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Intelligence is highly heritable1 and a major determinant of human health and well-being2. 

Recent genome-wide meta-analyses have identified 24 genomic loci linked to variation in 

intelligence3–7, but much about its genetic underpinnings remains to be discovered. Here, we 

present the largest genetic association study of intelligence to date (N=269,867), identifying 

205 associated genomic loci (190 novel) and 1,016 genes (939 novel) via positional 

mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction 

mapping, and gene-based association analysis. We find enrichment of genetic effects in 

conserved and coding regions and associations with 146 nonsynonymous exonic variants. 

Associated genes are strongly expressed in the brain, specifically in striatal medium spiny 

neurons and hippocampal pyramidal neurons. Gene-set analyses implicate pathways related 

to nervous system development and synaptic structure. We confirm previous strong genetic 

correlations with multiple health-related outcomes, and Mendelian randomization results 

suggest protective effects of intelligence for Alzheimer’s disease and ADHD, and 

bidirectional causation with pleiotropic effects for schizophrenia. These results are a major 

step forward in understanding the neurobiology of cognitive function as well as genetically 

related neurological and psychiatric disorders.

We performed a genome-wide association (GWAS) meta-analysis of 14 independent 

epidemiological cohorts of European ancestry and 9,295,118 genetic variants passing quality 
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control (Table 1; Supplementary Table 1; Supplementary Figure 1). A flowchart of the study 

methodology is presented in Supplementary Figure 2 and additional details of the methods 

and results are presented in the Supplementary Note.

Intelligence was assessed using various neurocognitive tests, primarily gauging fluid 

domains of cognitive functioning (Supplementary Information 1.1–1.2). Despite variation in 

form and content, cognitive test scores display a positive manifold of correlations, a robust 

empirical phenomenon that is observed in multiple populations8. Statistically, the variance 

common across cognitive tasks can be modeled as a latent factor denoted as g (the general 

factor of intelligence)9,10. In addition, twin- and family studies show strong genetic 

correlations across diverse cognitive domains11, suggesting pleiotropy, and across levels of 

ability11, substantiating the view of general intelligence as an aetiological continuum (with 

rare syndromic forms of severe intellectual disability being the exception12). Additionally, g-

factors extracted from different sets of cognitive tests correlate very strongly (>.9813,14), 

supporting the universality of g15,16. In meta-analyzing cognitive scores obtained using a 

variety of tests, we aim to boost the statistical power to detect genetic variants underlying g, 

which are likely to have pleiotropic effects across multiple domains of cognitive functioning.

Despite sample and methodological variations, genetic correlations (rg) between cohorts 

were considerable (mean=0.67), and there was no evidence of heterogeneity between 

cohorts in the single nucleotide polymorphism (SNP) associations (Supplementary Table 2; 

Supplementary Results 2.1). Age-stratified meta-analyses indicated high genetic correlations 

(rg>0.62), and comparable heritability across age, as captured by the SNPs included in the 

analysis (h2
SNP=0.19–0.22) (Supplementary Table 3; Supplementary Results 2.2). The full 

sample h2
SNP was 0.19 (SE=0.01), in line with previous findings4,5, and an LD score 

intercept17 of 1.08 (SE=0.02) indicated that most of the inflation (λGC=1.92) could be 

explained by polygenic signal6 (Supplementary Table 4; Supplementary Figure 3).

In the meta-analysis, 12,110 variants indexed by 242 lead SNPs in approximate linkage 

equilibrium (r2<0.1) reached genome-wide significance (GWS; P<5×10−8) (Figure 1a; 

Supplementary Tables 5–7; Supplementary Figures 4–5). These were located in 205 distinct 

genomic loci (Supplementary Results 2.3.1). We tested for replication using the proxy 

phenotype of educational attainment, which is correlated phenotypically (r=~0.40)18 and 

genetically (r=~0.70)19 with intelligence. We confirmed this high genetic correlation 

(rg=0.73) and observed sign concordance with educational attainment for 93% of GWS 

SNPs (P<1×10−300), with replication for 48 loci (Supplementary Results 2.3.2; 

Supplementary Table 8). Using polygenic score prediction20,21, the current results explain 

up to 5.2% of the variance in intelligence in four independent samples (Supplementary Table 

9, Supplementary Results 2.3.3).

We observed enrichment for heritability of SNPs in conserved regions (P=2.01×10−12), 

coding regions (P=1.67×10−6), and H3K9ac histone regions/peaks (P<6.26×10−5), and 

among common (minor allele frequency > 0.3) variants (Figure 1b; Supplementary Results 

2.3.4; Supplementary Table 10; Supplementary Figures 6–7). Conserved and regulatory 

regions have previously been implicated in cognitive functioning22 but coding regions have 

not.
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Functional annotation of all candidate SNPs in the associated loci (SNPs with an r2≧0.6 with 

one of the independent significant SNPs, a suggestive P-value (P<1×10−5) and a 

MAF>0.0001; n=21,368) showed that these were mostly intronic/intergenic (Supplementary 

Table 6; Figure 1), yet 146 (81 GWS) SNPs were exonic non-synonymous (ExNS) 

(Supplementary Table 11, Supplementary Results 2.3.5). Convergent evidence of strong 

association (Z=9.49) and the highest observed probability of a deleterious protein effect 

(CADD23 score=34) was found for rs13107325. This missense mutation (MAF=0.065, 

P=2.23×10−21) in SLC39A8 was the lead SNP in locus 71 and the ancestral allele C was 

associated with higher scores on intelligence measures. The effect sizes for ExNS were 

individually small, with each effect allele accounting for a difference of 0.01 to 0.08 

standard deviations. Supplementary Tables 6 and 11 and Supplementary Results 2.3.5 

present a detailed catalog of variants in the associated genomic loci.

To link the associated variants to genes, we applied three gene-mapping strategies 

implemented in FUMA24. Positional gene-mapping aligned SNPs to 522 genes by genomic 

location, eQTL (expression quantitative trait loci) gene-mapping matched cis-eQTL SNPs to 

684 genes whose expression levels they influence, and chromatin interaction mapping 

annotated SNPs to 227 genes based on three-dimensional DNA-DNA interactions (Figure 2; 

Supplementary Results 2.3.6; Supplementary Figures 8–9; Supplementary Tables 12–14). 

This resulted in 859 unique mapped genes, 435 of which were implicated by at least two 

mapping strategies and 139 by all three (Figure 3). Although not all of these genes are 

certain to have a role in intelligence, they point to potential functional links for the GWAS 

associated variants and give higher credibility to genes with convergent evidence of 

association from multiple sources. The FUMA-mapped genes were enriched for brain tissue 

expression and several regulatory biological gene-sets (Supplementary Results 2.3.6). 

Fifteen genes are particularly notable as they are implicated via chromatin interactions 

between two independent genomic risk loci (Figure 2; Supplementary Results 2.3.6). Cross-

locus interactions implicated ELAVL2, PTCH1, ATF4, FBXL17, and MAN2A1 in left 

ventricle of the heart tissue, SATB2 in liver tissue, and MEF2C in 5 tissues. Multiple 

interactions in multiple tissue types were seen for a cluster of 8 genes on chromosome 6 

encoding zinc finger proteins and histones.

We performed genome-wide gene-based association analysis (GWGAS) using MAGMA25 

to estimate aggregate associations based on all SNPs in a gene (whereas FUMA annotates 

individually significant SNPs to genes). GWGAS identified 507 associated genes (Figure 3a; 

Supplementary Results 2.4.1; Supplementary Table 15), of which 350 were also mapped by 

FUMA (Figure 3b). In total, 105 genes were implicated by all four strategies 

(Supplementary Table 16).

In gene-set analysis, six Gene Ontology26 gene-sets were significantly associated with 

intelligence: neurogenesis (P=4.78×10−7), neuron differentiation (P=4.82×10−6), central 
nervous system neuron differentiation (P=3.31×10−6), regulation of nervous system 
development (P=9.30×10−7), positive regulation of nervous system development 
(P=1.00×10−6), and regulation of synapse structure or activity (P=5.42×10−6) 

(Supplementary Results 2.4.2; Supplementary Tables 17–18). Conditional analysis indicated 

that there were three independent associations, regulation of nervous system development, 

Savage et al. Page 3

Nat Genet. Author manuscript; available in PMC 2019 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



central nervous system neuron differentiation, and regulation of synapse structure or activity, 

which together accounted for the associations of the other sets.

