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Abstract: Optical coherence elastography (OCE) is one form of multi-channel imaging that
combines high-resolution optical coherence tomography (OCT) imaging with mechanical
tissue stimulation. This combination of structural and functional imaging can require
additional space to integrate imaging capabilities with additional functional elements (e.g.,
optical, mechanical, or acoustic modulators) either at or near the imaging axis. We address
this challenge by designing a novel scan lens based on a modified Schwarzchild objective
lens, comprised of a pair of concentric mirrors with potential space to incorporate additional
functional elements and minimal compromise to the available scan field. This scan objective
design allows perpendicular tissue-excitation and response recording. The optimized scan
lens design results in a working distance that is extended to ~140 mm (nearly 2x the focal
length), an expanded central space suitable for additional functional elements (>15 mm in
diameter) and diffraction-limited lateral resolution (19.33 um) across a full annular scan field
~+7.5mmto+ 12.7 mm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

A Multi-channel optical system contains several independent working channels with various
functionalities, such as illumination, mechanical stimulation, imaging, etc. In biomedical and
clinical studies, the independent imaging channels could include modalities, such as confocal
microscopy, ultrasound, x-ray, magnetic resonance imaging, fluorescence intensity imaging,
two-photon imaging, and optical coherence tomography. Compared to a specific single-
channel imaging system, multi-channel optical systems can provide complementary,
synergistic information, or enable rapid switching between different modes and functions [1].
The use of a multi-channel optical system is helpful to expand the potential uses of non-
invasive imaging. For example, dynamic elasticity imaging systems are used to determine
tissue mechanical properties (e.g., stiffness) [2,3] by combining a mechanical loading channel
(a source of sample stimulation) and an imaging channel to record the sample response.

Optical coherence elastography (OCE) [4] is an emerging elasticity imaging technique
that employs at least two channels. A loading channel is used to induce elastic waves in a
tissue using techniques, such as optical, mechanical, or acoustic modulators for sample
stimulation. Various approaches of loading methods have been developed, such as static [5,6],
dynamic contact [4,7-9], audio sound [10], pulsed laser [11,12], and air puff/pulse [13—15]
loading. The second channel uses optical coherence tomography (OCT) [16] imaging to
record the tissue response. Compared to traditional ultrasound elastography [17-19] and
magnetic resonance elastography [20,21], OCT can noninvasively obtain tissue mechanical
properties with higher spatial resolution and faster speeds [22]. Phase-sensitive OCT methods
[23-27] have further improved the dynamic surface displacement detection sensitivity to a
sub-nanometer scale. For example, we reported a 0.24 nm resolution in our common-path
OCE results [28]. More channels may be added into the OCE system for specific purposes.
For example, a targeting channel and a monitoring camera can be used for locating the
regions of stimulus and imaging in the tissue.
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The combination of a loading mechanism and OCT imaging usually requires space
between the OCT scan objective and sample, especially for dynamic/transient, non-contact
OCE applications [10-15]. An optimal OCE set-up should satisfy certain criteria. First, the
loading channel should be set up to deform tissue in a predictable way so that tissue
mechanical properties can be derived from the deformation response. Loading normal to the
surface is advantageous since it simplifies the complex modeling methods that are used to
derive the mechanical properties from the observed response [4-6]. Second, measurement
distance to the stimulation point should be optimized to clearly record the induced wave-
propagation and to avoid near-field effects [29]. Capability of measuring around the
stimulation point would also be advantageous to determine tissue anisotropy.

However, spatial conflict often occurs between the physical bulk of the loading system
and a limited space provided by the OCT system. Consequently, oblique tissue-excitation has
been adopted by several investigators instead of the preferred perpendicular tissue-excitation
[7,8,11-14]. The axial distance between the OCT scan objective and sample is usually similar
to, or shorter than, the focal length of the scan objective lens. The focal length is often
relatively short to achieve a desired optical lateral resolution. For instance, the focal length of
the OCT scan lens of our OCE system in [28] was 54 mm, and the total working distance was
42 mm. Therefore, designing a scan objective with a longer working distance without
sacrificing optical performance is important for OCE imaging to quantify tissue
biomechanics.

Here we describe a novel OCE scan objective comprised of a pair of concentric convex
and concave mirrors. This reflective objective is a modification of a Schwarzschild lens
design [30]. First-order theory is used to determine the general geometric parameters,
especially the focal length, working distance, and dimensional constraint criteria of the
Schwarzschild scan objective. Astigmatism for the marginal rays of each scan beam is
derived and minimized based on the Coddington equations [31,32]. Optical path differences
(OPDs) among all scan beams are reduced to provide effective OCT interference signals from
reference and sample arms. The Schwarzschild scan objective extends the working distance
and enables adequate free space to accommodate a loading system that can deliver force
normal to the tissue surface. Since all the optical elements are mirrors, this Schwarzschild
scan objective is free of chromatic aberration and is idea for applications in systems with
broad bandwidth (e.g. from visible to near-infrared range that is usually applied in OCT
systems).

