanding (8, 10). For the EHG population, likely sources of gene flow from
A/P population (i.e., representative NC, AA, or NS populations) were identified
from STRUCTURE results. We also fixed parameters regarding the evolution of
Ne in the A/P and non-African population. In addition, the A/P population
diverged from other populations 4,500 generations in the past and the non-
African population diverged 3,500 generations in the past. To simulate the
effect of SNP ascertainment bias, only SNPs with a frequency >5% in the non-
African population were retained from the simulated African populations
(113–115). In addition, we accounted for the ascertainment bias introduced by
choosing tag SNPs: we removed SNPs from analysis if they were in high LD (r2 >
0.70) with other SNPs in the simulated non-African population. The de-
mographic model was simulated using the coalescent framework (116); for
each simulation (10,000 replicates), a total of 200 regions, 50 kbp in length,
were generated. The mutation rate was fixed for each region (1.1 × 10−8

mutations per base pair per generation). The recombination rate was allowed
to vary; we matched the average local recombination rates in 200 randomly
selected 50-kbp regions in the deCode recombination map (117).

We constructed summary statistics using the approach of Fearnhead and
Prangle (45). We proposed an initial set of summary statistics S(Xsim) based
on the f2 distances between the EHG and between each and A/P population,
LD decay, and admixture LD decay (SI Appendix) (46, 50, 51, 118–120). We
simulated these summary statistics in a pilot stage of 10,000 simulations. We
estimated the functional relationship between each of the seven parameters
and corresponding summary statistics: that is, θp ∼ ĝp(S(Xsim)) using gradient
boosting machines, an ensemble method that constructs a functional ap-
proximation by iteratively combining regression trees while minimizing the
squared error with respect to the target function (121–125). We then ran a
second stage of simulations (10,000 replicates); summary statistics were
transformed using the functional approximations obtained by gradient
boosting machines in the pilot stage, ĝp(S(Xobs)). We used ABC with local
linear regression adjustment to draw samples from the posterior distribution
f(θ j ĝp(S(Xobs))).

Selection Scan Population Groupings. When we grouped two or more pop-
ulation samples, we used shared ethno-linguistic affiliations among the in-
cluded population samples to refer to these population groupings in the text
(SI Appendix, Table S2). In particular, we grouped the Gabra, Gurreh, and
Rendille into an eastern-Cushitic population grouping; the Baniamer and
Hadandawa into a Beja population grouping; the Cameroon Fulani, Nigeria
Fulani, and Mbororo Fulani into a Fulani population grouping; the Lemande,
Ngumba, southern Tikar, and Yoruba into an NC-west population grouping;
the Pare, Taita, and Taveta into an NC-east population grouping; the Pokot

and Sengwer into a southern-Nilotic population grouping; and the Aari and
Hamer into an Omotic population grouping. Because the Baka, Bakola, and
Bedzan are thought to have adopted languages that belong to the NC lan-
guage family, we refer to them as the WRHG grouping in place of linguistic
affiliation. All other ethno-linguistic populations are referred to individually.

Genome-Wide Tests of Neutrality. We utilized three complementary statistics
for identifying regions of the genome that deviate from neutral expectations:
the D statistic (58), XP-CLR (60), and the iHS (54). The D statistic leverages
information across all of the included population groupings so that the SNPs
with the most extreme values will have allele frequencies that are distinct
only in our reference population sample; this method therefore, is designed
to identify regions of the genome that are highly differentiated in one
population sample. XP-CLR leverages pairwise populations sample compar-
isons to identify regions of the genome that contain highly differentiated
regions of LD. XP-CLR has also been shown to be sensitive to selection from
standing variation. The iHS complements the other strategies by identifying
regions that contain extended haplotype homozygosity within a given
population, a classic signature of selective sweeps.

Following Akey and colleagues (58, 59), we calculated pairwise FST among
all of the 23 population groupings using the method described in Weir (108).
We then calculated the D statistic, and identified the top 0.1% of SNPs and
genes100 kb up and downstream as our candidate regions (to account for
regulatory SNPs that are typically within 100 kb of genes which they regu-
late; we refer to these as “candidate genes”) (Dataset S1).