Linking gene-based P-values to tissue-specific gene-sets, we observed strong associations 

with gene expression across multiple brain areas (Figure 3c; Supplementary Results 2.4.2; 

Supplementary Table 19), particularly the frontal cortex (P=3.10×10−9). In brain single-cell 

expression gene-set analyses, we found significant associations of striatal medium spiny 

neurons (P=2.02×10−14) and pyramidal neurons in the CA1 hippocampal (P=5.67×10−11) 

and cortical somatosensory regions (P=2.72×10−9) (Figure 3d; Supplementary Results 2.4.2; 

Supplementary Table 20). Conditional analysis showed that the independent association 

signal in brain cells was driven by medium spiny neurons, neuroblasts, and pyramidal CA1 

neurons.

Intelligence has been associated with a wide variety of human behaviors15 and brain 

anatomy27. Confirming previous reports5,6, we observed negative genetic correlations with 

ADHD (rg=−0.36, P=4.58×10−23), depressive symptoms (rg=−0.27, P=6.20×10−10), 

Alzheimer’s disease (rg=−0.27, P=2.03×10−5), and schizophrenia (rg=−0.21, P=3.82×10−17), 

and positive correlations with longevity (rg=0.43, P=7.96×10−8) and autism (rg=0.25, 

P=3.14×10−7), among others (Supplementary Table 21; Supplementary Figure 10). 

Comparison with previous GWAS28 supported these correlations, showing numerous shared 

genetic variants across phenotypes (Supplementary Results 2.5; Supplementary Tables 22–

23). Low enrichment (87 of 1,518 genes, P=0.05) was found for genes previously linked to 

intellectual disability or developmental delay, indicating largely distinct biological 

processes. However, our results extend previous genetic research on normal variation in 

general intelligence, as catalogued in Supplementary Tables 24–25.

We used Generalized Summary-statistic-based Mendelian Randomization29 to test for 

potential credible causal associations between intelligence and genetically correlated traits 

(Supplementary Results 2.5.3; Supplementary Figures 11–12; Supplementary Table 26). We 

observed a strong bidirectional effect of cognitive ability on educational attainment 

(bxy=0.549, P<1×10−320) and of educational attainment on intelligence (byx=0.480, 

P=6.85×10−82). Such findings are consistent with previous studies implicating bidirectional 

causal effects30,31. There was also a bidirectional association showing a strong protective 

effect of intelligence on schizophrenia (OR=0.50, bxy=−0.685, P=2.02×10−57) and a 

relatively smaller reverse effect (byx= −0.214, P=4.19×10−52), with additional evidence for 

pleiotropy (Supplementary Results 2.5.3). A number of previous reports support both a 

causal link and genetic overlap between these phenotypes32,33. Our results also suggested 

that higher intelligence had a protective effect on ADHD (OR=0.48, bxy=−0.734, 

P=2.57×10−46) and Alzheimer’s disease (OR=0.65, bxy=−0.435, P=3.59×10−14), but was 

associated with higher risk of autism (OR=1.38, bxy=0.321, P=1.12×10−3).

In the present study, we have affirmed and expanded existing knowledge of the genetics of 

general intelligence, identifying 190 novel loci and 939 novel associated genes and 

replicating previous associations with 15 loci and 77 genes. The combined strategies of 

functional annotation and gene-mapping using biological data resources provide extensive 

information on the likely consequences of relevant genetic variants and put forward a rich 
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set of plausible gene targets and biological mechanisms for functional follow-up. Gene-set 

analyses contribute novel insight into underlying neurobiological pathways, confirming the 

importance of brain-expressed genes and neurodevelopmental processes in fluid domains of 

intelligence and pointing towards the involvement of specific cell types. Our results indicate 

overlap in the genetic processes involved in both cognitive functioning and neurological and 

psychiatric traits and provide suggestive evidence of causal associations that may drive these 

correlations. These results are important for understanding the biological underpinnings of 

cognitive functioning and contribute to our understanding of related neurological and 

psychiatric disorders.

Online Methods

Study Cohorts

The meta-analysis included new and previously reported GWAS summary statistics from 14 

cohorts: UK Biobank (UKB), Cognitive Genomics Consortium (COGENT), Rotterdam 

Study (RS), Generation R Study (GENR), Swedish Twin Registry (STR), Spit for Science 

(S4S), High-IQ/Health and Retirement Study (HiQ/HRS), Twins Early Development Study 

(TEDS), Danish Twin Registry (DTR), IMAGEN, Brisbane Longitudinal Twin Study 

(BLTS), Netherlands Study of Cognition, Environment and Genes (NESCOG), Genes for 

Good (GfG), and the Swedish Twin Studies of Aging (STSA). All samples were obtained 

from epidemiological cohorts ascertained for research on a variety of physical and 

psychological outcomes. Participants ranged from children to older adults, with older 

samples being screened for cognitive decline to exclude the possibility of dementia affecting 

performance on cognitive tests.

Different measures of intelligence were assessed in each cohort but were all operationalized 

to index a common latent g factor underlying multiple dimensions of cognitive functioning. 

With the exception of HiQ/HRS, all cohorts extracted a single sum score, mean score, or 

factor score from a multidimensional set of cognitive performance tests and used this 

normally-distributed score as the phenotype in a covariate-adjusted (e.g. age, sex, ancestry 

principal components) GWAS using linear regression methods. For HiQ/HRS, a logistic 

regression GWAS was run with “case” status reflecting whether participants were drawn 

from an extreme-sampled population of very high intelligence (i.e. at the upper ~0.03% of 

the tail of the normal distribution) versus an epidemiological sample of unselected 

population “controls”. Detailed descriptions of the samples, measures, genotyping, quality 

control, and analysis procedures for each cohort are provided in the Supplementary Note 

(Supplementary Information 1.1–1.2), Supplementary Table 1, and in the Life Sciences 
Reporting Summary.

Meta-analysis

Stringent quality control measures were applied to the summary statistics for each GWAS 

cohort before combining. All files were checked for data integrity and accuracy. SNPs were 

filtered from further analysis if they met any of the following criteria: imputation quality 

(INFO/R2) score < 0.6, Hardy-Weinberg equilibrium (HWE) P < 5×10−6, study-specific 

minor allele frequency (MAF) corresponding to a minor allele count (MAC) < 100, and 
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mismatch of alleles or allele frequency difference greater than 20% from the Haplotype 

Reference Consortium (HRC) genome reference panel16. Some cohorts used more stringent 

criteria (see Supplementary Information 1.1). Indels and SNPs that were duplicated, multi-

allelic, monomorphic, or ambiguous (A/T or C/G with a MAF >0.4) were also excluded. 

Visual inspection of the distribution of the summary statistics was completed, and 

Manhattan plots and QQ plots were created for the cleaned summary statistics from each 

cohort (Supplementary Figure 1).

The SNP association P-values from the GWAS cohorts were meta-analyzed with METAL34 

(see URLs) in two phases. First, we meta-analyzed all cohorts with quantitative phenotypes 

(all except HiQ/HRS) using a sample-size weighted scheme. In the second phase, we added 

the HiQ/HRS study results to the first phase results, weighting each set of summary statistics 

by their respective non-centrality parameter (NCP). This method improves power when 

using an extreme case sampling design such as HiQ35 and provides a comparable metric 

with which to combine information from different analytic designs while accounting for 

their differences in power/effective sample size. NCPs were estimated using the Genetic 

Power Calculator36, as described by Coleman et al.37. After combining all data, meta-

analysis results were further filtered to exclude any variants with N < 50,000. We 

additionally included a random-effects meta-analysis for each phase, as implemented in 

METAL, to evaluate potential heterogeneity in the SNP association statistics between 

cohorts.

The X chromosome was treated separately in the meta-analysis because imputed genotypes 

were not available for the X chromosome in the largest cohort (UKB), and there was little 

overlap between the UKB called genotypes and imputed data from other cohorts (NSNPs < 

500). We therefore included only the called X chromosome variants in UKB for these 

analyses after performing X-specific quality control steps38.