A Schwarzschild scan objective is designed for, but not limited to, OCE imaging systems.
It may also benefit other multi-channel imaging systems that combine peripheral scans with
central channels of various purposes. For example, a camera situated in the center area,
enclosed by the peripheral scan beams, can serve as a view-finder to guide the scan beams to
specific locations. An illumination light source situated in the center of the scan beams may
also benefit fluorescence or two-photon imaging.

2. Theory
2.1 Schwarzschild scan objective

The Schwarzschild system [30] was initially designed for astronomical telescopes and was
more recently adopted for use in microscope objectives [33—36].The Schwarzschild system
consists of two mirrors, as demonstrated in Fig. 1. Previous publications have discussed the
use of the Schwarzschild design to correct Seidel aberrations, such as spherical aberration,
coma, astigmatism and distortion, and to provide a flat field when the object is either in an
infinite or finite distance [33-36].
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Fig. 1. Schematic of a classic Schwarzschild objective that consists of two mirrors. The object
distance is demonstrated in a finite distance. The potential space (yellow shaded region) can be
used to include additional channels (e.g. functional elements) to create a multi-channel
imaging system.

We extend the application of the Schwarzschild construction to a scan objective that will
accommodate additional functional elements for multi-channel imaging (Fig. 1). As
demonstrated in Fig. 2, the newly-designed Schwarzschild scan objective is based on the
classic Schwarzschild system, but requires modifications to address concerns specifically
related to scanning optics. Mirror I is a convex mirror and Mirror 2 is a concave annular
mirror, these two mirrors share the same central point located at the optical axis. Two-
dimensional scanners (x and y) are positioned before the scan objective. For simplifying the
theory and calculations, we employ one scanner for this analysis. The collimated light beam is
demonstrated by a chief-ray and two marginal rays. This beam is scanned by the scanners, is
reflected by Mirror I and Mirror 2 in sequence, then bypasses Mirror 1 again, and finally is
focused at the focal plane.

Figure 2 (a) demonstrates the ray-tracing of the chief ray for a scan beam with the scan
angle of € in the Schwarzschild scan objective. O is the mutual center point of the curvatures
of the mirrors. S is the pivot point of the scanner. The chief ray is incident upon the two
mirrors at points 4 and B with angles /; and /,, respectively. C is the exit pupil position. f'is
the focal length of the Schwarzschild scan objective, and is equal to the distance from point O
to the focal plane. L is the total length; d,,. and d., are the working distance and exit pupil
distance, respectively. Figure 2 (b) demonstrates the ray-tracing of the scan beams with the
minimal and the maximal scan angles (8,,;, and 6,,,, respectively). The central aperture at the
focal plane is = H,,;,, which precludes imaging within this central area and enables the space
for the loading mechanism required by OCE applications. The peripheral annular area at the
focal plane — + (H,,;, to H,.), defined by the scan angel range (6,,;, to 6,..) — is available
for OCT imaging.

Focal Plane

" Exit Pupil

Focal Plaﬁe

4 (a)

Mirror 2 Mirror 1 Mirror 2 Mirror 1

Fig. 2. Configuration geometry of the Schwarzschild scan objective which consists of
concentric Mirror 1 and Mirror 2. Only one scanner was shown here for simplicity. (a) Ray-
tracing for an arbitrary chief ray with the scan angle of 6. R, and R, are the radii of curvature,
and 7, and T are the center thickness for Mirror 1 and Mirror 2, respectively. O is the mutual
center point of the curvatures of the mirrors. S is the pivot point of the scanner. The distance
between point S and Mirror 1 is d,, the distance between Mirror 2 and Mirror 1 is d,. The
chief ray interacts with the two mirrors at points 4 and B with incident angles /; and I,
respectively. The chief ray is incident on the focal plane (6°) before the point C (exit pupil
position). fis the focal length of the Schwarzschild scan object, and equals to the distance from
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point O to the focal plane. L is the total length. d,, and d.,, are the working distance and exit
pupil distance, respectively. (b) Ray-tracing of the scan beams with the minimal and the
maximal scan angles (6, and 8,,,, respectively). The reserved central area of loading is in a
central zone of + H,,;,, while the peripheral area of scanning is in the annular zone of + (H,,,;, —
H,.) at the focal plane. D, is the input beam size, D, is the diameter of Mirror 1, and D, ,,, and
D; ;, are the outer and inner diameters of Mirror 2, respectively. RH; to RH; are the specific
marginal ray heights.

There are some additional concerns in the design of the Schwarzschild scan objective
compared to the classic Schwarzschild construction.

(1) The scan angles (6,,;, to 6,,,,) and the scan zone at the focal plane ( = H,,;, to £ H,,,,)
are constrained by the physical size and distance of the two mirrors. For example,
the size of Mirror I should be big enough to reflect the beam with the maximum
scan angle (8,,,) and should be also small enough to ensure the passage of the beam
with the minimum scan angle (8,;,) in a non-vignetting condition. Therefore, the
modified design incorporated these additional dimensional constraints and
established a new criterion to meet the spatial requirements for the Schwarzschild
scan objective design.