We employed the (iHS) test of neutrality within each of the 23 groupings as
described previously (38). Briefly, we used the software package BEAGLE
v3.3.2 to infer phase (29), and we generated a fine-scale recombination map
relevant to the African populations with LDhat v2.1 (126). Individuals used
to generate the recombination map were 100 unrelated samples, 25 males
and 25 females, each from two populations in HapMap3 Release 2: the
Yoruba from Ibadan, Nigeria (YRI) and the Luhya from Webuye, Kenya
(LWK) (127). We estimated a genetic map in Morgan units of r from ρ = 4Ner
units using an Ne of 15,700, consistent with the estimation in Myers et al.
(128). We used genome-wide sequence data from several nonhuman pri-
mates (chimpanzee, orangutan, and rhesus macaque) downloaded from the
University of California, Santa Cruz Genome Browser website (129) to es-
tablish the ancestral allele for each of the SNPs included in our iHS analysis.
Approximately 5% of the SNPs in our data could not be assigned an un-
ambiguous ancestral state and were removed before our iHS analysis. In
addition, SNPs with minor allele frequencies less than 5% in population
samples were removed from the phased dataset used in the iHS analysis, in
agreement with other publications (e.g., ref. 54). Finally, we removed SNPs
containing missing data. The unstandardized scores returned by the iHS
binary executable were adjusted such that all scores had zero means and
unit variances with respect to SNPs with similar derived allele frequencies
(for iHS, as described in ref. 54). We considered all of the results (for iHS we
took the absolute values) in the top 0.1% of the distribution to be the top
candidates (Dataset S2).

We additionally performed XP-CLR because it has been shown to be robust
to ascertainment bias and because it has been shown to be sensitive to
detecting selection from standing variation (60). Using the recombination
map described above, we ran the XP-CLR software package (60) with 0.005-
cM sliding windows and a between-window distance of 5 kb. Previous work
has shown that many if not all of the included population groupings, have
experienced recent gene flow resulting from the Neolithic expansion of
peoples, technologies, and Bantu languages, often referred to as the Bantu
expansion (8, 18, 130). Therefore, we wanted to minimize the effects of this
gene flow on the XP-CLR results. Thus, in this analysis we used the NC-west
grouping as our comparison population for each of the other population
groupings to highlight regions of the genome that are unusually structured
between the NC-west agriculturalists and the other diverse population
groupings included in the study. We considered all of the results in the top
0.1% of the distribution to be the top candidates (Dataset S3).

Pathway Enrichment. We tested for significantly overrepresented Panther
biological pathways (131) in our top candidate regions for each of the three
genome-wide tests of neutrality. For each genome-wide scan of selection we
generated a list of genes [annotated with Biomart (132)] within 100 kb of a
top 0.1% SNP and tested whether this list contained more Panther pathway
genes that would be expected by chance using a χ2 test. We corrected the
pathway results for multiple testing with a Bonferroni correction. We used a
range of 100 kb because we were interested in retaining potential cis-
regulatory variants in our analysis.
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Bootstrap Analysis. To test the null hypothesis that the number of candidate
genes that are present among population groupings could be explained just
by chance, we randomly sampled 1,000 SNPs from our empirical data for
24 population groupings, including all genes 100 kb up and downstream of
the SNPs, and then quantified the overlap among population groupings. We
assessed the significance of this result with 1,000,000 bootstraps and found
that all bootstrap runs resulted in a minority (<34%) of candidate genes
occurring in a single population grouping (P < 1e-06).

Enrichment of GO Immune Function Genes. Given the prevalence of immune-
related genes in our top adaptive candidate genes, we more formally tested
whether this enrichment was statistically significant. We used the set of
immune system process terms (GO:0002376) defined by the GO website
(66), and tested for overrepresentation in each set of unique candidate
genes identified with a given statistic (XP-CLR, iHS, D) across population
groupings. We assessed statistical significance with 1,000,000 bootstrap
runs, all of which resulted in lower levels of enrichment than our empirical
results for candidate genes identified with each of the three statistics (XP-CLR,
iHS, D) (P < 1e-06).

