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Abstract

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer, with high morbidity and mortality.
Racial disparity in HNSCC is observed between African Americans (AAs) and whites, effecting both overall and 5-year
survival, with worse prognosis for AAs. In addition to socio-economic status and demographic factors, many epidemiological
studies have also identified factors including coexisting human papillomavirus (HPV) infection, primary tumor location, and
a variety of somatic mutations that contribute to the prognostic incongruities in HNSCC patients among AAs and whites.
Recent research also suggests HPV-induced dysregulation of tumor metabolism and immune microenvironment as the major
regulators of HNSCC patient prognosis. Outcomes of several preclinical and clinical studies on targeted therapeutics warrant
the need to elucidate the inherent mechanistic and population-based disparities underlying patient responses. This review
systematically reports the underlying reasons for inconsistency in disease prognosis and therapy responses among HNSCC
patients from different racial populations. The focus of this review is twofold: aside from discussing the causes of racial dis-
parity, we also seek to identify the consequences of such disparity in terms of HPV infection and its associated mutational,
metabolic, and immune landscapes. Considering the clinical impact of differential patient outcomes among AA and white
populations, understanding the underlying cause of this disparity may pave the way for novel precision therapy for HNSCC.

Head and neck cancer squamous cell carcinoma (HNSCC) is the
sixth-most common cancer worldwide, estimated to comprise
approximately 3% of all cancers in the United States. In 2018,
approximately 51 540 new cases are projected and 10 030 people
are expected to die of oral cavity and pharynx cancer in the
United States alone (https://seer.cancer.gov/). Despite consider-
able efforts, the 5-year overall survival (OS) rate of HNSCC
patients has not improved substantially in several decades. The
median age at diagnosis of the disease is approximately 63 years
(1), although initial disease presentation at younger age is on
the rise (2). Generally, HNSCC develops in the upper aero-
digestive tract of the head and neck, which includes the oral
cavity, nasal cavity, larynx, pharynx, and salivary glands. The

traditional etiology of HNSCC generally involves tobacco use (ei-
ther chewing or smoking) and alcohol consumption. Recent epi-
demiological and laboratory results, however, have implicated
human papillomavirus (HPV) as a causative agent for some
HNSCC types. HPV generally infects the tonsillar tissue of
Waldeyer’s ring. This includes the subsites of the base of the
tongue and palatine tonsillar region, both components of the
oropharynx. Approximately 70% of oropharyngeal cancers (OPC)
in the United States are caused by HPV infection, which gener-
ally depicts the younger population as having a very distinct
prognosis compared with tobacco-and alcohol-induced OPC (3).
HNSCC is endemic in Southeast Asian countries, where tobacco
and beetle quid chewing is a cultural norm. In the United States,
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tobacco remains a main risk factor in cancers of the oral cavity,
larynx, and hypopharynx, but a steady downward trend has
been noted in tobacco-related HNSCC as a result of proper pub-
lic health management (4). Although the incidence of tobacco-
related HNSCC has been reduced, HPV-induced HNSCC cases
have increased considerably in recent years. Currently, about
25% of HNSCCs identified in the United States are thought to
arise independent of tobacco use (5). The presence of HPV is
thus an independent risk factor for OPC, and, importantly, pro-
vides an improved therapeutic response relative to HPV-
negative HNSCC (6–9).

Similar to other malignancies, including lung, colon, pros-
tate, and breast, the incidence and mortality of HNSCC varies
among different racial and ethnic groups (https://www.cdc.gov/
cancer/dcpc/data/race.htm) (10–12). Successful detection and
understanding of the risk factors associated with this disparity
is critical for control and management of the disease and for
overall better patient outcome. The African American (AA) pop-
ulation with HNSCC has a poorer prognostic outcome and
higher mortality rate than the whites (13,14). However, there are
differences in opinion regarding the cause of differential inci-
dence and mortality rates between the two groups. Lack of ade-
quate health insurance coverage, socio-economic status, and
HPV status are considered some of the underlying factors (15).
For instance, differences in mortality in the AA and white popu-
lation, particularly in OPC, may in part be due to greater overall
prevalence of HPV in the white population (34%) compared with
AAs (4%) (15). Although inconsistencies appear in prognosis and
therapy outcomes among racial groups, it is still unclear
whether the disparity is based on only genetic and demographic
factors, or whether there exists contrasting mutational and bio-
logical factors among the races. Accumulating evidence sug-
gests that HPV and its associated immune-metabolic state play
a major role in disease prognosis. This review focuses on the
cause and consequences for disparity in HNSCC among patient
groups and highlights risk factors that would implicate preven-
tion, diagnosis, policy making, and management of the disease.