(2) The light path of the chief ray for each scan beam in the newly-designed
Schwarzschild scan objective (Fig. 2(a)) is similar to the light path of each ray in the
classic paraxial Schwarzschild construction (Fig. 1). We used methods described in
previous work [33-36] to correct Seidel aberrations of the chief rays. However, the
layout for each scan beam (Fig. 2(b)) is off-axis with incident angles which can be
tens of degrees to the normal of each mirror. Also, the incident angles for all of the
scan beams are also over a wide range (tens of degrees). In this application,
astigmatism becomes the major contribution to the total aberrations [37] of each scan
beam, and the value of astigmatism varies by scan location. Therefore, minimization
of astigmatism across the entire scan range was a major design goal.

(3) This Schwarzschild scan objective was developed for an OCT-based elastography
application. OCT imaging is a form of low-coherence interferometry where the
interference signal is generated by combining light from reference and sample arms
[38]. Effective interference requires minimal optical path difference between these
two arms. Therefore, the light path length difference among the chief-rays of all the
scan beams was constrained to meet the requirement of OCT detection.

2.2 Key points for the Schwarzschild scan objective design
The design principles for the Schwarzschild scan objective are provided as follows:

(1) First-order optical design principles were used to determine the general geometry of
the Schwarzschild scan objective that would maximize the axial working distance
(defined by the radii of the mirrors (Fig. 2)) without greatly enlarging the radial
dimensions of the scan lens for a specified scan range. The extended working
distance was derived by calculating the axial dimensions and the radial dimensions
were primarily determined by the defined scan range.

(2) The Coddington equations [31,32] were applied to quantify the astigmatism, defined
as the difference in focal distance between the tangential and sagittal marginal rays
[39,40] for each scan beam. The astigmatism value across the whole scan range was
then evaluated and minimized by optimizing the design parameters.

(3) The chief-ray optical length (OPL) was calculated for each scan beam. The optical
path differences (OPDs) of all the chief-rays from all of the scan beams were
estimated. The OPD values were balanced with other design requirements (e.g. size
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of the system, astigmatism) to enable the use of the Schwarzschild scan objective in
OCT imaging.
The detailed theoretical analysis for the above design concerns are discussed in the
following sections.

2.3 Axial dimensions and working distance extension

The radii of curvatures for Mirror 1 and Mirror 2 are R; and R,, respectively, both are defined
as positive values. The focal lengths of these two mirrors are f; =-R; /2 and /> = R, /2. We
define R, = M x R; (M >1), where M is ratio of the raddi of curvatures as well as the ratio of
focal lengths between two mirrors. The distance between scanner and Mirror I is d;. The
distance between Mirror 2 and Mirror 1 is d,, where d, = R, - R; because Mirror I and
Mirror 2 are concentric. The total focal length fof the objective can be calculated as:

__ N MR
f_f+f2—d2 S2(M-1) M

where M = 2f/(2f- R)), R,=2fR, / (2f- R)), and d, = R;* / (2f - R)).
The exit pupil distance d.,, is defined as the axial distance from Mirror I to the exit pupil,

and the working distance d,,, is defined as the axial distance from Mirror I to the focal
plane. d.,, and d,,, can be expressed as:

- Md, + MR, +1|xR -T, @)
" | 2d, (M -1)+R (M-2)
M
d, .= +1|xXR -T, 3
work (ZM—Z ) 1 1 ( )

where 7; and T, are the center thicknesses for the two mirrors. Comparing Eq. (1) and Eq. (3),
we have:

dwork = f+Rl _]I’ (4)

If R; > T}, then d,,,« > f. Therefore, the working distance can be extended to a longer value
than the focal length. For the same value of f, d,,. is increased by the same amount as R; is
increased. Therefore, f'is equal to the distance from the mutual center point of the two mirrors
to the focal plane. The total length L from Mirror 2 to the focal plane can be expressed as:

(2M -1)
L=T+R,+ f=———XMR +T,. 4)

2(M - 1)
2.4 Radial dimensions and dimensional constraint criteria

Scan angle 6 is in the range of 8,,;, to 8, its corresponding scan length H (H = f'tan) at the
focal plane is in the range of H,,, to H,,,. Figure 2 depicts RH; to RH, the specific marginal
ray heights. RH; is the maximum ray height inside the center hole of Mirror 2. RH, and RH;
are the inner and outer ray heights for the light annulus on Mirror 2. RH, is the maximum ray
height at the front surface of Mirror 1, and RH; is the minimum ray height at the back surface
of Mirror 1. These marginal ray heights can be expressed as:
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RH, =(d, —d,)tan@,,_ +%,

2M -1
RH, =[d,(2M -1)+R, (M—l)]xtan&mm_% .,
RH (2M -1)
3:[dl(ZM—l)+Rl(M—l)]xtan@m+T N

(6)
D
RH,=d, tan@,_ +7°,

{ [Zdl(M—1>+R1(M—2>][R1(M—1>+TJ}
RH,={1-
; MR,[d, (2M 1)+ R (M -1)]

x{[dl (2M =1)+R, (M -1) |tan @, —WT_I)DO},

where D, is the entrance pupil size or beam size, D, is the diameter of Mirror 1, and D, ,,, and
D; ;, are the outer and inner diameters for Mirror 2. The expressions for RH,; to RH; all
consist of two components. The first component contains either tan6,,,, or tand,,;,, and denotes
the chief ray heights. The second component contains Dy, and denotes the half beam size at
the corresponding surface.