We were also interested in any variability in the degree to which sets of
candidate genes were enriched for particular biological processes among

population groupings. For this analysis we tested whether environmental
variables (malaria endemicity and subsistence strategy) had any impact on the
degree towhich a given set of adaptive candidate genes identifiedwith a given
statistic (XP-CLR, iHS, D) in a given population was enriched for GO immune
system genes. We used linear modeling with the χ2 measure of enrichment as
our dependent variable and malaria endemicity (estimated from information
available through the Malaria Atlas Project, https://map.ox.ac.uk/) (133) and
subsistence strategy as our explanatory variables (χ2 ∼ malaria_endemicity +
subsistence_strategy + malaria_endemicity × subsistence_strategy). Because
the residuals of the linear model were not normally distributed, we boot-
strapped both malaria endemicity and subsistence strategy 1,000 times to
generate statistical significance.

ACKNOWLEDGMENTS. We thank Joseph Lachance for helpful comments
and discussion; and the African volunteers for samples. Genotyping services
were provided by Hakon Hakonarsson of the Center for Applied Genomics
at the Children’s Hospital of Philadelphia. This research was funded by
National Science Foundation Grants BCS-0196183 and BCS-0827436 and
National Institutes of Health Grants 8DP1ES022577, 5-R01-GM076637,
1R01DK104339, and 1R01GM113657 (to S.A.T.).

1. McDougall I, Brown FH, Fleagle JG (2005) Stratigraphic placement and age of

modern humans from Kibish, Ethiopia. Nature 433:733–736.
2. McDermott F, et al. (1996) New Late-Pleistocene uranium–thorium and ESR dates for

the Singa hominid (Sudan). J Hum Evol 31:507–516.
3. Hublin JJ, et al. (2017) New fossils from Jebel Irhoud, Morocco and the pan-African

origin of Homo sapiens. Nature 546:289–292.
4. Scheinfeldt LB, Soi S, Tishkoff SA (2010) Colloquium paper: Working toward a syn-

thesis of archaeological, linguistic, and genetic data for inferring African population

history. Proc Natl Acad Sci USA 107:8931–8938.
5. Mcbrearty S, Brooks AS (2000) The revolution that wasn’t: A new interpretation of

the origin of modern human behavior. J Hum Evol 39:453–563.
6. Nurse D (1997) The contributions of linguistics to the study of history in Africa. J Afr

Hist 38:355–391.
7. Philipson D (1975) The chronology of the Iron Age in Bantu Africa. J Afr Hist 16:

321–342.
8. de Filippo C, et al. (2011) Y-chromosomal variation in sub-Saharan Africa: Insights

into the history of Niger-Congo groups. Mol Biol Evol 28:1255–1269.
9. Patin E, et al. (2017) Dispersals and genetic adaptation of Bantu-speaking pop-

ulations in Africa and North America. Science 356:543–546.
10. Bower J (1991) The pastoral neolithic of East Africa. J World Prehist 5:49–82.
11. Ehret C (2000) Language and history. African Languages: An Introduction, eds Heine

B, Nurse D (Cambridge Univ Press, Cambridge, UK), pp 272–297.
12. Guldemann T, Stoneking M (2008) A historical appraisal of clicks: A linguistic and

genetic population perspective. Annu Rev Anthropol 37:93–109.
13. Blench R (2006) Archaeology, Language, and the African Past (Altamira Press, Lanham, MD).
14. Ehret C (1992) Do Krongo and Shabo belong in Nilo-Saharan. Proceedings of the

Fifth Nilo-Saharan Linguistics Colloquium, Nice (Rudiger Koppe Verlag, Cologne,

Germany), pp 169–193.
15. Nurse D (1986) Reconstruction of Dahalo history through evidence from loanwords.