Impact of Socio-Economic Status on
Differential HNSCC Incidence and Outcome

Disproportionate incidence and mortality rates are contributed
by differences in access to adequate individual health care cov-
erage and socioeconomic status (SES) (16,17). Disparity in in-
come determines type of insurance coverage availed and thus
treatment modalities available, which subsequently affects pa-
tient outcomes (14,18,19). In a study from Fox Chase Cancer
Center (Philadelphia) examining the differences among
Medicaid and uninsured HNSCC patients, 23% of Medicaid and
32% of uninsured patients were less likely to undergo external
beam radiotherapy (RT). Similarly, 23% of uninsured patients
were less likely to receive oncologic surgery, consequently caus-
ing differences in survival and stage of disease at presentation.
However, Churilla et al. (20) from the National Cancer Institute’s
Surveillance, Epidemiology & End Results (SEER) data (2007–
2012) categorically indicated 80.1%, 15%, and 4.9% of the HNSCC
patients were Medicaid, non-Medicaid, and uninsured, respec-
tively, suggesting that other unknown risk factors, in addition
to insurance coverage and access to health care, are responsible
for differences in survival. It is worth mentioning that Medicaid
patients were diagnosed with more advanced stage cancer com-
pared with patients enrolled in private health care plans (21,22).
It was also observed that most AA patients were lower income

and less likely to have insurance coverage, which again resulted
in late-stage presentation of the disease (14,23–27). Similar
adjustments for stage-at-diagnosis suggests low-income
patients have lower rates of survival than high-income patients
(28). In a retrospective cohort study, using the state cancer regis-
tries of California and Georgia (2002–2006), data predicted that
in Medicaid patients, older males and AAs were diagnosed with
more advanced stages of the disease and showed high mortal-
ity. A larger number of these patients also had succumbed at
12- or 24-month follow-up than whites (29).

Income is also critical in determining individual education
(18), and although there is no statistically significant (P¼ .30) as-
sociation between low income and education, AA patients were
associated with these factors respectively (income, P< .0001, ed-
ucation, P¼ .002) that may predict the survival outcome of
HNSCC patients (18). The univariate and multivariate analyses
of patients with high school education or less, income, and ad-
vanced age showed a statistically significant independent pre-
diction value with disease-free survival (DFS) of the patients,
suggesting its association with the disease. Degree of education
can also predict the outcome of patients. For example, patients
with a high school education or less had a 44% higher hazard of
dying of a cancer-related cause and a 43% higher hazard of re-
currence of the disease than higher income patients. With low
income and less education, there is a considerable decrease in
survival rates of HNSCC patients, primarily due to poor health
care access and health behaviors (30). Patients with low income
and less education not only have limited access to treatment
options but may also have a weak immune system due to mal-
nutrition, thereby affecting their OS (31–33). Although univari-
ate analysis of AA patients demonstrated an association with
decreased OS and cancer-specific survival, it was not statisti-
cally significant in multivariate analysis, suggesting that socio-
economic status and other covariates play a role in disease out-
come (18). Moreover, adjustment for socio-economic variables
predicted the association between educational status and sur-
vival outcomes of HNSCC patients. This suggests that differen-
ces in diagnosis and survival outcome among AA and white
HNSCC patients may be influenced by SES between the groups.

Variability in Locoregional Origin of HNSCC
Tumors

HNSCC originates in squamous cells that line the moist mucosal
surfaces of oral and nasal cavity, pharynx, larynx and the sali-
vary gland to a lesser extent. Cancer statistics based on SEER
census clearly indicate the difference in cancer incidence
according to the site of origin (34). SEER data (17-registry 1973–
2007) have shown AAs to harbor approximately 34.3% and 10.1%
of all oropharynx and hypopharynx malignancies, respectively.
Oral cavity cancer incidence was higher in whites compared
with AAs (33.8% vs 23.4%), whereas AAs had a higher incidence
of laryngeal primary site malignancies than whites (32.1% vs
26.8%) (34). No clear difference was detected in AA and whites
according to SEER incidence rates per 100 000 and age-adjusted
(2010–2014) HNSCC patients except for malignancies in the sub-
sites of the lip (0.10% vs 0.80%) and tongue (2.1% vs 3.6%), re-
spectively (Figure 1A). Differences in relative 5-year survival
rates (2007–2013) were evident in AAs compared with whites in
most of the subsites of HNSCC patients (Figure 1B). However, a
retrospective review of 34 182 HNSCC patients from SEER by
Zimmerman et al. (35) showed a statistically significant racial
survival disparity in AA patients, particularly in sites such as
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mouth and larynx, and was affected by stage at presentation.
Racial survival disparity was also evident in almost all the ana-
tomic sites of HNSCC, with the highest 5-year survival rate of
54.5% in mouth except malignancy in the salivary gland. One of
the primary reasons for such difference in survival disparity in
AA patients is due to poor tumor recognition in early diagnosis.

Influence of Variable Somatic Mutations on
HNSCC Disparity

Tobacco and/or alcohol consumption is associated with the ac-
quisition of somatic mutations (36,37). These mutations lead to
defects in metabolic enzymes/pathways of tobacco metabolism
that allow accumulation of potent carcinogens to promote tu-
morigenesis. In AAs, clearance of inhaled tobacco metabolites
(nicotine and cotinine) is less effective than in whites (38,39),
suggesting the influence of individual genetics. Apart from muta-
tion, it was also proposed that the generation of gene variants is
associated with decreased nicotine metabolism in AAs (40–42).