To avoid vignetting in Mirror 1 and Mirror 2, the following dimensional criteria should
be satisfied:

2RH, _

2_out>
p270ut

2RH, <D, , <2RH,%p, . (7)

2RH
P

L <D <2RH.,

where p;, p,, and p; ,, are the ratios for the clear aperture (usually, p =90%). The first
criterion defines the minimum requirement for D, ., The second criterion ensures the
vignetting-free condition for Mirror 2 where the scan beams can go through the center hole,
and the reflected beams from Mirror I can reach the effective optical portion of Mirror 2.
The third criterion determines the vignetting-free condition for Mirror 1 so that the scan
beams can be reflected by the clear aperture of Mirror 1, while the reflected light from Mirror
2 can bypass the outside diameter of Mirror 1.

2.5 Optical path length (OPL) and optical path difference (OPD)

To guarantee the effective interference between the signals from the sample arm (where OPL
varies across the field of view) and the reference arm (where OPL is a constant value), the
OPD from all the chief-rays across the scan field in the sample arm must be limited to a
certain range. As shown in Fig. 2, The OPL for this chief ray is dominated by R; and 8 and
can be expressed as:
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OPL(R,,0) =| 4|+ |4B|+[BC|

. . . ®)
_ sin(/, —(.9)(51.n¢9+51n12)XR1 N 1+2(M —1)cos(21,—1,—-6) MR,
sin@sin/, 2(M —1)cos(21,-21,—-6)
where
R
I = arcsin[d1 4 XSinej,
er ©)
I, = arcsin T8 sing |.
RZ
The maximum OPD from all the chief-rays across the scan field can be expressed as:
oprD,, (R,,6)=O0PL(R,.6,,)-OPL(R.6,,). (10)

2.6 Astigmatism

As shown in Fig. 2, the layout for each scan beam is off-axis with large incident angles
relative to the surface normal for each mirror. In this mirror-based, off-axis construction, the
dominant aberration is astigmatism [37], defined as the difference in focal distance between
the tangential and sagittal marginal rays [39,40]. Applying the Coddington equations [31,32]
to Mirror I and Mirror 2, we can express the general astigmatism (AST) as:

MR (2M —2+cosl )cosl, MR [(2M —1)+secl,]
4(M -1 +2cosl, —2Mcosl, 2cosl,[2(M —1)+secl, —2M

Corresponding to the different scan angle 6, the value of astigmatism varies across the
scan field. We define a discrete mean absolute astigmatism (DMAA) equation to minimize
the total amount of astigmatism in the required scan range:

AST(R,,0) = (11)

Sulusrino)
DMAA == , (12)

where 8; = 0,,;, + (6 ax - Onin)/k, k 1s the step number (i =0, ..., k), and o; is the weight.
3. Quantitative simulation

We performed a quantitative simulation to demonstrate the design of the Schwarzschild scan
objective. We first specified the design requirements and then computed the possible R;
values that met each of the design requirements separately. We then optimized R; to
simultaneously satisfy all of the requirements.

3.1 Design requirements

The design parameters for this Schwarzschild scan objective were defined by the current
specifications of our clinical OCE system [28]. The spectral bandwidth of the OCT light
source was 795 nm — 895 nm, Dy, = 4 mm, and f'= 75 mm, the lateral resolution was 19.33
um, calculated at the central wavelength of 845 nm. The requirements for the loading and
scanning space were specified as d,,o,x = 120 mm, 2H,,;,, > 10 mm, and H,,, to H,;, =5 mm.
The dimensional requirements were specified as D; < 70 mm, D, ,,, < 200 mm, 7; = 10 mm,
T, =20 mm — 30 mm, and L < 300 mm. The distance requirements for the X and Y scanners
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were set to djy - djy = 12.7 mm, and d;x = d, + T, + 15 mm. To simplify the calculation and
keep the structure compact, we assigned d; = (d;x + d;y)/2 = d, + 51.35 mm. This scan
objective was designed for an OCT system with the capability of detecting 6.5 mm OPD
between the sample arm and the reference arm. We specified the maximum OPD range across
the entire FOV in the sample arm as 1.5 mm.

3.2 Computing R, values to meet each requirement

The key variable in the calculation and optimization is R;, which is in the range of 0 to 2f.
Here, we reduced its range to 0.5/to 1.5/ (37.5 mm to 112.5 mm) to avoid extreme values in
dimensions and aberrations.

Total length (mm
Working distance

10
40 50 60 70 80 90 100110 40 50 60 70 80 90 100 110

Radius for the first mirror, R, (mm) Radius for the first mirror, R, (mm)

Fig. 3. Axial dimensions of (a) total length L and (b) working distance d,,+ To meet the
requirements of L < 300 mm and d,,,x 2120 mm, R, should be in the range of 55 mm — 88.36
mm (yellow-shaded areas).