Sugia: Sprache und Geschichte in Afrika (Rudiger Koppe Verlag, Cologne, Germany),

Vol 7, pp 267–305.
16. Morris AG (2003) The myth of the East African ‘Bushmen’. S Afr Archaeol Bull 58:85–90.
17. Tishkoff SA, et al. (2007) History of click-speaking populations of Africa inferred

from mtDNA and Y chromosome genetic variation. Mol Biol Evol 24:2180–2195.
18. Tishkoff SA, et al. (2009) The genetic structure and history of Africans and African

Americans. Science 324:1035–1044.
19. Edwards A, Cavalli-Sforza L (1963) Analysis of Human Evolution. Genetics Today.

Proceedings, 11th International Congress of Genetics, The Hague (Pergamon Press,

Oxford), pp 923–933.
20. Stiles D (1992) The hunter-gatherer ‘revisionist’debate. Anthropol Today 8:13–17.
21. Ambrose SH (1982) Archaeology and linguistic reconstructions of history in East

Africa. The Archaeological and Linguistic Reconstruction of African History, eds

Ehret C, Posnansky M (Univ of California Press, Berkeley, CA), pp 104–157.
22. Semino O, Santachiara-Benerecetti AS, Falaschi F, Cavalli-Sforza LL, Underhill PA

(2002) Ethiopians and Khoisan share the deepest clades of the human Y-chromosome

phylogeny. Am J Hum Genet 70:265–268.
23. Li JZ, et al. (2008) Worldwide human relationships inferred from genome-wide

patterns of variation. Science 319:1100–1104.
24. Henn BM, et al. (2011) Hunter-gatherer genomic diversity suggests a southern Af-

rican origin for modern humans. Proc Natl Acad Sci USA 108:5154–5162.
25. Price AL, et al. (2006) Principal components analysis corrects for stratification in

genome-wide association studies. Nat Genet 38:904–909.
26. McVean G (2009) A genealogical interpretation of principal components analysis.

PLoS Genet 5:e1000686.
27. Pickrell JK, et al. (2012) The genetic prehistory of southern Africa. Nat Commun 3:1143.
28. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using

multilocus genotype data. Genetics 155:945–959.

29. Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and
missing-data inference for whole-genome association studies by use of localized
haplotype clustering. Am J Hum Genet 81:1084–1097.

30. Rosenberg NA, et al. (2002) Genetic structure of human populations. Science 298:
2381–2385.

31. Sved JA (1971) Linkage disequilibrium and homozygosity of chromosome segments
in finite populations. Theor Popul Biol 2:125–141.

32. Marlowe FW (2004) Mate preferences among Hadza hunter-gatherers. Hum Nat 15:
365–376.

33. Bahuchet S (2006) Languages of African rainforest “Pygmy” hunter-gatherers: La-
nugage shifts without cultural admixture. Hunter-Gatherers and Linguistic History: A
Global Perspective, eds Güldemann T, McConvell P, Rhodes R (Cambridge Univ Press,
Cambridge, UK).

34. Newman JL (1970) The Ecological Basis for Subsistence Change Among the Sandawe
of Tanzania (National Academies, Washington, DC).

35. Lachance J, et al. (2012) Evolutionary history and adaptation from high-coverage
whole-genome sequences of diverse African hunter-gatherers. Cell 150:457–469.

36. Schlebusch CM, et al. (2012) Genomic variation in seven Khoe-San groups reveals
adaptation and complex African history. Science 338:374–379.

37. Saha N, et al. (1978) A study of some genetic characteristics of the population of the
Sudan. Ann Hum Biol 5:569–575.

38. Jarvis JP, et al. (2012) Patterns of ancestry, signatures of natural selection, and ge-
netic association with stature in Western African pygmies. PLoS Genet 8:e1002641.

39. Lopez M, et al. (2018) The demographic history and mutational load of African
hunter-gatherers and farmers. Nat Ecol Evol 2:721–730.

40. Ralph P, Coop G (2013) The geography of recent genetic ancestry across Europe.
PLoS Biol 11:e1001555.

41. Gusev A, et al. (2012) The architecture of long-range haplotypes shared within and
across populations. Mol Biol Evol 29:473–486.