Somatic mutations such as TP53, CDKN2A, PIK3CA, HRAS,
FBXW7, and NOTCH1 genes are observed in HNSCC tumors
(37,43). However, the acquisition of these mutations may vary
based on ethnicity and HPV infection. A retrospective study by
Wu et al. (44) included 214 patients with 46% non-Hispanic
whites (NHWs), 34% Hispanic whites, and 20% AAs to study the
association between somatic mutation and early death
(<2 years) in HNSCC. The study indicated EGFR, PIK3CA, and
TP53 were the most frequently mutated genes. About 31%
Hispanic whites and 18% AA patients potentially acquired at
least any three mutations, and the acquisition of at least three
gene mutations is associated with high risk of early patient

death. Of interest, the acquisition of these mutations also varied
among ethnic groups; for example, the prevalence of EGFR,
KRAS, HRAS, and TP53 mutations was higher in AAs and
Hispanic whites than in NHWs.

Different somatic mutations have been identified in HNC pa-
tient samples with various degrees in different anatomical sites
of the head and neck. For example, somatic mutations in
CDKN2A (17% in larynx, 19% in oral cavity), MET (21% in oro-
pharynx), EGFR (15% in tonsil), KRAS (3% in sinonasal cavity),
TP53 (70%–80% oral cavity), BRAF (41% in thyroid), and HRAS
(18% in salivary gland) have been detected in different HNC
regions. However, the clinical relevance of these mutations in
different anatomic regions is not clear (45).

A study using The Cancer Genome Atlas (TCGA) database
shows the differences in cancer incidence rates among AAs vs
NHWs (�1.83, P¼ 8.00E-10) and Asians vs NHWs (�3.21, P¼ 1.00,
P¼ 1.00E-21). Although the study showed that AAs had worse
survival compared with the NHW patient population (P¼ .038)
that was suggestive of racial disparity, the study did not find
any statistically significant nonsynonymous somatic mutation
(driver mutation) burden in different racial subgroups of HNSCC
patients (46). In contrast, similar studies conducted on the same
data set by Ramakodi et al. (47) defined the presence of different
mutational landscapes for AA (n¼ 13) and NHW patients
(n¼ 57) with laryngeal cancer. The NHW patient population was
also seen to harbor a higher mean number of mutations than
AA laryngeal cancer counterparts (277.63 vs 151.31). The fre-
quency of nucleotide mutations (C>A, C>G) was also statisti-
cally different between AA and NHWs patients. The G>T
nucleotide transition, a tobacco-related mutation, is observed in
lower proportions in tumors from AA population compared
with NHWs. The frequencies of 44 known driver mutations also
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Figure 1. Surveillance, Epidemiology & End Results-based cancer statistics stratified by anatomic sites between African American and white head and neck squamous
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subsite malignancies of African American and white head and neck squamous cell carcinoma (HNSCC) patients are presented.
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varied between the AA and NHW HNSCC patient populations
(20/44 vs 29/44). However, many NHW patients had mutations
in the driver gene, PIK3CA, which is not detected in AA patients,
and a greater number of AA patients had mutations in
RUNX1T1, KIAA1033, and ZMYM6 compared with NHW patients
(47). Therefore, differences in genetic background of AA and
NHW HNSCC patients, apart from other nonbiological factors,
predispose the two racial groups differentially to tumor-
associated mutational burdens. This may advocate for the like-
lihood of higher laryngeal cancer susceptibility, increased risk
of disease development, and poor prognosis in the AA
population (48).

HPV Predicts Differential HNSCC Prognosis

HPV is a DNA virus that infects the human keratinocytes of the
skin and mucous membranes. Of 200 different strains of HPV vi-
ruses, HPV 16, a high-risk subtype, accounts for approximately
90% of all HPV-induced HNSCC (49). HPV infection can spread
through sexual contact with an infected person (50). Smoking
and alcohol use can further increase the incidence of HPV infec-
tion in OPC, primarily due to its local and systematic immuno-
suppressive action (51–54).

About 99.7% of uterine cervical cancers are caused by HPV
DNA (55), with HPV 16 being the most prevalent strain in low-
grade and cervical neoplasm. Due to similarities in the morpho-
logical features between cervical cancer and HPV-associated
lesions in the oral cavity, HPV is hypothesized to play a role in
oral and laryngeal cancer (56,57). Multiple studies have indi-
cated HPV as an independent risk factor in OPC (58–64).
Although a notable proportion of oropharyngeal and tonsillar
cancers are associated with HPV, only 60% of these cancers are
mediated by HPV (65). Such differences in risk factor implication
between the studies can be due to a wide variation in HPV DNA
detection (65).

Epidemiological studies have associated race with differen-
ces in cancer incidence and mortality (13,16). Such differences
in mortality rates among AAs and whites are driven by dispa-
rate diagnosis and prognostic outcome (13,16,23,66–68). Studies
from all cancer subsites in HNSCC showed a relatively low 5-
year survival in AA compared with white patients (69). One of
the primary reasons for high mortality and low response to
chemo-radiation therapy (CRT) in AAs is due to low HPV infec-
tion rates compared with whites (15,70). The AA patients were
also less susceptible to oral, pharynx, nasal, or larynx squamous
cell carcinoma, the primary areas of HPV infection (70). The
prevalence of HPV 16 infection is, however, higher in oropha-
ryngeal (35.6%) compared with oral (23.5%) and laryngeal (24%)
carcinomas (71). This may explain the most prominent 5-year
survival difference of AAs and whites in the oropharyngeal
locoregion (SEER data) in recently diagnosed cases (1995–2004),
which further relates to the surge of HPV-induced HNSCC dur-
ing this period (72).