Figure 3 shows the axial dimensions for L and d,,, corresponding to R;, when = 75 mm.
To satisfy the requirements of L < 300 mm and d,,,,x = 120 mm, R; should be in the range of
55 mm to 88.36 mm. As R; increased, d,,, increased by the same amount, provided 7; was
kept constant (Eq. (4)).

Onim=1" — Omim=2" Omim=3" — Omim=4" — Omin=5" — Opim=6" — Epim=7" Onin=8" — Bnim=9" — Bmin=10"
3 1000 T .
N Q400
S &
600 v 300
= S
€ € 400 § EQOO
N
= gfzoo 0
o N
H 0 I 0 X
~ 40 50 60 70 80 90 100110 (X 40 50 60 70 80 90 100 110 40 50 60 70 80 90 100 110
Q Radius for the first mirror Radius for the first mirror Radius for the first mirror
R, (mm) R, (mm) R, (mm)

Fig. 4. Marginal ray tracing for RH, to RH5, to satisfy the dimensional constraint criteria in Eq.
(7) for different values of R; and 0,,. (a) Satisfaction of first criterion, representing the
minimum diameter for D; ,,. (b) Satisfaction of second criterion, representing the vignetting-
free condition around the center hole in Mirror 2. (c) Satisfaction of the third criterion,
representing the vignetting-free condition for Mirror 1 (p; = ps ou = p2 i = 90%). Yellow-
shaded areas show the radial dimensional constraint requirements.

The marginal rays for RH; to RH;s were traced to satisfy the dimensional criteria in Eq.
(7). Figure 4 (a) corresponds to the first constraint, which defines the minimum value for
D3 ou (P2 0w = 90%). The required D, ,,, increased when R,; was increased. A larger D, .,
would be more difficult to manufacture and result in higher manufacturing costs. Thus,
limiting D, ,,, to as small a value as possible, such as in a range smaller than 200 mm, was
found to be beneficial, while still satisfying the design requirements.

Figures 4 (b) and (c) represent the second and third criteria that enable the vignetting-free
conditions for Mirror I and the center hole region of Mirror 2, where p; = p; ;» = 90%. These
two criteria are met once the marginal height differences in both criteria are no less than zero,
shown as yellow-shaded areas. As shown in Fig. 4 (b), once R; was set to a larger value, the
second criteria was met with a smaller minimum scan angle 6,,,. Figure 4 (c) shows that
when 6,,;,, = 1° to 3°, 2RH;5 - 2RH, / p; <0, and the light beams would not bypass Mirror 1,
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irrespective of the value of R; value. When 6,,;, > 4°, as R; was increased, the minimum
required 6,,;, was decreased. For each 6,,,, the desired R; range to meet the third criterion was
found to be within the R; range required to meet the second criterion. Thus, the third criterion
in this design was stricter than the second criterion. That is, satisfying the third criterion
assured the satisfaction of the second criterion.

D, ;, was set to a value between 2RH,; and 2RH, x p, ;. Therefore, we utilized the
minimum requirement of the third criterion (2RH,/p; = 2RH5) to calculate the desired scan
angle range (#,,;, to 6,..,) and scan length range (H,,;, to H,.), as a function of R; (Fig. 3 (a)
and (b)). When R; was increased, the minimum required 6,,;, was decreased. This result was
consistent with Fig. 4 (c¢). Thus, both the scan angles and scan lengths were reduced.

Once the scan angle range (6,;, to 0,,) was determined, we computed the diameter
requirements for D; and D, ,,, as a function of R; (Fig. 5 (c)). To meet the requirement of D,
<70 mm and D; ,, <200 mm, R; was required to be less than 79.60 mm.

Figure 5 (d) shows the OPD,,,, curve we computed by substituting 6,,;, and 8,,,, from Fig.
5 (a) into Egs. (8), (9), and (10). When R; = 41.67 mm then OPD,,,, = 0, when R; <41.67 mm
then OPD,,,, > 0, and when R; > 41.67 mm then OPD,,,, < 0. To restrict OPD in the range of
+ 1.5 mm, R; was required to be in the range of 37.5 mm to 93.80 mm.

Based on Egs. (9) and (11), the changes in astigmatism caused by R; and 6 are shown in
Fig. 5 (e). Larger values for 6§ were associated with a steeper slope for the relationship
between astigmatism and R;. Thus, for astigmatism reduction, the possible R; values were in a
wider range when 6 was a relatively small value, and the possible R; were in a narrower range
when 6 had a larger value. Given a certain value of 6, a corresponding R; can be selected to
minimize astigmatism. However, given a range of 6, astigmatism cannot be fully eliminated.
Thus, we computed the discrete mean absolute astigmatism (DMAA) (Eq. (12)) for the scan
angle range of 6,,;, to 6,.,, where a; = 1, and k = (0,4, to 0,,;,,)/0.01°. As shown in Fig. 5 (f),
for the minimum value of DMAA = 0.2033 mm, R; equaled 86.26 mm.