We conducted a series of meta-analyses on subsets of the full sample using the same 

methods as above. Age group-specific meta-analyses were run in the cohorts of children 

(age < 17; GENR, TEDS, IMAGEN, BLTS; N=9,814), young adults (age ~17–18; S4S, 

STR; N=6,033), adults (age > 18, primarily middle-aged or older: UKB, RS, DTR, 

NESCOG, STSA; N=204,228), and older adults (mean age > 60, RS, DTR, STSA; 

URLs:
UK Biobank website: http://ukbiobank.ac.uk
UK Biobank genotyping: http://www.biorxiv.org/content/early/2017/07/20/166298
Health and Retirement study: http://hrsonline.isr.umich.edu
Genes for Good study: http://genesforgood.org
International Cognitive Ability Resource measure (Genes for Good): https://icar-project.com/
Functional Mapping and Annotation (FUMA) software: http://fuma.ctglab.nl
Multi-marker Analysis of GenoMic Annotation (MAGMA) software: http://ctg.cncr.nl/software/magma
METAL software: http://genome.sph.umich.edu/wiki/METAL_Program
LD Score Regression software: https://github.com/bulik/ldsc
LD Hub (GWAS summary statistics): http://ldsc.broadinstitute.org/
LD scores: https://data.broadinstitute.org/alkesgroup/LDSCORE/
GeneCards: http://www.genecards.org
Psychiatric Genomics Consortium (GWAS summary statistics): http://www.med.unc.edu/pgc/results-and-downloads
MSigDB curated gene-set database: http://software.broadinstitute.org/gsea/msigdb/collections.jsp
NHGRI GWAS catalog: https://www.ebi.ac.uk/gwas/
RegionAnnotator: https://github.com/ivankosmos/RegionAnnotator
Generalized Summary-data-based Mendelian Randomization software: http://cnsgenomics.com/software/gsmr/
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N=8,323), excluding studies whose samples overlapped child/young adult and adult groups 

(COGENT, HiQ/HRS, GfG; N=49,792). To create independent discovery samples for use in 

polygenic score validation, we also conducted meta-analyses with a “leave-one-out” strategy 

in which summary statistics from four validation datasets were, respectively, excluded from 

the meta-analysis (see Polygenic Scoring, below).

Cohort Heritability and Genetic Correlation

LD score regression17 was used to estimate genomic inflation and heritability of the 

intelligence phenotypes in each of the 14 cohorts using their post-quality control summary 

statistics, and to estimate the cross-cohort genetic correlations39. Pre-calculated LD scores 

from the 1000 Genomes European reference population were obtained online (see URLs). 

Genetic correlations were calculated on HapMap3 SNPs only. LD score regression was also 

used on the age subgroup meta-analyses to estimate heritability and cross-age genetic 

correlations.

Genomic Risk Loci Definition

Independently associated loci from the meta-analysis were defined using FUMA24 (see 

URLs), an online platform for functional mapping of genetic variants. We first identified 

independent significant SNPs which had a Bonferroni-corrected genome-wide significant 

two-tailed P-value (P<5×10−8) and represented signals that were independent from each 

other at r2<0.6. These SNPs were further represented by lead SNPs, which are a subset of 

the independent significant SNPs that are in approximate linkage equilibrium with each 

other at r2<0.1. We then defined associated genomic loci by merging any physically 

overlapping lead SNPs (linkage disequilibrium [LD] blocks <250kb apart). Borders of the 

associated genomic loci were defined by identifying all SNPs in LD (r2≧0.6) with one of the 

independent significant SNPs in the locus, and the region containing all of these candidate 
SNPs was considered to be a single independent genomic locus. All LD information was 

calculated from UK Biobank genotype data.

Proxy-replication with Educational Attainment

We conducted GWAS of educational attainment, an outcome with a high genetic correlation 

with intelligence5, in a non-overlapping European subset of the UKB sample (N=188,435) 

who did not complete the intelligence measure. Educational attainment was coded as 

maximum years of education completed, using the same methods as earlier analyses40 and 

GWAS was conducted using the same quality control and analytic procedures as described 

for the UKB intelligence phenotype (Supplementary Information 1.1.1). To test replication 

of the SNPs with this proxy phenotype, we performed a sign concordance test for all GWS 

SNPs from the meta-analysis using the two-tailed exact binomial test. For each independent 

genomic locus, we considered it to be evidence for replication if the lead SNP or another 

correlated SNP in the region was sign concordant with the corresponding SNP in the 

intelligence meta-analysis and had a two-tailed P-value of association with educational 

attainment smaller than 0.05/242 independent tests=0.0002.
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Polygenic Scoring

We calculated polygenic scores (PGS) based on the SNP effect sizes of the leave-one-out 

meta-analyses, from which four cohorts were (separately) excluded and reserved for score 

validation. These included a child (GENR), young adult (S4S), and adult sample (RS). We 

also included the UKB-wb sample to test for validation in a very large (N = 53,576) cohort 

with the greatest phenotypic similarity to the largest contributor to the meta-analysis 

statistics (UKB-ts), in order to maximize potential predictive power. PGS were calculated on 

the genotype data using LDpred21, a Bayesian PGS method that utilizes a prior on effect size 

distribution to remodel the SNP effect size and account for LD, and PRSice20, a PLINK41-

based program that automates optimization of the set of SNPs included in the PGS based on 

a high-resolution filtering of the GWAS P-value threshold. LDpred PGS were applied to the 

called, cleaned, genotyped variants in each of the validation cohorts with UK Biobank as the 

LD reference panel. PRSice PGS were calculated on hard-called imputed genotypes using P-
value thresholds from 0.0 to 0.5 in steps of 0.001. The explained variance (ΔR2) was derived 

from a linear model in which the GWAS intelligence phenotype was regressed on each PGS 

while controlling for the same covariates as in each cohort-specific GWAS, compared to a 

linear model with GWAS covariates only.

Stratified Heritability

We partitioned SNP heritability using stratified LD Score regression42 in three ways: 1) by 

functional annotation category, 2) by minor allele frequency (MAF) in six percentile bins, 

and 3) by chromosome. Annotations for 28 binary categories of putative functional genomic 

characteristics (e.g. coding or regulatory regions) were obtained from the LD score website 

(see URLs). With this method, enrichment/depletion of heritability in each category is 

calculated as the proportion of heritability attributable to SNPs in the specified category 

divided by the proportion of total SNPs annotated to that category. The Bonferroni-corrected 

significance threshold was .05/56 annotations=.0009.

Functional Annotation of SNPs

Functional annotation of SNPs implicated in the meta-analysis was performed using 

FUMA24 (see URLs). We selected all candidate SNPs in associated genomic loci having an 

r2≧0.6 with one of the independent significant SNPs (see above), a suggestive P-value 

(P<1e-5) and a MAF>0.0001 for annotations. Predicted functional consequences for these 

SNPs were obtained by matching SNPs’ chromosome, base-pair position, and reference and 

alternate alleles to databases containing known functional annotations, including 

ANNOVAR43 categories, Combined Annotation Dependent Depletion (CADD) scores23, 

RegulomeDB44 (RDB) scores, and chromatin states45,46. ANNOVAR categories identify the 

SNP’s genic position (e.g. intron, exon, intergenic) and associated function. CADD scores 

predict how deleterious the effect of a SNP is likely to be for a protein structure/function, 

with higher scores referring to higher deleteriousness. A CADD score above 12.37 is the 

threshold to be potentially pathogenic23. The RegulomeDB score is a categorical score based 

on information from expression quantitative trait loci (eQTLs) and chromatin marks, ranging 

from 1a to 7 with lower scores indicating an increased likelihood of having a regulatory 

function. Scores are as follows: 1a=eQTL + Transcription Factor (TF) binding + matched TF 
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motif + matched DNase Footprint + DNase peak; 1b=eQTL + TF binding + any motif + 

DNase Footprint + DNase peak; 1c=eQTL + TF binding + matched TF motif + DNase peak; 

1d=eQTL + TF binding + any motif + DNase peak; 1e=eQTL + TF binding + matched TF 

motif; 1f=eQTL + TF binding / DNase peak; 2a=TF binding + matched TF motif + matched 

DNase Footprint + DNase peak; 2b=TF binding + any motif + DNase Footprint + DNase 

peak; 2c=TF binding + matched TF motif + DNase peak; 3a=TF binding + any motif + 

DNase peak; 3b=TF binding + matched TF motif; 4=TF binding + DNase peak; 5=TF 

binding or DNase peak; 6=other; 7=Not available. The chromatin state represents the 

accessibility of genomic regions (every 200bp) with 15 categorical states predicted by a 

hidden Markov model based on 5 chromatin marks for 127 epigenomes in the Roadmap 

Epigenomics Project46. A lower state indicates higher accessibility, with states 1–7 referring 

to open chromatin states. We annotated the minimum chromatin state across tissues to SNPs. 