42. Ehret C, Keita SO, Newman P (2004) The origins of Afroasiatic. Science 306:1680;
author reply 1680.

43. Browning SR, Browning BL (2012) Identity by descent between distant relatives:
Detection and applications. Annu Rev Genet 46:617–633.

44. Dunn M, Terrill A, Reesink G, Foley RA, Levinson SC (2005) Structural phylogenetics
and the reconstruction of ancient language history. Science 309:2072–2075.

45. Fearnhead P, Prangle D (2012) Constructing summary statistics for approximate
Bayesian computation: Semi‐automatic approximate Bayesian computation. J R Stat
Soc Series B Stat Methodol 74:419–474.

46. Tenesa A, et al. (2007) Recent human effective population size estimated from
linkage disequilibrium. Genome Res 17:520–526.

47. McEvoy BP, Powell JE, Goddard ME, Visscher PM (2011) Human population dispersal
“Out of Africa” estimated from linkage disequilibrium and allele frequencies of
SNPs. Genome Res 21:821–829.

48. Chakraborty R, Smouse PE (1988) Recombination of haplotypes leads to biased estimates
of admixture proportions in human populations. Proc Natl Acad Sci USA 85:3071–3074.

49. Pfaff CL, et al. (2001) Population structure in admixed populations: Effect of admixture
dynamics on the pattern of linkage disequilibrium. Am J Hum Genet 68:198–207.

50. Moorjani P, et al. (2011) The history of African gene flow into Southern Europeans,
Levantines, and Jews. PLoS Genet 7:e1001373.

51. Loh P-R, et al. (2013) Inferring admixture histories of human populations using
linkage disequilibrium. Genetics 193:1233–1254.

52. Kelley JL, Madeoy J, Calhoun JC, Swanson W, Akey JM (2006) Genomic signatures of
positive selection in humans and the limits of outlier approaches.Genome Res 16:980–989.

53. Nielsen R, et al. (2005) Genomic scans for selective sweeps using SNP data. Genome
Res 15:1566–1575.

54. Voight BF, Kudaravalli S, Wen X, Pritchard JK (2006) A map of recent positive se-
lection in the human genome. PLoS Biol 4:e72.

55. Pagani L, et al. (2012) Ethiopian genetic diversity reveals linguistic stratification and
complex influences on the Ethiopian gene pool. Am J Hum Genet 91:83–96.

4174 | www.pnas.org/cgi/doi/10.1073/pnas.1817678116 Scheinfeldt et al.

https://map.ox.ac.uk/
https://www.pnas.org/cgi/doi/10.1073/pnas.1817678116


56. Granka JM, et al. (2012) Limited evidence for classic selective sweeps in African
populations. Genetics 192:1049–1064.

57. Scheinfeldt LB, et al. (2012) Genetic adaptation to high altitude in the Ethiopian
highlands. Genome Biol 13:R1.

58. Akey JM, et al. (2010) Tracking footprints of artificial selection in the dog genome.
Proc Natl Acad Sci USA 107:1160–1165.

59. Shriver MD, et al. (2004) The genomic distribution of population substructure in four
populations using 8,525 autosomal SNPs. Hum Genomics 1:274–286.

60. Chen H, Patterson N, Reich D (2010) Population differentiation as a test for selective
sweeps. Genome Res 20:393–402.

61. Enattah NS, et al. (2002) Identification of a variant associated with adult-type hy-
polactasia. Nat Genet 30:233–237.

62. Tishkoff SA, et al. (2007) Convergent adaptation of human lactase persistence in
Africa and Europe. Nat Genet 39:31–40.

63. Ranciaro A, et al. (2014) Genetic origins of lactase persistence and the spread of
pastoralism in Africa. Am J Hum Genet 94:496–510.

64. Gras S, et al. (2012) A structural voyage toward an understanding of the MHC-I-restricted
immune response: Lessons learned and much to be learned. Immunol Rev 250:61–81.

65. Sitnikova T, Nei M (1998) Evolution of immunoglobulin kappa chain variable region
genes in vertebrates. Mol Biol Evol 15:50–60.