If different weights (a;) were assigned, e.g. more weight for the center field and less
weight for the edge field, or vice versa, the optimal R; value calculated by the DMAA method
was between 80 mm and 90 mm.
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Fig. 5. The equality 2RH,/p, = 2RH;s was used to determine (a) 0, t0 Oyar, (b) Hypin 10 Hpary (€)
D, and D; o4, and (d) OPD,,,, in related to the radius of the Mirror I (R;). Yellow-shaded areas
in (a) to (d) represent the desired value ranges. (e) Astigmatism for general scan angles (1° to
10°, with a step of 1°) without considering the physical constraints. (f) Astigmatism
minimization using DMAA method (when a; = 1) for the constraint-determined scan angle
range of 6, t0 Gy
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3.3 Calculation summary and optimization of R,
The requirements for the key design parameter R; were:

(1) To achieve the dimensional requirements of L < 300 mm and d,,,,4 = 120 mm, R; was
limited to the range of 55 mm to 88.36 mm.

(2) To relate all of the scan-related parameters (0,,i, t0 G ar, Hyin 10 Hygx, D1, D3 o1 OPD,
and astigmatism) to R;, the minimum requirement of the third criterion in Eq. (8)
was used, where 2RH,/p; = 2RH.

(3) To meet the diameter requirements of D; < 70 mm and D, ,, < 200 mm, R; was
required to be less than 79.60 mm.

(4) To restrict the absolute value of OPD,,,, less than 1.5 mm, R; was required to be in
the range of 37.5mm to 93.80 mm. When R; = 41.67 mm, then OPD,,,, = 0; when
37.5 mm £ R; < 41.67 mm, then 0 < OPD,,,. < 0.76 mm; and when 41.67 mm < R,
<93.80 mm, then —1.5 mm < OPD,,,, < 0.

(5) To reduce the astigmatism for the entire scan field, R; was required to be in the range
of 80 mm to 90 mm.

To satisfy requirements (1) to (5), R; was found to be optimal in the range 55 mm to 79.60
mm, where the requirements for L, dyok, D> oue and OPD,,,. were met. However, this range of
values for R; did not minimize astigmatism. Since the residual astigmatism decreased as the
value of R; was increased in the range 55 mm — 79.60 mm (Fig. 5 (f)), we chose a relatively
large R; value (75 mm). Note that, aspherical surfaces can be used to further minimize
residual astigmatism and other aberrations.

4. Zemax validation and design results

We employed the optical design software Zemax (Zemax, LLC) to validate the calculation,
and to finalize the design. Mirror 1 was designed as an aspherical mirror to further reduce
aberrations. A low-order standard aspherical surface is given by [41]:

I"Z/Rl
1+ 1= +k)r? /R®

where the optical axis is presumed in the z direction, z(7) is the sag value (the displacement of
surface in the z direction from the vertex at a distance of » from the optical axis), and r is in
the range 0 to 0.5p,D;. The conic constant k; of the aspherical Mirror I was set as the only
variable to be optimized, along with all of the other parameters that were calculated in Section
3. The aspherical surface type is determined by k;, and can be hyperbola (k; < —1), parabola
(k; =-1), prolate ellipse (—1 < k; < 0), sphere (k; = 0), or oblate ellipse (k; > 0).

z(r)=

(13)
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Fig. 6. RMS spot size reduction by employing an aspherical (k; = 0.436, solid lines) Mirror 1,
compared to when Mirror 1 is spherical (k; = 0, dotted lines).

Using the damped least square algorithm in Zemax, k; was optimized to 0.436. For the
two scanners, d;, and d;, were computed to be 120 mm and 134.7 mm, respectively. The scan
fields in the x-direction and in y-direction were £ (5.97° to 10.67°) and + (5.54° to 9.70°),
respectively. The root mean square (RMS) spot sizes was reduced significantly across the
scan field in both x and y directions when Mirror I was modeled as an oblate ellipsoid (since
k; > 0), as shown in Fig. 6.

All of the optical elements in this Schwarzschild scan objective were mirrors (Fig. 7),
ensuring no chromatic aberrations in broad bandwidths. The light coming out of the fiber was
collimated by a parabolic reflective collimator (RC04FC-P01, Thorlabs), and then scanned by
Galvo mirrors (GVS012, Thorlabs) in the x and y directions. The scan beams then passed
through a 1-inch center hole in Mirror 2, were reflected by the concave Mirror 1 with 75 mm
radius, and then reflected by the concave Mirror 2 with 150 mm radius. The outside diameters
for Mirror 1 and Mirror 2 were 200 mm and 56 mm, respectively, and the outside clear
apertures were 90% of their diameters. The distance between the two mirrors was 75 mm.
The thicknesses of Mirror 1 and Mirror 2 were 10 mm and 30 mm, respectively. Mirror 1 was
mounted using a three-arm holder vane. The working distance between the back of Mirror 1
to the focal plan was 139.8 mm.