Apparently, HPV DNA alone per se does not correlate with
the clinical outcome of HNSCC patients (8). During HPV infec-
tion, the viral oncoprotein E7 binds to retinoblastoma protein
(pRb) causing dysfunction of pRb, which in turn results in the
release of the E2F transcription factor 1 from the pRb/E2F tran-
scription factor 1 repression complex. This releases feedback in-
hibition of p16INK4a expression, resulting in its overexpression
(73,74). Thus, HPV DNA along with high levels of p16INK4a is con-
sidered a robust prognostic marker. The multi-institutional ret-
rospective cohort analysis of HPV-negative, HPV-inactive, and

HPV-active cases demonstrated that only the HPV-active
HNSCC group (p16INK4A positive) is associated with OS and DFS.
Using this model, it is estimated that 29% of whites harbor an
HPV-active strain compared with 0% in AA patients. Apart from
differences in active HPV status, the disparity between AA and
white patients was clinically significant (P¼ .01) when the HPV
surrogate marker, p16INK4A, was considered (8). Because HPV in-
fection and p16INK4A provide a better outcome in HNSCC
patients, the disparity in OS between AA and white HNSCC
patients is thought to be propelled by a low prevalence of
HPV (15).

Apart from HPV infection itself, differential mutational land-
scapes and altered metabolic and immunologic profiles driven
by viral infection may lead to the variability in prognosis and
survival outcome in AA and NHW populations of HNSCC
patients. Whole-exome sequencing from 74 tumor-normal pairs
identified major driver genes of HNSCC carcinogenesis
(NOTCH1, IRF6, and TP53) responsible for squamous differentia-
tion. These genes were observed to harbor mutations; however,
the mutation rate in HPV-positive HNSCC patients was one-half
that found in HPV-negative cases (75). This observation was
consistent with epidemiological differences observed between
the two types (75). SES, access to proper health care, differences
in sexual lifestyle preferences, host genetics, smoking, and alco-
hol use are established associated factors for differences in HPV
prevalence rates between AAs and whites (70). Several studies
have shown whites engage in oral sex more frequently than
AAs (76,77), which increases the chances of HPV infection (70).
However, it is still unclear whether other differences in behav-
ioral factors (hygiene/eating habits) between the races influence
the likelihood of HPV infection (14). It is observed that AAs or
low SES children have enlarged tonsil and adenoids (78), which
may cause sustained release of inflammatory mediators to pro-
cess anti-viral components (79). Thus it is postulated that the
expression of key molecules required for the viral infection of
epithelial cells is genetically driven and may be potentially dif-
ferent between the races.

HPV Infection Induced Differential Tumor
Metabolism in HNSCC

Altered metabolism is one of the hallmarks of cancer, wherein
tumor cells represent a class of metabolically demanding cells
(80,81). It is well established that to satisfy energy demand and
anabolic building blocks, tumor cells favor aerobic glycolysis
over oxidative phosphorylation (OXPHOS), even in with an
abundance of oxygen, a finding commonly termed the
“Warburg effect.” Like other solid tumors, most studies have
identified HNSCC tumors to follow the Warburg effect. It is
worth noting that most of these studies were conducted using
in vitro monolayer cell cultures, which may not accurately re-
flect the complete scenario. Recently, studies have started to fo-
cus on delineating tumor heterogeneity in terms of cellularity,
histology, and metabolic cross-talk. The tumor microenviron-
ment comprises of a wide array of cells, including cancer-
associated fibroblasts, immune cells, and proliferating and non-
proliferating tumor cells. These cell types have their unique yet
symbiotic relationship in the context of metabolism (82). Recent
advances in the field indicate that there exists a metabolic com-
partmentalization inside the tumor that is also closely con-
nected to the differential immune infiltrates. Curry et al. (82)
showed in patient samples that the nonproliferating stromal
cells are mitochondria poor and have a higher propensity for
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aerobic glycolysis and lactate release. Nonproliferating tumor
cells showed a similar phenotype, with enhanced staining for
Monocarboxylase Transporter 4 (MCT4), a plasma membrane
transporter for lactate secretion, and a decrease in functional
mitochondrial markers such as Cytochrome Oxidase (COX),
Translocase of Outer Mitochondrial Membrane 20, and
Monocarboxylase Transporter 1 (MCT1), a plasma membrane
transporter for lactate uptake. The highly proliferating tumor
cells were, however, undergoing extensive OXPHOS and could
utilize lactate as a secondary energy source for mitochondrial
respiration. The authors also commented that MCT4 expression
increases with disease stage and inversely correlates to patient
survival. This study also indicated a metabolic symbiosis in
concurrence with spatial organization of cells inside the tumor
and that the highly proliferating cancer cells along the tumor
edge induce the deeply seated nonproliferation cancer cell pop-
ulation to undergo aerobic glycolysis and expel lactate, which in
turn is used by the stem cell-like proliferating population. This
might explain the correlation between enhanced aggressive-
ness and MCT4 expression. In another recent study, MCT4 and
GLUT1 expression was found to follow an increasing trend in
areas closer to hypoxic domains (83). In corroboration with pre-
vious studies, MCT4 expression was established as a potential
marker for tumor stage and aggressiveness.