66. Ashburner M, et al.; The Gene Ontology Consortium (2000) Gene ontology: Tool for
the unification of biology. Nat Genet 25:25–29.

67. Finkelman FD, Vercelli D (2007) Advances in asthma, allergy mechanisms, and ge-
netics in 2006. J Allergy Clin Immunol 120:544–550.

68. Dhiman N, et al. (2008) Associations between cytokine/cytokine receptor single
nucleotide polymorphisms and humoral immunity to measles, mumps and rubella in
a Somali population. Tissue Antigens 72:211–220.

69. Jones SA (2005) Directing transition from innate to acquired immunity: Defining a
role for IL-6. J Immunol 175:3463–3468.

70. Klareskog L, Padyukov L, Rönnelid J, Alfredsson L (2006) Genes, environment and
immunity in the development of rheumatoid arthritis. Curr Opin Immunol 18:650–655.

71. Liang HE, et al. (2002) The “dispensable” portion of RAG2 is necessary for efficient
V-to-DJ rearrangement during B and T cell development. Immunity 17:639–651.

72. Simmons WA, et al. (1997) Novel HY peptide antigens presented by HLA-B27.
J Immunol 159:2750–2759.

73. Tsoi LC, et al.; Collaborative Association Study of Psoriasis (CASP); Genetic Analysis of
Psoriasis Consortium; Psoriasis Association Genetics Extension; Wellcome Trust Case
Control Consortium 2 (2012) Identification of 15 new psoriasis susceptibility loci
highlights the role of innate immunity. Nat Genet 44:1341–1348.

74. Xu Y, Cheng G, Baltimore D (1996) Targeted disruption of TRAF3 leads to postnatal
lethality and defective T-dependent immune responses. Immunity 5:407–415.

75. Stevenson MM, Riley EM (2004) Innate immunity to malaria. Nat Rev Immunol 4:169–180.
76. Ocklenburg F, et al. (2006) UBD, a downstream element of FOXP3, allows the identi-

fication of LGALS3, a new marker of human regulatory T cells. Lab Invest 86:724–737.
77. Bochud PY, Bochud M, Telenti A, Calandra T (2007) Innate immunogenetics: A tool

for exploring new frontiers of host defence. Lancet Infect Dis 7:531–542.
78. Chtanova T, et al. (2004) T follicular helper cells express a distinctive transcriptional

profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B
cells. J Immunol 173:68–78.

79. Hidalgo LG, Einecke G, Allanach K, Halloran PF (2008) The transcriptome of human
cytotoxic T cells: Similarities and disparities among allostimulated CD4(+) CTL, CD8
(+) CTL and NK cells. Am J Transplant 8:627–636.

80. Nishida K, et al. (1999) Gab-family adapter proteins act downstream of cytokine and
growth factor receptors and T- and B-cell antigen receptors. Blood 93:1809–1816.

81. Milet J, et al. (2010) Genome wide linkage study, using a 250K SNP map, of Plas-
modium falciparum infection and mild malaria attack in a Senegalese population.
PLoS One 5:e11616.

82. Favre N, et al. (1999) Role of ICAM-1 (CD54) in the development of murine cerebral
malaria. Microbes Infect 1:961–968.

83. Nam DH, Ge X (2013) Development of a periplasmic FRET screening method for
protease inhibitory antibodies. Biotechnol Bioeng 110:2856–2864.

84. Niederer HA, et al. (2010) Copy number, linkage disequilibrium and disease associ-
ation in the FCGR locus. Hum Mol Genet 19:3282–3294.

85. Saifuddin M, et al. (1997) Human immunodeficiency virus type 1 incorporates both gly-
cosyl phosphatidylinositol-anchored CD55 and CD59 and integral membrane CD46 at
levels that protect from complement-mediated destruction. J Gen Virol 78:1907–1911.

86. Decker T, Müller M, Stockinger S (2005) The yin and yang of type I interferon activity
in bacterial infection. Nat Rev Immunol 5:675–687.