The 15-core chromatin states as suggested by Roadmap are as follows: 1=Active 

Transcription Start Site (TSS); 2=Flanking Active TSS; 3=Transcription at gene 5’ and 3’; 

4=Strong transcription; 5= Weak Transcription; 6=Genic enhancers; 7=Enhancers; 8=Zinc 

finger genes & repeats; 9=Heterochromatic; 10=Bivalent/Poised TSS; 11=Flanking Bivalent/

Poised TSS/Enhancer; 12=Bivalent Enhancer; 13=Repressed PolyComb; 14=Weak 

Repressed PolyComb; 15=Quiescent/Low. Standardized SNP effect sizes were calculated for 

the most impactful SNPs by transforming the sample size-weighted meta-analysis Z score, 

as described by Zhu et al.47.

Gene-mapping

Genome-wide significant loci obtained by the GWAS meta-analysis were mapped to genes 

in FUMA24 using three strategies:

1. Positional mapping maps SNPs to genes based on physical distance (within a 

10kb window) from known protein coding genes in the human reference 

assembly (GRCh37/hg19).

2. eQTL mapping maps SNPs to genes with which they show a significant eQTL 

association (i.e. allelic variation at the SNP is associated with the expression 

level of that gene). eQTL mapping uses information from 45 tissue types in 3 

data repositories (GTEx48, Blood eQTL browser49, BIOS QTL browser50), and 

is based on cis-eQTLs which can map SNPs to genes up to 1Mb apart. We used a 

false discovery rate (FDR) of 0.05 to define significant eQTL associations.

3. Chromatin interaction mapping was performed to map SNPs to genes when there 

is a three-dimensional DNA-DNA interaction between the SNP region and a 

gene region. Chromatin interaction mapping can involve long-range interactions 

as it does not have a distance boundary. FUMA currently contains Hi-C data of 

14 tissue types from the study of Schmitt et al51. Since chromatin interactions are 

often defined in a certain resolution, such as 40kb, an interacting region can span 

multiple genes. If a SNPs is located in a region that interacts with a region 

containing multiple genes, it will be mapped to each of those genes. To further 

prioritize candidate genes, we selected only interaction-mapped genes in which 

one region involved in the interaction overlaps with a predicted enhancer region 

in any of the 111 tissue/cell types from the Roadmap Epigenomics Project46 and 
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the other region is located in a gene promoter region (250bp up and 500bp 

downstream of the transcription start site and also predicted by Roadmap to be a 

promoter region). This reduces the number of genes mapped but increases the 

likelihood that those identified will have a plausible biological function. We used 

a FDR of 1×10−5 to define significant interactions, based on previous 

recommendations51 modified to account for the differences in cell lines used 

here.

Functional annotation of mapped genes

Genes implicated by mapping of significant GWAS SNPs were further investigated using the 

GENE2FUNC procedure in FUMA24, which provides hypergeometric tests of enrichment of 

the list of mapped genes in 53 GTEx48 tissue-specific gene expression sets, 7,246 MSigDB 

gene-sets52, and 2,195 GWAS catalog gene-sets28. The Bonferroni-corrected significance 

threshold was 0.05/9,494 gene-sets=5.27×10-6.

Gene-based analysis

SNP-based P-values from the meta-analysis were used as input for the gene-based genome-

wide association analysis (GWGAS). 18,128 protein-coding genes (each containing at least 

1 GWAS SNP) from the NCBI 37.3 gene definitions were used as basis for GWGAS in 

MAGMA25 (see URLs). The Bonferroni-corrected genome-wide significance threshold 

was .05/18,128 genes=2.76×10-6.

Gene-set analysis

Results from the GWGAS analyses were used to test for association in three types of 

predefined gene-sets:

1. 7,246 curated gene-sets representing known biological and metabolic pathways 

were derived from 9 data resources, catalogued by and obtained from the 

MsigDB version 5.229 (see URLs)

2. gene expression values from 53 tissues obtained from GTEx48, log2 transformed 

with pseudocount 1 after winsorization at 50 and averaged per tissue

3. cell-type specific gene expression in 24 types of brain cells, which were 

calculated following the method described in Skene et al.53 and Coleman et al.37 

Briefly, brain cell-type expression data was drawn from single-cell RNA 

sequencing data from mouse brains. For each gene, the value for each cell-type 

was calculated by dividing the mean Unique Molecular Identifier (UMI) counts 

for the given cell type by the summed mean UMI counts across all cell types. 

Single-cell gene-sets were derived by grouping genes into 40 equal bins by 

specificity of expression.

These gene-sets were tested for association with the GWGAS gene-based test statistics using 

MAGMA. We computed competitive P-values, which represent the test of association for a 

specific gene-set compared to other gene-sets. This method is more robust to Type I error 

than self-contained tests that only test for association of a gene-set against the null 

hypothesis of no association25. The Bonferroni-corrected significance threshold was 
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0.05/7,323 gene-sets=6.83×10-6. Conditional analyses were performed as a follow-up using 

MAGMA to test whether each significant association observed was independent of all 

others. The association between each gene-set was tested conditional on the most strongly 

associated set, and then - if any substantial (p<.05/number of gene-sets) associations 

remained - by conditioning on the first and second most strongly associated set, and so on 

until no associations remained. Gene-sets that retained their association after correcting for 

other sets were considered to be independent signals. We note that this is not a test of 

association per se, but rather a strategy to identify, among gene-sets with known significant 

associations whose defining genes may overlap, which set(s) are responsible for driving the 

observed association.

Cross-Trait Genetic Correlation

Genetic correlations (rg) between intelligence and 38 phenotypes were computed using LD 

score regression39, as described above, based on GWAS summary statistics obtained from 

publicly available databases (see URLs; Supplementary Table 18). The Bonferroni-corrected 

significance threshold was 0.05/38 traits=1.32×10-3.

GWAS catalog lookup

We used FUMA to identify SNPs with previously reported (P < 5×10−5) phenotypic 

associations in published GWAS listed in the NHGRI-EBI catalog28 which overlapped with 

the genomic risk loci identified in the meta-analysis. As an additional relevant phenotype of 

interest, we examined whether the genes associated with intelligence in this study (by 

FUMA mapping or GWGAS) were overrepresented in a set of 1,518 genes linked to 

intellectual disability and/or developmental delay, as compiled by RegionAnnotater (see 

URLs). Many of these have been identified by non-GWAS sources and are not represented 

in the NHGRI catalog. We tested for enrichment using a hypergeometric test with a 

background set of 19,283 genomic protein-coding genes, as in FUMA. Manual lookups were 

also performed to identify overlapping loci/genes with known previous GWAS of 

intelligence.

Mendelian Randomization

To infer credible causal associations between intelligence and traits that are genetically 

correlated with intelligence, we performed Generalized Summary-data based Mendelian 

Randomization29 (GSMR; see URLs). This method utilizes summary-level data to test for 

causal associations between a putative risk factor (exposure) and an outcome by using 

independent genome-wide significant SNPs as instrumental variables. HEIDI-outlier 

detection was used to filter genetic instruments that show clear pleiotropic effects on both 

the exposure phenotype and the outcome phenotype. We used a threshold p-value of 0.01 for 

the outlier detection analysis in HEIDI which removes 1% of SNPs by chance if there is no 

pleiotropic effect. To test for a potential causal effect of intelligence on various outcomes, 

we selected traits in non-overlapping samples that showed significant genetic correlations 

(rg) with intelligence. We tested for bi-directional causation by repeating the analyses while 

switching the role of each correlated phenotype as an exposure and intelligence as the 

outcome. For each trait, we selected independent (r2=<0.1), GWS lead SNPs as instrumental 

variables in the analyses. For traits with less than 10 GWS lead SNPs (i.e. the minimum 
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number of SNPs on which GSMR can perform a reliable analysis), the GWS threshold was 

lowered to 1×10−5, allowing a sufficient number of SNPs to conduct the reverse GSMR 

analysis for former smoker status, autism, and intracranial volume.