In quest of understanding the reasons behind the differen-
tial outcome, recurrence, and response to RT amongst HPV-
positive and HPV-negative HNSCC patients, studies have been
redirected towards dissecting the metabolic phenotype within
these two different tumors. Using cell lines and patient tumors
specimens, Krupar et al. (84) found predominance for glucose
utilization (GLUT1, plasma membrane glucose transporter) and
mitochondrial respiration (LDHB, MCT1, COX5B) in the HPV-
positive compared with HPV-negative cases. Depending on the
subunit composition of lactate dehydrogenase (LDH), it either
converts pyruvate to lactate (LDHA) or lactate to pyruvate
(LDHB) (85). Besides, they noticed a differential intra-tumoral
distribution of GLUT1 and COX5B in these two classes of tumors;
whereas HPV-positive tumors showed centrally localized stain-
ing for these markers, HPV-negative tumors had a more periph-
eral staining along with a higher concentration of lactic acid
inside the tumor. Figure 2 explains the altered metabolic path-
ways in HPV-positive and -negative tumors. This distinct stain-
ing pattern correlated with an intra-tumoral abundance of
cytotoxic CD8þ T cell infiltration (84).

Although oxidative, radiosensitive, and immunogenic phe-
notypes of HPV-positive tumors were established in the studies
above, contradictory findings exist. The E6 oncoprotein from
HPV can activate the mammalian target of rapamycin, which
can in turn lead to accumulation of Hypoxia Induced Factor-1a

(HIF1a) and its downstream enzymes, including those involved
in anaerobic glycolysis leading to enhanced lactate production
even in the presence of abundant oxygen (86). Extensive epide-
miological evidence exists in support of higher incidences of
HPV infection in whites compared with AAs; however, no intri-
cate mechanistic studies have been conducted to elucidate the
virus-driven metabolic disparities of HNSCC patients in either
of these two racial groups.

One major difference in viral-induced vs tobacco-/alcohol-
induced HNSCC tumors is their differential sensitivity to radia-
tion. HPV-negative patients are much more tolerant to radiation
and have a higher chance of locoregional recurrence compared
with the HPV-positive patients (87). In a recent study by Jung
et al. (88), HPV-negative cells were observed to be more glyco-
lytic, whereas HPV-positive cells had better propensity for

OXPHOS. Mechanistically, the authors claimed that upon radia-
tion, HIF1a expression is elevated more in the HPV-negative
cells leading to elevated expression of its downstream targets
like Hexokinase II (HKII), carbonic anhydrase, and Pyruvate
Dehydrogenase Kinases (PDKs). On the other hand, HPV-
positive patients were able to endure mitochondrial respiration,
which could be corroborated by their higher COX/HKII ratio.
Interestingly, specific inhibition of PDK led to sensitization of
HPV-negative cells to radiation.

There remain doubts regarding the spatial stratification of
metabolic pathways inside the tumor and variabilities in the
presence and absence of HPV infection. More comprehensive
studies with animal models and patient specimens may bolster
findings from cell line models. Stratifying patients on the basis
of racial disparity, more specifically their inherent susceptibility
to HPV infection and its associated metabolic phenotype, might
be beneficial in terms of therapy outcome expectancy and im-
proved patient survival.

HPV Infection Induced Altered Immune
Landscape in HNSCC

HNSCC neoplasm development occurs in a very complex and
dynamic microenvironment comprising epithelial, endothe-
lial, and immune cells, fibroblasts, and soluble factors such as
cytokines, chemokines, and various intermediary metabolites
(89). Immune dysfunction together with a tumor-promoting
microenvironment has been known to influence tumor devel-
opment and progression (90). Recent genomic studies using
transcriptomic sequencing, data integration, and molecular
networking have allowed us to revisit and discover the under-
lying molecular mechanisms of the progression of various
cancers. These genomic studies are not limited to mutational
and transcriptomic details that predict prognostic information
but also to immune landscapes that will to some extent
envisage patient-specific responses to immunotherapy.
Comprehensive meta-analysis of TCGA data suggests that
HNSCC is one of the most immunologically active tumors,
next to lung adenocarcinoma and renal cell carcinoma (91).
Single-sample gene set enrichment analysis revealed HNSCC
tumors had elevated levels of immune activation measured by
granzymes, perforin, and interferon gamma (IFN-c) signaling
enrichment (91). Evidence also suggests that the immune cell
composition of the tumor microenvironment is a key determi-
nant of overall HNSCC patient outcomes (92–94).