87. Devuyst O, Dahan K, Pirson Y (2005) Tamm-Horsfall protein or uromodulin: New
ideas about an old molecule. Nephrol Dial Transplant 20:1290–1294.

88. van Dijk W, et al. (1991) Inflammation-induced changes in expression and glycosyl-
ation of genetic variants of alpha 1-acid glycoprotein. Studies with human sera,
primary cultures of human hepatocytes and transgenic mice. Biochem J 276:343–347.

89. Randall CN, et al. (2009) Cluster analysis of risk factor genetic polymorphisms in
Alzheimer’s disease. Neurochem Res 34:23–28.

90. Perry GH, et al. (2007) Diet and the evolution of human amylase gene copy number
variation. Nat Genet 39:1256–1260.

91. Deng GY, Muir A, Maclaren NK, She JX (1995) Association of LMP2 and LMP7 genes
within the major histocompatibility complex with insulin-dependent diabetes mel-
litus: Population and family studies. Am J Hum Genet 56:528–534.

92. Farris W, et al. (2003) Insulin-degrading enzyme regulates the levels of insulin,
amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain
in vivo. Proc Natl Acad Sci USA 100:4162–4167.

93. Scheepers A, Joost HG, SchürmannA (2004) The glucose transporter families SGLT andGLUT:
Molecular basis of normal and aberrant function. JPEN J Parenter Enteral Nutr 28:364–371.

94. Yoneda M, et al. (2008) Association between PPARGC1A polymorphisms and the
occurrence of nonalcoholic fatty liver disease (NAFLD). BMC Gastroenterol 8:27.

95. Scheinfeldt LB, et al. (2009) Population genomic analysis of ALMS1 in humans reveals
a surprisingly complex evolutionary history. Mol Biol Evol 26:1357–1367.

96. Moon S, et al. (2011) Novel compound heterozygous mutations in the fructose-1,6-
bisphosphatase gene cause hypoglycemia and lactic acidosis. Metabolism 60:107–113.

97. Maekawa M, et al. (1993) Detection and characterization of new genetic mutations
in individuals heterozygous for lactate dehydrogenase-B(H) deficiency using DNA
conformation polymorphism analysis and silver staining. Hum Genet 91:163–168.

98. Fischer J, et al. (2007) The gene encoding adipose triglyceride lipase (PNPLA2) is
mutated in neutral lipid storage disease with myopathy. Nat Genet 39:28–30.

99. Kirschning CJ, et al. (1997) Similar organization of the lipopolysaccharide-binding
protein (LBP) and phospholipid transfer protein (PLTP) genes suggests a common
gene family of lipid-binding proteins. Genomics 46:416–425.

100. Reue K, Zhang P (2008) The lipin protein family: Dual roles in lipid biosynthesis and
gene expression. FEBS Lett 582:90–96.

101. Felton AA, et al. (2007) Paleolimnological evidence for the onset and termination of
glacial aridity from Lake Tanganyika, Tropical East Africa. Palaeogeogr Palaeoclimatol
Palaeoecol 252:405–423.

102. Hetherington R, et al. (2008) Climate, African and Beringian subaerial continental
shelves, and migration of early peoples. Quat Int 183:83–101.

103. Carto SL, Weaver AJ, Hetherington R, Lam Y, Wiebe EC (2009) Out of Africa and into
an ice age: On the role of global climate change in the late Pleistocene migration of
early modern humans out of Africa. J Hum Evol 56:139–151.

104. Pickrell JK, et al. (2009) Signals of recent positive selection in a worldwide sample of
human populations. Genome Res 19:826–837.

105. Fumagalli M, et al. (2011) Signatures of environmental genetic adaptation pinpoint
pathogens as the main selective pressure through human evolution. PLoS Genet 7:
e1002355, and erratum (2011) 7.