The method estimates a putative causal effect of the exposure on the outcome (bxy) as a 

function of the relationship between the SNPs’ effects on the exposure (bzx) and the SNPs’ 

effects on the outcome (bzy), given the assumption that the effect of non-pleiotropic SNPs on 

an exposure (x) should be related to their effect on the outcome (y) in an independent sample 

only via mediation through the phenotypic causal pathway (bxy). The estimated causal effect 

coefficients (bxy) are approximately equal to the natural log odds ratio (OR) for a case-

control trait29. An OR of 2 can be interpreted as a doubled risk compared to the population 

prevalence of a binary trait for every SD increase in the exposure trait. For quantitative traits 

the bxy can be interpreted as a one standard deviation increase explained in the outcome trait 

for every SD increase in the exposure trait. This method can help differentiate the likely 

causal direction of association between two traits but cannot make any statement about the 

intermediate mechanisms involved in any potential causal process.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Authors 

Jeanne E Savage1,#, Philip R Jansen1,2,#, Sven Stringer1, Kyoko Watanabe1, Julien 
Bryois3, Christiaan A de Leeuw1, Mats Nagel4, Swapnil Awasthi5, Peter B Barr6, 
Jonathan R I Coleman7,8, Katrina L Grasby9, Anke R Hammerschlag1, Jakob A 
Kaminski5,10, Robert Karlsson3, Eva Krapohl7, Max Lam11, Marianne Nygaard12,13, 
Chandra A Reynolds14, Joey W Trampush15,16, Hannah Young17, Delilah Zabaneh7, 
Sara Hägg3, Narelle K Hansell18, Ida K Karlsson3, Sten Linnarsson19, Grant W 
Montgomery9,20, Ana B Muñoz-Manchado19, Erin B Quinlan21, Gunter 
Schumann21, Nathan G Skene19,22, Bradley T Webb23,24, Tonya White2, Dan E 
Arking25, Dimitrios Avramopoulos25,26, Robert M Bilder27, Panos Bitsios28, 
Katherine E Burdick29,30,31, Tyrone D Cannon32, Ornit Chiba-Falek33, Andrea 
Christoforou34, Elizabeth T Cirulli35, Eliza Congdon27, Aiden Corvin36, Gail 
Davies37,38, Ian J Deary37,38, Pamela DeRosse39,40,41, Dwight Dickinson42, Srdjan 
Djurovic43,44, Gary Donohoe45, Emily Drabant Conley46, Johan G Eriksson47,48, 
Thomas Espeseth49,50, Nelson A Freimer27, Stella Giakoumaki51, Ina Giegling52, 
Michael Gill36, David C Glahn53, Ahmad R Hariri54, Alex Hatzimanolis55,56,57, 
Matthew C Keller58, Emma Knowles53, Deborah Koltai59, Bettina Konte52, Jari 
Lahti60,61, Stephanie Le Hellard34,44, Todd Lencz39,40,41, David C Liewald38, Edythe 
London27,62, Astri J Lundervold63,64, Anil K Malhotra39,40,41, Ingrid Melle44,50, 
Derek Morris45, Anna C Need65, William Ollier66, Aarno Palotie67,68,69, Antony 
Payton70, Neil Pendleton71, Russell A Poldrack72, Katri Räikkönen73, Ivar 
Reinvang49, Panos Roussos29,30,74, Dan Rujescu52, Fred W Sabb75, Matthew A 
Scult54, Olav B Smeland76, Nikolaos Smyrnis55,56, John M Starr37,77, Vidar M 
Steen34,44, Nikos C Stefanis55,56,57, Richard E Straub78, Kjetil Sundet49,50, Henning 

Savage et al. Page 12

Nat Genet. Author manuscript; available in PMC 2019 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Tiemeier2,79, Aristotle N Voineskos80, Daniel R Weinberger78, Elisabeth Widen67, 
Jin Yu39, Goncalo Abecasis81,82, Ole A Andreassen50,76,83, Gerome Breen7,8, Lene 
Christiansen12,13, Birgit Debrabant13, Danielle M Dick6,84,85, Andreas Heinz5, Jens 
Hjerling-Leffler19, M Arfan Ikram79, Kenneth S Kendler23,24,84, Nicholas G Martin9, 
Sarah E Medland9, Nancy L Pedersen3, Robert Plomin7, Tinca JC Polderman1, 
Stephan Ripke5,86,87, Sophie van der Sluis4, Patrick F Sullivan3,88, Scott I Vrieze17, 
Margaret J Wright18,89, and Danielle Posthuma1,4,*

Affiliations
1.Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive 
Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, 
The Netherlands 2.Department of Child and Adolescent Psychiatry, Erasmus 
Medical Center, Rotterdam, The Netherlands 3.Department of Medical Epidemiology 
and Biostatistics, Karolinska Institutet, Stockholm, Sweden 4.Department of Clinical 
Genetics, section Complex Trait Genetics, Neuroscience Campus Amsterdam, VU 
Medical Center, Amsterdam, the Netherlands 5.Department of Psychiatry and 
Psychotherapy, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany 
6.Department of Psychology, Virginia Commonwealth University, Richmond, VA, 
USA 7.Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, 
Psychology and Neuroscience, King’s College London, London, UK 8.NIHR 
Biomedical Research Centre for Mental Health, South London and Maudsley NHS 
Trust, London, UK 9.QIMR Berghofer Medical Research Institute, Herston, Brisbane, 
Australia 10.Berlin Institute of Health (BIH), 10178 Berlin, Germany 11.Institute of 
Mental Health, Singapore 12.The Danish Twin Registry and the Danish Aging 
Research Center, Department of Public Health, University of Southern Denmark, 
Odense, Denmark 13.Epidemiology, Biostatistics and Biodemography, Department of 
Public Health, University of Southern Denmark, Odense, Denmark 14.Department of 
Psychology, University of California Riverside, Riverside, California, USA 
15.BrainWorkup, LLC, Los Angeles, California, USA 16.Department of Psychiatry and 
the Behavioral Sciences, Keck School of Medicine, University of Southern 
California, Los Angeles, California, USA 17.Department of Psychology, University of 
Minnesota, Saint Paul, Minnesota, USA 18.Queensland Brain Institute, University of 
Queensland, Brisbane, Australia 19.Laboratory of Molecular Neurobiology, 
Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 
Stockholm, Sweden 20.Institute for Molecular Bioscience, University of Queensland, 
Brisbane, Australia 21.Centre for Population Neuroscience and Precision Medicine 
(PONS), Institute of Psychiatry, Psychology and Neuroscience, MRC-SGDP Centre, 
King’s College London, London, UK 22.UCL Institute of Neurology, Queen Square, 
London, UK 23.Virginia Institute for Psychiatric and Behavioral Genetics, Virginia 
Commonwealth University, Richmond, Virginia, USA 24.Department of Psychiatry, 
Virginia Commonwealth University, Richmond, Virginia, USA 25.McKusick-Nathans 
Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 
Baltimore, Maryland, USA 26.Department of Psychiatry, Johns Hopkins University 
School of Medicine, Baltimore, Maryland, USA 27.UCLA Semel Institute for 
Neuroscience and Human Behavior, Los Angeles, California, USA 28.Department of 