(7) Three-arm
4" holder vanes

(2) Reflective
Collimator

3)

(8) Focal Plane

(6) Mirror 2

Fig. 7. Schematic of the Schwarzschild scan objective, designed using the outcome of the
design requirement analysis and Zemax software simulation (drawed in 3/4 section).

Figure 8 (a) shows a quasi-linear relation between the scan angles and scan lengths in the
x and y directions, simulated in Zemax. This result was used to calibrate the lateral distortion
for the objective. Figure 8 (b) shows the OPD across the scan fields, relative to the minimum
scan angles, 5.97° in x direction and 5.54° in y direction. The maximum OPD across the scan



Research Article Vol. 27, No. 4 | 18 Feb 2019 | OPTICS EXPRESS 5059

Optics EXPRESS

field was 1.34 mm. The OPLs at bigger scan angles were found to be shorter. Figure 8 (b) can
be used in the digital calibration to offset the axial distortion generated by OPD.

144 —®— Scan length in X direction 0.0 o —A&— OPD in X direction
| —*— Scan length in Y direction @ —v— OPDin Y direction
£ 18 -~ S -02
E 124 2 o4
£ 114 E
B el
3 109 5 E -08
c | Q
3 o g 10 \\
84 L
2 (a) 4 el ()
74 (@)
A
6 7, 8 9 10 6 7 8 9 10
Scan angle (°) Scan angle (°)

Fig. 8. Distortion calibration in Zemax simulation. (a) Lateral distortion, demonstrated by the
relation between scan angle and scan length. (b) Axial distortion, demonstrated by optical path
difference (OPD) across the scan field.

Figure 9 shows the tissue-excitation (loading) and the wave-detection (scanning) areas, as
well as the spot diagrams of selected wavelengths (795 nm, 845 nm, and 895 nm) at the focal
plane, simulated in Zemax. The scanning area was an elliptical annulus zone of £ (7.73 mm to
13.22 mm) in the x direction and + (7.20 mm to 12.17 mm) in the y direction, centered at the
optical axis. The loading area was an elliptical zone of = 7.73 mm in the x direction and =+
7.20 mm in the y direction. The spots at different fields are shown as 1-mm intervals in scan
length. These spots were free of chromatic aberration, and were scaled using the Airy disc at
845 nm wavelength, whose radius is theoretically 19.33 um for a circular, uniformly
illuminated entrance pupil. Therefore, the elliptical shapes of some circles are caused by non-
uniform illuminations due to oblique light incidences. The radius of the Airy disc is equal to
the minimum resolvable detail (diffraction-limited resolution) based on the Rayleigh
criterion. If all of the rays are well within the Airy disk, then the system is often said to be
diffraction-limited [41]. Except for several out-of-focus spots at the edge of the scan field, all
other spots were within the Airy disk circles. The maximum RMS radius for the spots at the
edge of the scan FOV was 16.49 um, still smaller than the Airy disc radius. Thus, this scan
objective was diffraction-limited. If each arm of the holder vane for Mirror 1 was 3 mm in
width, the obscuration (shadow areas in Fig. 9) due to each arm is ~3 mm at the inner ellipse
and ~2 mm at the outer ellipse in the scanning area.
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Fig. 9. Demonstration of the tissue-excitation (loading) and the wave-detection (scanning)
areas, as well as the spot diagrams at the focal plane, simulated in Zemax. The purple stars
show the possible loading locations. The distance between two spots is Imm in the x and y
directions. The shadow areas are due to the obscuration of the Mirror 1 mount.

5. Discussion
5.1 Non-uniform illumination due to angle of incidence

We used a telecentric scan lens in our previous OCE system [28] where the chief rays of scan
beams were parallel to the optical axis and perpendicular to the focal plane. Compared to the
non-telecentric construction, the telecentric scan lens can illuminate the sample more
uniformly and collect more reflected/scattered light back to the system with a flat sample
geometry (e.g. 2% agar phantom [28]).

In the Schwarzschild scan objective, scan beams are not perpendicular to the focal plane
and the incident angel (6°) varies across different scan positions. In the design example of
Section 4, the incident angels at the focal plane vary from 9.88° to 19.14° in the x direction,
and from 10.09° to 19.05° in the y direction. Illumination is positively correlated with
cos’(0’). When the sample surface was flat, the illuminance values were calculated as 94.2%
—79.7% in the x direction, and 94.0% — 79.8% in the y direction, relative to the perpendicular
illumination.

Tissue samples may have any shape including convex surface geometry, such as the
cornea [42]. In our previous work, we have quantified the biomechanical properties of rabbit
[43—45] and porcine [46—49] corneas. We noticed that the imaging intensities and phase
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sensitivities dropped noticeably when imaging away from the apex or in the peripheral
regions of the cornea using a telecentric scan lens. In this case, a scan lens with a convergent
scan beam geometry would provide greater tissue illumination and back-light collection for
better image contrast than a telecentric scan lens. The design example presented in section 4
has a larger work space relief to accommodate a loading channel for corneal OCE
applications. Future designs could also include a convergent beam scan lens for other
applications.