106. Neel JV (1999) The “thrifty genotype” in 1998. Nutr Rev 57:S2–S9.
107. Henn BM, et al. (2012) Genomic ancestry of North Africans supports back-to-Africa

migrations. PLoS Genet 8:e1002397.
108. Weir BS (1996) Genetic Data Analysis II: Methods for Discrete Population Genetic

Data (Sinauer Associates, Sunderland, MA).
109. Huff CD, et al. (2011) Maximum-likelihood estimation of recent shared ancestry

(ERSA). Genome Res 21:768–774.
110. Beaumont MA, Zhang W, Balding DJ (2002) Approximate Bayesian computation in

population genetics. Genetics 162:2025–2035.
111. Schaffner SF, et al. (2005) Calibrating a coalescent simulation of human genome

sequence variation. Genome Res 15:1576–1583.
112. Emery LS, Felsenstein J, Akey JM (2010) Estimators of the human effective sex ratio

detect sex biases on different timescales. Am J Hum Genet 87:848–856.
113. Clark AG, Hubisz MJ, Bustamante CD, Williamson SH, Nielsen R (2005) Ascertainment

bias in studies of human genome-wide polymorphism. Genome Res 15:1496–1502.
114. Lohmueller KE, Bustamante CD, Clark AG (2009) Methods for human demographic

inference using haplotype patterns from genomewide single-nucleotide polymorphism
data. Genetics 182:217–231.

115. Li S, Jakobsson M (2012) Estimating demographic parameters from large-scale pop-
ulation genomic data using Approximate Bayesian Computation. BMC Genet 13:22.

116. Hudson RR (2002) Generating samples under a Wright-Fisher neutral model of ge-
netic variation. Bioinformatics 18:337–338.

117. Kong A, et al. (2010) Fine-scale recombination rate differences between sexes,
populations and individuals. Nature 467:1099–1103.

118. Pritchard JK, Przeworski M (2001) Linkage disequilibrium in humans: Models and
data. Am J Hum Genet 69:1–14.

119. Wright S (1943) Isolation by distance. Genetics 28:114–138.
120. Holsinger KE, Weir BS (2009) Genetics in geographically structured populations:

Defining, estimating and interpreting F(ST). Nat Rev Genet 10:639–650.
121. Friedman JH (2001) Greedy function approximation: A gradient boosting machine.

Ann Stat 29:1189–1232.
122. Natekin A, Knoll A (2013) Gradient boosting machines, a tutorial. Front Neurorobot 7:21.
123. Lin K, Li H, Schlötterer C, Futschik A (2011) Distinguishing positive selection from neutral

evolution: Boosting the performance of summary statistics. Genetics 187:229–244.
124. Aeschbacher S, Beaumont MA, Futschik A (2012) A novel approach for choosing

summary statistics in approximate Bayesian computation. Genetics 192:1027–1047.
125. Lin K, Futschik A, Li H (2013) A fast estimate for the population recombination rate

based on regression. Genetics 194:473–484.
126. McVean GA, et al. (2004) The fine-scale structure of recombination rate variation in

the human genome. Science 304:581–584.
127. Altshuler DM, et al.; International HapMap 3 Consortium (2010) Integrating com-

mon and rare genetic variation in diverse human populations. Nature 467:52–58.
128. Myers S, Bottolo L, Freeman C, McVean G, Donnelly P (2005) A fine-scale map of

recombination rates and hotspots across the human genome. Science 310:321–324.
129. Fujita PA, et al. (2011) The UCSC Genome Browser database: Update 2011. Nucleic

Acids Res 39:D876–D882.
130. Salas A, et al. (2002) The making of the African mtDNA landscape. Am J Hum Genet

71:1082–1111.
131. Thomas PD, et al. (2003) PANTHER: A library of protein families and subfamilies

indexed by function. Genome Res 13:2129–2141.
132. Kasprzyk A (2011) BioMart: Driving a paradigm change in biological data manage-

ment. Database (Oxford) 2011:bar049.
133. Gething PW, et al. (2011) A new world malaria map: Plasmodium falciparum en-

demicity in 2010. Malar J 10:378.

Scheinfeldt et al. PNAS | March 5, 2019 | vol. 116 | no. 10 | 4175

A
N
TH

RO
PO

LO
G
Y