Savage et al. Page 13

Nat Genet. Author manuscript; available in PMC 2019 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Psychiatry and Behavioral Sciences, Faculty of Medicine, University of Crete, 
Heraklion, Crete, Greece 29.Department of Psychiatry, Icahn School of Medicine at 
Mount Sinai, New York, New York, USA 30.Mental Illness Research, Education, and 
Clinical Center (VISN 2), James J. Peters VA Medical Center, Bronx, New York, 
USA 31.Department of Psychiatry - Brigham and Women’s Hospital; Harvard 
Medical School; Boston MA 32.Department of Psychology, Yale University, New 
Haven, Connecticut, USA 33.Department of Neurology, Bryan Alzheimer’s Disease 
Research Center, and Center for Genomic and Computational Biology, Duke 
University Medical Center, Durham, North Carolina, USA 34.Dr. Einar Martens 
Research Group for Biological Psychiatry, Center for Medical Genetics and 
Molecular Medicine, Haukeland University Hospital, Bergen, Norway 35.Human 
Longevity Inc, Durham, North Carolina, USA 36.Neuropsychiatric Genetics Research 
Group, Department of Psychiatry and Trinity College Institute of Neuroscience, 
Trinity College Dublin, Dublin, Ireland 37.Centre for Cognitive Ageing and Cognitive 
Epidemiology, University of Edinburgh, Edinburgh, UK 38.Department of Psychology, 
University of Edinburgh, Edinburgh, UK 39.Division of Psychiatry Research, The 
Zucker Hillside Hospital, Glen Oaks, New York, USA 40.Department of Psychiatry, 
Hofstra Northwell School of Medicine, Hempstead, New York, USA 41.Center for 
Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, 
New York, USA 42.Clinical and Translational Neuroscience Branch, Intramural 
Research Program, National Institute of Mental Health, National Institute of Health, 
Bethesda, Maryland, USA 43.Department of Medical Genetics, Oslo University 
Hospital, University of Bergen, Oslo, Norway 44.NORMENT, K.G. Jebsen Centre for 
Psychosis Research, University of Bergen, Bergen, Norway 45.Neuroimaging, 
Cognition & Genomics (NICOG) Centre, School of Psychology and Discipline of 
Biochemistry, National University of Ireland, Galway, Ireland 46.23andMe, Inc., 
Mountain View, California, USA 47.Department of General Practice and Primary 
Health Care, University of Helsinki, Helsinki, Finland 48.Helsinki University Hospital, 
Helsinki, Finland 49.Department of Psychology, University of Oslo, Oslo, Norway 
50.Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway 
51.Department of Psychology, University of Crete, Greece 52.Department of 
Psychiatry, Martin Luther University of Halle-Wittenberg, Halle, Germany 
53.Department of Psychiatry, Yale University School of Medicine, New Haven, 
Connecticut, USA 54.Laboratory of NeuroGenetics, Department of Psychology & 
Neuroscience, Duke University, Durham, North Carolina, USA 55.Department of 
Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition 
Hospital, Athens, Greece 56.University Mental Health Research Institute, Athens, 
Greece 57.Neurobiology Research Institute, Theodor-Theohari Cozzika Foundation, 
Athens, Greece 58.Institute for Behavioral Genetics, University of Colorado, Boulder, 
Colorado, USA 59.Psychiatry and Behavioral Sciences, Division of Medical 
Psychology, and Department of Neurology, Duke University Medical Center, 
Durham, North Carolina, USA 60.Department of Psychology and Logopedics, 
Faculty of Medicine, University of Helsinki, Helsinki, Finland 61.Helsinki Collegium for 
Advanced Studies, University of Helsinki, Helsinki, Finland 62.Department of 

Savage et al. Page 14

Nat Genet. Author manuscript; available in PMC 2019 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Psychiatry and Biobehavioral Sciences and Department of Molecular and Medical 
Pharmacology, University of California Los Angeles, Los Angeles, Carolina, USA 
63.Department of Biological and Medical Psychology, University of Bergen, Norway 
64.K.G. Jebsen Center for Research on Neuropsychiatric Disorders, University of 
Bergen, Norway 65.Division of Brain Sciences, Department of Medicine, Imperial 
College, London, UK 66.Centre for Integrated Genomic Medical Research, Institute 
of Population Health, University of Manchester, Manchester, UK 67.Institute for 
Molecular Medicine Finland (FIMM), University of Helsinki, Finland 68.Wellcome 
Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK 
69.Massachusetts General Hospital, Center for Human Genetic Research, 
Psychiatric and Neurodevelopmental Genetics Unit, Boston, Massachusetts, USA 
70.Centre for Epidemiology, Division of Population Health, Health Services Research 
& Primary Care, The University of Manchester, Manchester, UK 71.Division of 
Neuroscience and Experimental Psychology/ School of Biological Sciences, Faculty 
of Biology Medicine and Health, University of Manchester, Manchester Academic 
Health Science Centre, Salford Royal NHS Foundation Trust, Manchester, UK 
72.Department of Psychology, Stanford University, Palo Alto, California, USA 
73.Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland 
74.Department of Genetics and Genomic Science and Institute for Multiscale 
Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA 
75.Robert and Beverly Lewis Center for Neuroimaging, University of Oregon, 
Eugene, Oregon, USA 76.NORMENT, K.G. Jebsen Centre for Psychosis Research, 
Institute of Clinical Medicine, University of Oslo and Division of Mental Health and 
Addiction, Oslo University Hospital, Oslo, Norway 77.Alzheimer Scotland Dementia 
Research Centre, University of Edinburgh, Edinburgh, UK 78.Lieber Institute for 
Brain Development, Johns Hopkins University Medical Campus, Baltimore, 
Maryland, USA 79.Department of Epidemiology, Erasmus University Medical Center, 
Rotterdam, The Netherlands 80.Campbell Family Mental Health Institute, Centre for 
Addiction and Mental Health, University of Toronto, Toronto, Canada 81.Department 
of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA 82.Center for 
Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA 83.Institute of 
Clinical Medicine, University of Oslo, Oslo, Norway 84.Department of Human and 
Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA 
85.College Behavioral and Emotional Health Institute, Virginia Commonwealth 
University, Richmond, Virginia, USA 86.Analytic and Translational Genetics Unit, 
Massachusetts General Hospital, Boston, Massachusetts, USA 87.Stanley Center for 
Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, 
Massachusetts, USA 88.Department of Genetics, University of North Carolina, 
Chapel Hill, North Carolina, USA 89.Centre for Advanced Imaging, University of 
Queensland, Brisbane, Australia

Acknowledgments

This work was funded by The Netherlands Organization for Scientific Research (NWO VICI 453–14-005 and 
NWO VIDI 452–12-014 to D.P.) and the Sophia Foundation for Scientific Research (SSWO grant S-1427 to P.R.J.). 

Savage et al. Page 15

Nat Genet. Author manuscript; available in PMC 2019 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The analyses were carried out on the Genetic Cluster Computer, which is financed by the Netherlands Scientific 
Organization (NWO: 480–05-003), Vrije Universiteit, Amsterdam, The Netherlands, and the Dutch Brain 
Foundation, and is hosted by the Dutch National Computing and Networking Services SurfSARA. Support for data 
analysis was also provided by the Swiss National Science Foundation (to J.B.). This research has been conducted 
using the UK Biobank resource under application number 16406. We thank the numerous participants, researchers, 
and staff from many studies who collected and contributed to the data. Additional acknowledgments can be found 
in the Supplementary Information file.

References

1. Polderman TJ et al. Meta-analysis of the heritability of human traits based on fifty years of twin 
studies. Nat Genet 47, 702–709, doi:10.1038/ng.3285 (2015). [PubMed: 25985137] 

2. Wraw C, Deary IJ, Gale CR & Der G Intelligence in youth and health at age 50. Intelligence 53, 23–
32, doi:10.1016/j.intell.2015.08.001 (2015). [PubMed: 26766880] 

3. Davies G et al. Genetic contributions to variation in general cognitive function: a meta-analysis of 
genome-wide association studies in the CHARGE consortium (N=53949). Mol Psychiatry 20, 183–
192, doi:10.1038/mp.2014.188 (2015). [PubMed: 25644384] 

4. Davies G et al. Genome-wide association study of cognitive functions and educational attainment in 
UK Biobank (N=112 151). Mol Psychiatry 21, 758–767, doi:10.1038/mp.2016.45 (2016). [PubMed: 
27046643] 

5. Sniekers S et al. Genome-wide association meta-analysis of 78,308 individuals identifies new loci 
and genes influencing human intelligence. Nat Genet 49, 1107–1112, doi:10.1038/ng.3869 (2017). 
[PubMed: 28530673] 

6. Trampush JW et al. GWAS meta-analysis reveals novel loci and genetic correlates for general 
cognitive function: a report from the COGENT consortium. Mol Psychiatry 22, 336–345, doi:
10.1038/mp.2016.244 (2017). [PubMed: 28093568] 

7. Zabaneh D et al. A genome-wide association study for extremely high intelligence. Mol Psychiatry, 
doi:10.1038/mp.2017.121 (2017).