As mentioned, AAs are often diagnosed with an aggressive
advanced HNSCC tumor at presentation, more so than whites,
and although the exact mechanism for this fact is still elusive,
epidemiological and association studies indicate that the two
races differ in their HPV infection rate and mutational land-
scape. The varied mutational burden and the HPV association
may account for the contrasting immune phenotype in the tu-
mor microenvironment, and this may finally lead to a differen-
tial prognosis and therapy outcome in this patient population.
HPV-positive tumors are commonly observed in the palatine
and lingual tonsillar region of head and neck. The palatine ton-
sils, comprised of nonkeratinized epithelium with incomplete
basal lamina, make a fertile ground for immune-mediated infil-
tration, with cells such as lymphocytes and macrophages on
the surface (95). Due to the intensive lymphatic tissue and its
proximity to the tumor area, HPV proteins can induce an adap-
tive immune response directed against viral antigens. HPV-
positive HNSCC has a high level of tumor infiltrating
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lymphocytes, regulatory T cells (Tregs), and PD1þ T cells, all of
which are generally associated with a better clinical outcome
(84,96–98). One prospective study revealed that RT alone or con-
current CRT had a statistically significant locoregional effect
(distant metastasis) in HPV-positive than -negative patients
(99). A similar trend of decreased locoregional control and lower
OS (35% vs 75% in HPV-positive) is observed in HPV-negative
anal cancer, which has frequent TP53 mutations (100). Recent
reports suggest that mutant TP53 can fuel pro-inflammatory
pathways, ultimately aggravating tumor progression (101,102).
It is also known that the tumor suppressor TP53 can regulate
immune infiltration by regulating the NFjB pathway (103). This
might explain the low immune infiltration in HPV-negative
tumors that generally carry mutant TP53.

Given the volume of lymphoid tissue in the oropharyngeal
region and the high percentage of HPV infection in oropharyn-
geal tumors compared with other subsites, numerous studies
have shown a strong correlation between the abundance of tu-
mor infiltrating lymphocyte (TIL), HPV status, and improved
survival in HNSCC (97,104–107). HPV oncoproteins such as E6/E7
can function as tumor-associated antigens for antigen presen-
tation capability of dendritic cells for the activation of CD8þ cy-
totoxic T lymphocytes (108). The premise is supported by the
clinical observation that the presence of HPV16-specific T cell
and E7-specific circulating T lymphocytes in HPV-positive OPC
patients (109,110). The presence of an increased number of TILs
has been correlated with favorable DFS under resectable con-
ditions and with improved OS (111,112). Moreover, correlation
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enters the tumor cells by Glucose Transporter 1 (GLUT1). Hexokinases I or II (HKI or HKII) convert glucose to glucose-6-phosphate. Pyruvate formed in the subsequent

steps of glycolysis is either used for lactate generation in the cytosol or is shuttled inside the mitochondria where it is converted to acetyl-CoA by the multi-enzyme

complex pyruvate dehydrogenase (PDH). Acetyl-CoA is then fed into the tricarboxylic acid (TCA) cycle in the mitochondrial matrix. Subsequent steps in the TCA cycle

generate high-energy currencies nicotinamide adenine dinucleotide (NADH) and Flavin Adenine Dinucleotide (FADH2), which are harvested in the electron transport

chain (ETC) to generate adenosine triphosphate (ATP). HPV-positive tumors: HPV positive tumors are observed to express higher levels of HK I and PDH, thereby ensur-

ing these tumor cells undergo pronounced oxidative phosphorylation (OXPHOS). Besides, higher expression of Monocarboxylate Transporter (MCT1) and Lactate

Dehydrogenase B (LDHB) in these tumors helps in the sequestration of lactic acid from the tumor microenvironment and conversion of the same to pyruvate respec-

tively. This pyruvate is utilized in the TCA cycle followed by OXPHOS, leading to higher generation of ATP molecules. HPV-negative tumors: HPV-negative tumors have

higher expression of HK II and Pyruvate Dehydrogenase Kinase (PDK). PDK phosphorylates and inactivates PDH, thereby inhibiting the formation of acetyl-CoA.

Pyruvate is shuttled towards lactate generation by Lactate Dehydrogenase A (LDHA). A part of the lactate is subsequently expelled to the microenvironment via MCT4.

Presence of lactate in the environment results in enhanced tumor aggressiveness (details in text). Blue circles indicate molecules with higher expression and bold

arrows indicate more prominent pathways in each of the tumor type.
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of CD8þ T cell infiltration and improved prognosis has been ob-
served both in HPV-positive (97,104–106,113,114) and HPV-nega-
tive OPC (114). In addition, HPV E7-specific CD8þ T cell response
was observed in the peripheral blood of HPV-positive patients;
this response correlated with survival outcome (115). Overall,
the presence of cytotoxic T lymphocyte infiltration and an
abundance of IFN-c have been shown to be associated with fa-
vorable outcomes in HPV-positive HNSCC (84,116). The active
immunologic landscape in HPV-positive tumors also leads to in-
creased CRT response (117). All these studies suggest that HPV
infection activates the immune response and that patients with
more tumor immune-infiltrates have better anti-tumor re-
sponse (118,119). A similar phenotype of higher TILs with better
OS has been observed in multiple cancers (120–125). Multicolor
surface staining of blood from HNSCC patients suggests the
presence of a higher percentage of CD4þCD25þ T cells and
Tregs in the peripheral blood of patients compared with healthy
controls (126,127). A recent study shows that HPV-specific TILs
predominantly produced IFN-c and IL17, suggesting an HPV-
specific T-cell response that ultimately supports favorable OS
with small tumor size and low metastasis (128). Further, HPV16-
specific CD4 and CD8 T-cells were observed more frequently in
the peripheral blood of HPV-positive HNSCC patients (63.6% vs
24.1% in HPV-negative) (109). In support of this notion, in a ret-
rospective analysis of 140 patients, it was shown that HPV-asso-
ciated OPC tumors have higher numbers of CD56þ NK cells in
the tumor milieu compared with HPV-negative counterparts
(91,129). Further, the presence of granzyme B within CD56þ cells
on the same patients suggests a higher accumulation of cyto-
toxic NK cells in HPV-associated OPC (129) that correlates to im-
proved survival (91,129). Investigation of the tumor-immune
profile of HNSCC tissues is crucial to identify responders vs non-
responders for immunotherapy (92–94).