5.2 Design alternative I: optimizing d, to further reduce OPD

In Section 3.3, the required R; range was found to be 55 mm to 79.60 mm. Instead of
choosing a smaller value (for example 55 mm) to reduce the OPD, we selected a value of 75
mm to reduce astigmatism. This resulted in a maximum absolute OPD of 1.34 mm, across the
entire scan field (Fig. 8 (b)).

Without compromising the correction of astigmatism, another possibility for OPD
reduction would be to adjust the value of d;. Our calculations and simulations demonstrated
that a smaller d; reduced OPD. However, the scanning mirrors in our design were big and had
to be located to the left side of Mirror 2 (Fig. 7), resulting in a relatively big d; (120 mm and
134.7 mm, respectively for the two scanners). Using smaller scanners and mounts might
reduce d; and further reduce OPD, if they can be located between Mirror 1 and Mirror 2.

5.3 Design alternative Il: using spherical surfaces for both mirrors

For astigmatism minimization, we designed Mirror 1 as a standard aspherical mirror with a
small diameter (56 mm) and small departures (kK = 0.436) from a standard spherical mirror.
The manufacturing cost for such a mirror is inexpensive.

If a larger R; value is chosen, such as 90 mm, both mirrors can be spherical surfaces and
still achieve diffraction-limited performance. However, a larger R; will require a larger
diameter Mirror 2 (> 300 mm). This would greatly increase the cost of manufacturing and
mirror verification.

5.4 Design alternative IlI: splitting Mirror 2 as multiple small mirrors

Some specific applications may require better lateral resolution (related to Dy/f) or a need to
accommodate larger scan areas (related to scan angles). Consequently, Mirror 2 with a larger
aperture (e.g. > 200 mm) may be required to meet these demands. However, fabrication of a
larger aperture of Mirror 2 is more difficult and expensive. A possible solution is to split
Mirror 2 into multiple small mirrors, e.g. two or four mirrors. This mirror-splitting method
can reduce the fabrication cost, but will require more complex construction as well as higher
assembly cost.

5.5 Design alternative IV: mounting Mirror 1 onto glass to reduce obscuration

Holder vanes are commonly applied for mounting the small mirror into a two-reflector
telescope, such as in the construction of Schwarzschild [30] and Cassegrain [50] lenses. Since
the small mirror is usually located at the pupil plane in a conventional telescope, holder vanes
do not generate blind spots at the image plane.

In our design, since Mirror 1 is not located at the pupil plane (Fig. 7), the three-arm holder
vanes would induce obscurations at the focal plane (Fig. 9). Use of a flat glass window to
mount Mirror 1 can effectively avoid such obscurations. We have performed the Zemax
simulation using a 10-mm thick glass window (material: BK7) to mount Mirror I instead
(wavelength: 795-895 nm). The point spread functions in the same scan areas are still
diffraction-limited with only slightly increased chromatic dispersions over this wavelength
range and this validates this glass window mount as a viable option. In addition, the reflective
collimator used in Fig. 7 can be replaced by an achromatic lens-based collimator for this
wavelength range as well. Choosing the mounting method would be determined by the
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specific design requirements, such as wave bandwidth, numerical number, scan angles, and
complexity, as well as the preference of the designer.

6. Conclusion

We demonstrated the theory and design for an OCE reflective scan objective by employing a
Schwarzschild design with two concentric convex and concave mirrors. This Schwarzschild
scan objective extended the working distance, and enabled the use of central perpendicular
tissue-excitation with peripheral wave-detection.

We presented a detailed theory in Section 2, where R; was chosen as the key value to
calculate, optimize, and evaluate the main parameters, such as the axial dimensions, radial
dimensions, radial constraints and dimensional criteria, OPD among chief rays, and
astigmatism values for the scan beams.

In Section 3, the relation between the axial dimensions (L and d,.+) and R; was
demonstrated. The equation of 2RH,p; = 2RHs was used to further relate R; to other
parameters, such as scan angles, scan lengths at the focal plane, OPD among chief rays, and
astigmatism for the scan beams. After balancing all of these key design constraints, especially
D> ou, we chose R; =75 mm.

In Section 4, we defined the conic constant for Mirror I surface as the only variable, and
optimized this scan objective to further reduce astigmatism and the residual aberrations (Fig.
6). The reflective configuration provided a chromatic-aberration-free design. This feature
enables its use in broad bandwidths (e.g. from visible to near-infrared range that is usually
applied in OCT imaging). Lateral distortion (relation between the scan angle and scan length)
and axial distortion (OPD) were presented for system calibration (Fig. 8). Regions of loading
and scanning were defined and the diffraction-limited performance was achieved (Fig. 9).

In summary, a Schwarzschild scan objective was designed for broad bandwidth optical
coherence elastography with a long working distance, central perpendicular tissue-excitation,
and peripheral wave-detection. OPD of the chief rays and astigmatism values for the scan
beams were reduced and the lateral resolution was diffraction-limited for the entire scan field.
This Schwarzschild scan objective may also benefit other multi-channel imaging systems that
combine peripheral scans with other central channels.
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