8. Jensen AR The G Factor: The Science of Mental Ability. (Praeger, 1998).

9. Carroll JB Human Cognitive Abilities: A Survey of Factor-Analytic Studies. (Cambridge University 
Press, 1993).

10. Spearman C “General Intelligence,” Objectively Determined and Measured. The American Journal 
of Psychology 15, 201–292, doi:10.2307/1412107 (1904).

11. Plomin R & Kovas Y Generalist genes and learning disabilities. Psychol Bull 131, 592–617, doi:
10.1037/0033-2909.131.4.592 (2005). [PubMed: 16060804] 

12. Plomin R & von Stumm S The new genetics of intelligence. Nat Rev Genet, doi:10.1038/nrg.
2017.104 (2018).

13. Johnson W, Bouchard TJ, Krueger RF, McGue M & Gottesman II Just one g: consistent results 
from three test batteries. Intelligence 32, 95–107, doi:10.1016/S0160-2896(03)00062-X (2004).

14. Johnson W, Nijenhuis J. t. & Bouchard TJ Still just 1 g: Consistent results from five test batteries. 
Intelligence 36, 81–95, doi:10.1016/j.intell.2007.06.001 (2008).

15. Deary IJ, Penke L & Johnson W The neuroscience of human intelligence differences. Nat Rev 
Neurosci 11, 201–211, doi:10.1038/nrn2793 (2010). [PubMed: 20145623] 

16. Deary IJ Intelligence. Annu Rev Psychol 63, 453–482, doi:10.1146/annurev-psych-120710-100353 
(2012). [PubMed: 21943169] 

17. Bulik-Sullivan BK et al. LD Score regression distinguishes confounding from polygenicity in 
genome-wide association studies. Nat Genet 47, 291–295, doi:10.1038/ng.3211 (2015). [PubMed: 
25642630] 

18. Deary IJ, Strand S, Smith P & Fernandes C Intelligence and educational achievement. Intelligence 
35, 13–21, doi:10.1016/j.intell.2006.02.001 (2007).

19. Rietveld CA et al. GWAS of 126,559 individuals identifies genetic variants associated with 
educational attainment. Science 340, 1467–1471, doi:10.1126/science.1235488 (2013). [PubMed: 
23722424] 

20. Euesden J, Lewis CM & O’Reilly PF PRSice: Polygenic Risk Score software. Bioinformatics 31, 
1466–1468, doi:10.1093/bioinformatics/btu848 (2015). [PubMed: 25550326] 

Savage et al. Page 16

Nat Genet. Author manuscript; available in PMC 2019 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



21. Vilhjalmsson BJ et al. Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk 
Scores. Am J Hum Genet 97, 576–592, doi:10.1016/j.ajhg.2015.09.001 (2015). [PubMed: 
26430803] 

22. Hill WD et al. Molecular genetic aetiology of general cognitive function is enriched in 
evolutionarily conserved regions. Transl Psychiatry 6, e980, doi:10.1038/tp.2016.246 (2016). 
[PubMed: 27959336] 

23. Kircher M et al. A general framework for estimating the relative pathogenicity of human genetic 
variants. Nat Genet 46, 310–315, doi:10.1038/ng.2892 (2014). [PubMed: 24487276] 

24. Watanabe K, Taskesen E, van Bochoven A & Posthuma D FUMA: Functional mapping and 
annotation of genetic associations. Nat Commun 8, 1826. doi:10.1038/s41467-017-01261-5 
(2017). [PubMed: 29184056] 

25. de Leeuw CA, Mooij JM, Heskes T & Posthuma D MAGMA: generalized gene-set analysis of 
GWAS data. PLoS Comput Biol 11, e1004219, doi:10.1371/journal.pcbi.1004219 (2015). 
[PubMed: 25885710] 

26. Ashburner M et al. Gene ontology: tool for the unification of biology. The Gene Ontology 
Consortium. Nat Genet 25, 25–29, doi:10.1038/75556 (2000). [PubMed: 10802651] 

27. Posthuma D et al. The association between brain volume and intelligence is of genetic origin. Nat 
Neurosci 5, 83–84, doi:10.1038/nn0202-83 (2002). [PubMed: 11818967] 

28. MacArthur J et al. The new NHGRI-EBI Catalog of published genome-wide association studies 
(GWAS Catalog). Nucleic Acids Res 45, D896–d901, doi:10.1093/nar/gkw1133 (2017). [PubMed: 
27899670] 

29. Zhu Z et al. Causal associations between risk factors and common diseases inferred from GWAS 
summary data. Nat Commun 9, 224, doi: 10.1038/s41467-017-02317-2 (2018). [PubMed: 
29335400] 

30. Johnson W, Deary IJ & Iacono WG Genetic and environmental transactions underlying educational 
attainment. Intelligence 37, 466–478, doi:10.1016/j.intell.2009.05.006 (2009). [PubMed: 
20161120] 

31. Richards M & Sacker A Is education causal? Yes. Int J Epidemiol 40, 516–518, doi:10.1093/ije/
dyq166 (2011). [PubMed: 20926370] 

32. Kendler KS, Ohlsson H, Sundquist J & Sundquist K IQ and Schizophrenia in a Swedish National 
Sample: Their Causal Relationship and the Interaction of IQ with Genetic Risk. Am J Psychiatry 
172, 259–265, doi:10.1176/appi.ajp.2014.14040516 (2015). [PubMed: 25727538] 

33. Le Hellard S et al. Identification of Gene Loci That Overlap Between Schizophrenia and 
Educational Attainment. Schizophr Bull 43, 654–664 (2017). [PubMed: 27338279] 

Methods-Only References

34. Willer CJ, Li Y & Abecasis GR METAL: fast and efficient meta-analysis of genomewide 
association scans. Bioinformatics 26, 2190–2191, doi:10.1093/bioinformatics/btq340 (2010). 
[PubMed: 20616382] 

35. Peloso GM et al. Phenotypic extremes in rare variant study designs. Eur J Hum Genet 24, 924–930, 
doi:10.1038/ejhg.2015.197 (2016). [PubMed: 26350511] 

36. Purcell S, Cherny SS & Sham PC Genetic Power Calculator: design of linkage and association 
genetic mapping studies of complex traits. Bioinformatics 19, 149–150 (2003). [PubMed: 
12499305] 

37. Coleman J et al. Biological annotation of genetic loci associated with intelligence in a meta-
analysis of 87,740 individuals. Mol Psychiatry, doi:10.1038/s41380-018-0040-6 (in press).

38. Konig IR, Loley C, Erdmann J & Ziegler A How to include chromosome X in your genome-wide 
association study. Genet Epidemiol 38, 97–103, doi:10.1002/gepi.21782 (2014). [PubMed: 
24408308] 

39. Bulik-Sullivan B et al. An atlas of genetic correlations across human diseases and traits. Nat Genet 
47, 1236–1241, doi:10.1038/ng.3406 (2015). [PubMed: 26414676] 

40. Okbay A et al. Genome-wide association study identifies 74 loci associated with educational 
attainment. Nature 533, 539–542, doi:10.1038/nature17671 (2016). [PubMed: 27225129] 

Savage et al. Page 17

Nat Genet. Author manuscript; available in PMC 2019 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



41. Chang CC et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. 
Gigascience 4, 7, doi:10.1186/s13742-015-0047-8 (2015). [PubMed: 25722852] 

42. Finucane HK et al. Partitioning heritability by functional annotation using genome-wide 
association summary statistics. Nat Genet 47, 1228–1235, doi:10.1038/ng.3404 (2015). [PubMed: 
26414678] 

43. Wang K, Li M & Hakonarson H ANNOVAR: functional annotation of genetic variants from high-
throughput sequencing data. Nucleic Acids Res 38, e164, doi:10.1093/nar/gkq603 (2010). 
[PubMed: 20601685] 