Immune cells, being one of the most functionally plastic
cells of the body, can respond to the local environment and un-
dergo variations in their differentiation state, gene expression
pattern, and effector functions. Thus, a major part of the current
clinical research is focused on understanding tumor metabo-
lism as a determinant of the local immune milieu. Highly prolif-
erating tumor cells and the tumor promoting cells in their
neighborhood like cancer-associated fibroblasts and endothelial
cells compete for glucose with the immune cells. Glucose depri-
vation not only restricts the cytotoxicity, motility, and IFN-c
production from the TILs but also abrogates proinflammatory
functions of the macrophages (130). Moreover, lactate released
from the tumor cells due to enhanced glucose utilization in aer-
obic glycolysis drives a wide variety of immunosuppressive
roles including functional quiescence of the intratumoral CD8
cytotoxic T cells and decreased cytokine release from the den-
dritic cells. Lactate also serves as a reactive oxygen species
(ROS) scavenger. ROS being a critical mediator of CRT efficiency,
accumulation of lactate in the tumor microenvironment sup-
presses CRT response of the patients (131). Hypoxic areas in
solid tumors upregulate HIF1a that further enhances tumor cell
glucose utilization and lactate release. Thus, oxygen supple-
mentation and treatment with metformin decreased intratu-
moral hypoxia followed by attenuation of immune evasion
(132). A recent study by Krupar et al. (133) bridged the unex-
plored mechanistic link between intratumoral immunometa-
bolic features in HNSCC patients, their CRT response, and the
corresponding survival. In this study, it was observed that high
mitochondrial COX5B and low glycolytic GLUT1 correspond to
high intratumoral CD8/CD4 ratio, leading to better CRT response
and improved short- and long-term survival in HNSCC patients.

However, a previous study (84) by the same group showed posi-
tive correlation between anti-tumor CD8/CD4 ratio and expres-
sion of GLUT1 and COX5B in HPV-positive tumors. This
inconsistency in the correlation between GLUT1 prevalence and
antitumor CD8/CD4 ratio in the two findings may be explained
by the biased patient selection towards a low number of HPV-
positive cases in the current study. Further, the authors also ob-
served an improved anti-tumor immune cell chemotaxis to-
wards the HNSCC tumor spheroids upon ROS accumulation
following simultaneous administration of radiation and glucose
inhibitor. This phenomenon was reversed in the presence of N-
acetylcysteine, a known ROS scavenger, thereby indicating that
ROS is a critical intermediate between tumor metabolism and
the immune microenvironment (133). Thus, an elaborate strati-
fication of HNSCC patients based on the immunometabolic phe-
notype is a prerequisite to ensure a successful clinical outcome
from CRT.

Conclusion and Future Prospectus

The estimated number of HNSCC-related deaths worldwide
accounts for more than 0.3 million and 13 000 deaths in the
United States. Research in HNSCC disparity has established that
differences in racial groups are primarily driven by SES and
HPV. As a result of difference in SES among minorities, there is
less access to health care, less likelihood of insurance coverage,
and a greater probability of a more advanced stage of disease at
presentation. HNSCC has long been considered as a homoge-
neous disease in the context of smoking- and alcohol-induced
carcinogenesis, histopathology, locoregional progression, and
recurrence after treatment (134). However, anatomical hetero-
geneity that arises from the oral cavity, pharynx, and larynx
also exists (135). Identification of HPV 16 as a risk factor in the
oropharynx of head and neck region has added to heterogeneity
of the disease. Numerous studies have detected a poorer OS for
AAs compared with whites in OPCs, and prognosis depends on
low prevalence of HPV among AA patients. To date, the over-
whelming evidence in the literature has portrayed the disparity
in AA and white HNSCC to be mostly an SES or lifestyle issue;
however, detection of variable degrees of somatic mutations in
different HNSCC races that potentially drives the prognosis of
the disease counters such presumption. Furthermore, varia-
tions in predominant somatic mutations and metabolic and im-
mune characteristics associated with HPV infection contribute
to the prognosis of the disease in the two racial groups.