44. Boyle AP et al. Annotation of functional variation in personal genomes using RegulomeDB. 
Genome Res 22, 1790–1797, doi:10.1101/gr.137323.112 (2012). [PubMed: 22955989] 

45. Ernst J & Kellis M ChromHMM: automating chromatin-state discovery and characterization. Nat 
Methods 9, 215–216, doi:10.1038/nmeth.1906 (2012). [PubMed: 22373907] 

46. Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. 
Nature 518, 317–330, doi:10.1038/nature14248 (2015). [PubMed: 25693563] 

47. Zhu Z et al. Integration of summary data from GWAS and eQTL studies predicts complex trait 
gene targets. Nat Genet 48, 481–487, doi:10.1038/ng.353810.1038/ng.3538http://
www.nature.com/ng/journal/v48/n5/abs/ng.3538.html#supplementary-informationhttp://
www.nature.com/ng/journal/v48/n5/abs/ng.3538.html#supplementary-information (2016). 
[PubMed: 27019110] 

48. GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: 
multitissue gene regulation in humans. Science 348, 648–660, doi:10.1126/science.1262110 
(2015). [PubMed: 25954001] 

49. Westra HJ et al. Systematic identification of trans eQTLs as putative drivers of known disease 
associations. Nat Genet 45, 1238–1243, doi:10.1038/ng.2756 (2013). [PubMed: 24013639] 

50. Zhernakova DV et al. Identification of context-dependent expression quantitative trait loci in whole 
blood. Nat Genet 49, 139–145, doi:10.1038/ng.3737 (2017). [PubMed: 27918533] 

51. Schmitt AD et al. A Compendium of Chromatin Contact Maps Reveals Spatially Active Regions in 
the Human Genome. Cell reports 17, 2042–2059, doi:10.1016/j.celrep.2016.10.061 (2016). 
[PubMed: 27851967] 

52. Liberzon A et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740, 
doi:10.1093/bioinformatics/btr260 (2011). [PubMed: 21546393] 

53. Skene NG et al. Genetic Identification Of Brain Cell Types Underlying Schizophrenia. bioRxiv, 
doi:10.1101/145466 (2017).

Savage et al. Page 18

Nat Genet. Author manuscript; available in PMC 2019 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. SNP-based associations with intelligence in the GWAS meta-analysis of N=269,867 
independent individuals.
(a) Manhattan plot showing the −log10 transformed two-tailed P-value of each SNP from 

the GWAS meta-analysis (of linear and logistic regression statistics) on the y-axis and base 

pair positions along the chromosomes on the x-axis. The dotted red line indicates 

Bonferroni-corrected genome-wide significance (P<5×10−8); the blue line the threshold for 

suggestive associations (P<1×10−5). Independent lead SNPs are indicated by a diamond. (b) 
Heritability enrichment of 28 functional annotation categories for SNPs in the meta-analysis, 
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calculated with stratified LD score regression. Error bars show 95% confidence intervals 

around the enrichment estimate. The dashed horizontal line indicates no enrichment of the 

annotation category. Red dots indicate significant Bonferroni-corrected two-tailed P-values 

and beige dots indicate suggestive (P<.05) values. UTR=untranslated region; 

TSS=transcription start site; CTCF=CCCTC-binding factor; DHS=DNaseI Hypersensitive 

Site; TFBS=transcription factor binding site; DGF=DNaseI digital genomic footprint. (c) 
Distribution of functional consequences of SNPs in genomic risk loci in the meta-analysis. 

(d) Distribution of RegulomeDB score for SNPs in genomic risk loci, with a low score 

indicating a higher likelihood of having a regulatory function (Online methods). (e) The 

minimum chromatin state across 127 tissue and cell types for SNPs in genomic risk loci, 

with lower states indicating higher accessibility and states 1–7 referring to open chromatin 

states (Online Methods).
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Figure 2. Cross-locus interactions for genomic regions associated with intelligence in 269,867 
independent individuals.
Circos plots showing genes on chromosomes 2 (a), 5 (b), 6 (c), 9 (d), and 22 (e) that were 

linked to genomic risk loci in the GWAS meta-analysis (blue regions) by eQTL mapping 

(green lines connecting an eQTL SNP to its associated gene), and/or chromatin interactions 

(orange lines connecting two interacting regions) and showed evidence of interaction across 

two independent genomic risk loci. Genes implicated by eQTL are in green, by chromatin 

interactions in orange, and by both eQTL and chromatin interactions mapping in red. The 
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outer layer shows a Manhattan plot containing the −log10 transformed two-tailed P-value of 

each SNP from the GWAS meta-analysis (of linear and logistic regression statistics), with 

genome-wide significant SNPs colored according to linkage disequilibrium patterns with the 

lead SNP. Circos plots for all chromosomes are provided in Supplementary Fig. 8.
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Figure 3. Implicated genes, pathways, and tissue- and cell- expression profiles for intelligence in 
269,867 independent individuals.
(a) Manhattan plot of the genome-wide gene-based association analysis (GWGAS). The y-

axis shows the −log10 transformed two-tailed P-value of each gene from a linear model, and 

the chromosomal position on the x-axis. The red dotted line indicates the Bonferroni-

corrected threshold for genome-wide significance of the gene-based test (P<2.76×10−6; 

0.05/18,128 genes), and the blue line indicates the suggestive threshold (P<2.76×10−5; 

0.5/18,128 genes) (b) Venn diagram showing overlap of genes implicated by positional 

mapping, eQTL mapping, chromatin interaction mapping, and GWGAS. (c) Gene 

expression profiles of associated genes in 53 tissue types. The y-axis shows the −log10 

transformed two-tailed P-value of association of GWGAS test statistics with tissue-specific 

gene expression levels in a linear model. Expression data were extracted from the Genotype-

Tissue Expression (GTEx) database. Expression values (RPKM) were log2 transformed with 

pseudocount 1 after winsorization at 50 and averaged per tissue. The dotted blue line 

indicates the Bonferroni-corrected significance threshold (P=0.05/7,323 gene-

sets=6.83×10−6). (d) Single-cell gene-expression analysis of genes related to intelligence in 

24 cell-types. The x-axis shows the −log10 transformed two-tailed P-value of association of 

GWGAS test statistics with cell-specific gene expression levels in a linear model. The dotted 

blue line indicates the Bonferroni-corrected significance threshold (P=0.05/7,323 gene-

sets=6.83×10−6).
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Table 1.

Overview of cohorts included in a GWAS meta-analysis of general intelligence.

Cohort N Age Phenotype

1. UKB 195,653 39–72 Verbal and mathematical reasoning

2. COGENT 35,289 8–96 One or more neuropsychological tests from three or more domains of cognitive 
performance

3. RS 6,182 45–98 Letter-digit substitution, Stroop, verbal fluency, delayed recall

4. GENR 1,929 5–9 SON-R (spatial visualization and abstract reasoning subsets)

5. STR 3,215 18 Logical, verbal, spatial, and technical ability subtests

6. S4S 2,818 17–18 SAT test scores

7. HiQ / HRS 9,410 * High IQ cases / unselected population controls

8. TEDS 3,414 12 WISC-III verbal and nonverbal reasoning; Raven's progressive matrices

9a. DTR - MADT 737 55–80 Verbal fluency, digit span, immediate and delayed recall tests

9b. DTR - LSADT 253 73–94 Verbal fluency, digit span, immediate and delayed recall tests

10. IMAGEN 1,343 14 WISC-IV, CANTAB factor score

11a. BLTS - Children 530 12–13 VSRT-C factor score

11b. BLTS - Adolescents 2,598 15–30 MAB-II IQ score

12. NESCOG 252 18–79 WAIS IQ score

13. GfG 5,084 15–91 ICAR verbal reasoning test

14a. STSA - SATSA+GENDER 703 50–94 Verbal, spatial, episodic memory, and processing speed tests

14b. STSA - HARMONY 448 65–96 Verbal, spatial, episodic memory, and processing speed tests

*
HiQ/HRS sample used a case-control design rather than a cognitive test score ascertained at a specific age; see Online Methods and 

Supplementary information 1.1.
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