HPV-negative tumors are also speculated to harbor more so-
matic mutations and are more immunologically cold. The vari-
ability in metabolic compartmentalization inside the tumor is
partially responsible for such differential immunologic pheno-
type. HPV-positive tumors are observed to undergo more
OXPHOS in the tumor core and higher rates of aerobic glycolysis
at the periphery. At the same time, HPV-negative tumors un-
dergo extensive aerobic glycolysis with excessive lactate deposi-
tion in the tumor core (84). This may explain the decrease in
cytotoxic tumor-infiltrating T cells and the increase in immuno-
suppressive Tregs inside the tumors of HPV-negative patients,
demonstrating that there might exist immune-metabolic cross-
talk inside the HPV-positive and negative tumors (Figure 3).
Thus, HPV can be one of the major factors in the disparity seen
among HNSCC patients of different racial groups, given that the
prevalence of viral infection is lower in AAs, and this in turn
contributes to poor survival either by itself or via its associated
factors (70,136).
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Not all patients with HPV-related disease do uniformly well.
Patients with a long smoking history and HPV-positive tumors
have an intermediate risk correlating with pack years (137).
Results from trial ECOG 1308, in which patients with HPV-
positive disease received induction chemotherapy followed by
low-dose primary radiation, showed that those with at least a
10-pack-per-year smoking history saw a drop in 2-year
progression-free survival from 80% to 57% (138). This further

supports the idea that tobacco augments lethality risk in HPV-
positive HNSCC patients.

Defining HPV tumor status is of great clinical importance,
given that OS and responsiveness to treatment may vary greatly
between the two distinct subtypes of disease. Of interest, de-
spite our current understanding of oropharyngeal disease and
viral oncogenesis, the implication and clinical significance of
HPV-positive tumors in other nonoropharyngeal head and neck
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Figure 3. Differential immune-metabolic landscape in the human papillomavirus (HPV)-positive and HPV-negative head and neck squamous cell carcinoma tumors.

HPV-positive and negative tumors demonstrate varied spatial organization of the enzymes involved in aerobic glycolysis and oxidative phosphorylation (OXPHOS).

The immune phenotype in these two types of tumors also vary grossly. HPV-positive tumors: HPV-positive tumors have enhanced expression of Glucose Transporter 1

(GLUT1) and Cytochrome c Oxidase subunit 5B (COX5B) in the tumor core (red zone), resulting in enhanced mitochondrial OXPHOS in the tumor nest compared with

the tumor periphery (blue zone) wherein aerobic glycolysis is more pronounced. This is speculated to propel most of the helper Cluster of Differentiation 4 (CD4)þ and

cytotoxic CD8þ T cells towards the tumor interior, resulting in better anti-tumor immune infiltration. HPV-negative tumors: HPV-negative tumors demonstrate higher

expression of mitochondrial respiration markers GLUT1 and COX5B in the tumor periphery than that in the tumor core. Thus, HPV-negative tumor interiors undergo

more prominent aerobic glycolysis with enhanced deposition of lactate. Higher levels of lactate are implicated in immune suppression. This may partially elucidate

the rationale behind lesser anti-tumor CD4þ and CD8þ T cells but pronounced suppressive regulatory (Forkhead Box P3þ Regulatory T cells [FoxP3þTregs], T-helper cell

17 [Th17]) cells in the HPV-negative tumors.
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subsites (ie, oral cavity, larynx, hypopharynx, and sinonasal
cavity) remains unclear (139). Though the overall prognosis is
improved compared with tobacco-related oropharyngeal malig-
nancies, patients with small localized HPV-positive tumors of
the tonsil or base of tongue are more likely to have metastatic
nodal disease at presentation. There are data to suggest that at
least a portion of the survival advantage afforded to patients
with HPV-positive disease may be due to demographic factors.
Patients with HPV-related disease also tend to be younger and
more affluent with fewer medical comorbidities and better ac-
cess to health care. This OS benefit in HPV-positive disease
might be partly due to the decreased risk of developing second
primary malignancy (140). These tumors not only show in-
creased radiosensitivity (which can be predicted based on
responses to induction CT), but in cases of locoregional treat-
ment failure, these patients also demonstrate improved out-
comes following salvage surgery (141). Although current
treatment regimens do not take into consideration the HPV tu-
mor status and racial disparity concurrently, several clinical tri-
als are conducted to de-escalate overall RT doses or
compliment with other systemic or targeted therapy to decrease
patient morbidity without compromising anti-oncologic effi-
cacy. The current therapy regimen and its association with dis-
parity in the outcome of HNSCC patient has been discussed
further in the Supplementary Material, available online.

Population-based studies imply the higher propensity of HPV
infection in whites, and owing to viral infection, HPV-positive
and -negative patients have marked differences in their somatic,
immunologic, and metabolic status. Although accumulating evi-
dence supports SES and sexual lifestyle preference as the primary
determinant of differential HPV infection and overall prognosis of
AA and white patients, it is worth mentioning that the inherent
somatic variations and the HPV-driven intratumoral immune-
metabolic phenotype of these races are not exclusive phenome-
non but interdependent crucial contributors in the disparity.
Taking this into consideration, prodigious research is required to
stratify the AA and white patient populations on the basis of their
HPV status, somatic mutational load, and immune-metabolic
characteristics. Further, systematic identification of predisposi-
tion and prognostic markers in these two racial groups should be
conducted using a global “omics” approach, followed by further
validation using tumor samples and cell lines derived from these
races. Using such an approach in combination with the associa-
tion studies holds promise to solve the enigma behind racial dis-
parity in HNSCC patient outcomes and is projected to pave ways
for novel, precision-based therapeutic modalities.
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