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SUMMARY

The virome is one of the most variable components of the human gut microbiome. Within twin-

pairs, viromes have been shown to be similar for infants but not for adults, indicating that as twins 

age and their environments and microbiomes diverge, so do their viromes. The degree to which the 

microbiome drives the vast virome diversity is unclear. Here, we examine the relationship between 

microbiome and virome diversity in 21 adult monozygotic twin pairs selected for high or low 

microbiome concordance. Viromes derived from virus-like particles are unique to each individual, 
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are dominated by Caudovirales and Microviridae, and exhibit a small core that includes 

crAssphage. Microbiome-discordant twins display more dissimilar viromes compared to 

microbiome-concordant twins, and the richer the microbiomes, the richer the viromes. These 

patterns are driven by bacteriophages, not eukaryotic viruses. Collectively, these observations 

support a strong role of the microbiome in patterning for the virome.

eTOC blurb:

The virome remains a relatively unexplored component of the microbiome. Moreno-Gallego and 

Chou et al., examined the viromes of monozygotic twins to ask how microbiome diversity relates 

to virome diversity, without host genetic variables. Twin pairs were sorted by high or low 

microbiome concordance, which revealed a correlated virome relatedness.

GRAPHICAL ABSTRACT

INTRODUCTION

The human gut microbiome is composed of a vast diversity of bacterial cells, along with a 

minority of archaeal and eukaryotic cells, together forming a very dense microbial 

ecosystem (1011 −1012 cells per gram of feces) (Sender et al., 2016). The cells of the 

microbiome and the constituents of the virome (between 109 to 1012 virus-like particles 

(VPLs) per gram of feces) are in about equal proportion (Castro-Mejía et al., 2015; Hoyles 

et al., 2014; Ogilvie and Jones, 2017; Reyes et al., 2010). The virome is primarily composed 

of bacteriophages and prophages, and it also includes rarer eukaryotic viruses and 

endogenous retroviruses (Breitbart et al., 2003; Minot et al., 2011; Reyes et al., 2010). 

Currently, the majority of phages have no matches in databases and their hosts remain to be 

elucidated. Matching phages to their hosts is challenging: for instance, the host of the most 

common human gut phage, crAssphage, has only recently been identified as Bacteroides 
spp. (Shkoporov et al., 2018; Yutin et al., 2018). In addition to the identification of hosts, 
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other questions remain as to the factors most important in shaping the virome, and how 

predictive the cellular fraction of the microbiome can be of the virome.

The temporal population dynamics of phages and their hosts might be expected to be linked. 

Indeed, population oscillations of viruses and their bacterial hosts are described for aquatic 

systems, where they indicate that viruses play a key role in regulating bacterial populations 

(Suttle, 2007; Thingstad, 2000; Thingstad et al., 2014; Weitz and Dushoff, 2008). But such 

patterns of predator/prey dynamics are not typical for the human gut virome and microbiome 

(Minot et al., 2011; Reyes et al., 2013; Rodriguez-Brito et al., 2010; Rodriguez-Valera et al., 

2009). (For clarity, from here on we use ‘microbiome’ to refer to cellular fraction of the 

microbiome, e.g., mostly bacterial cells.) Nonetheless, the virome and microbiome do 

display some common patterns of diversity across hosts, such as high levels of interpersonal 

differences and relative stability over time (Reyes et al., 2010). The microbiome tends to be 

more similar for related individuals compared to unrelated individuals, possibly due to 

shared dietary habits, which drive similarity between microbiomes (Cotillard et al., 2013; 

David et al., 2014). In accord, diet has been associated with virome diversity, quite possibly 

through diet effects on the microbiome (Minot et al., 2011). In infants, twin comparisons 

have revealed viromes to be more similar between co-twins than between unrelated 

individuals (Lim et al., 2015; Reyes et al., 2015). This pattern was not observed in adult 

twins (Reyes et al., 2010), possibly due to divergence of their microbiomes. The degree to 

which the microbiome itself drives patterns of virome diversity across hosts has been 

difficult to assess due to confounding factors such as host relatedness.

Here, we focus on adult monozygotic (MZ) twin gut microbiomes to explore further the 

relationship between microbiome and virome diversity. By studying the viromes of MZ twin 

pairs, we control for host genetic relatedness. Although MZ twin pairs generally have more 

similar microbiomes compared to dizygotic (DZ) twin pairs or unrelated individuals, MZ 

twins nevertheless can display a large range of within-twin-pair microbiome diversity 

(Goodrich et al., 2014). We previously generated fecal microbiome data for twin pairs from 

the TwinsUK cohort (Goodrich et al., 2014), and based on this information we selected twin 

pairs either highly concordant or highly discordant for their microbiomes. We generated 

viromes from virus-like particles obtained from the same samples from which the 

microbiomes were derived. Results indicate that microbiome diversity and virome diversity 

measures are positively associated.

RESULTS

Selection of microbiome-concordant and discordant monozygotic twin pairs –

We selected twin pairs with a similar body mass index (BMI), whose microbiomes were 

either concordant or discordant for microbiome between-sample diversity (β-diversity) 

based on previously obtained 16S rRNA gene data. The adult co-twins in this study did not 

share a household and we assume that other environmental variability was similar across 

twin pairs. We determined the degree of concordance or discordance between co-twins’ 

microbiomes based on three β-diversity distance metrics: Bray-Curtis, weighted UniFrac 

and unweighted UniFrac (See STAR Methods). As expected, the β-diversity measures were 

correlated (Pearson pairwise correlation coefficient > 0.4). Based on the distribution of 
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pairwise distance measures, we selected 21 MZ twin pairs from the boundaries of all three 

distributions (Figure 1A), while maintaining a balanced distribution of age and BMI across 

the set (Table S1). Within the 21 selected twin pairs, the microbiomes of microbiome-

concordant co-twins were, as expected, more similar to each other than microbiomes of 

microbiome-discordant co-twins (p = 6.31×10−12). The microbiomes of the discordant co-

twins differed compositionally at all taxonomic levels, particularly at the phylum level, with 

Firmicutes and Bacteroidetes, the two dominant phyla, contributing the most to the variation 

between co-twins (Figure 1B and 1C).

Shotgun metagenomes of VLPs –

We isolated VLPs from the same fecal samples that had been used for 16S rRNA gene 

diversity profiling (See STAR Methods). DNA extracted from VLPs was used in whole 

genome amplification followed by shotgun metagenome sequencing (See STAR Methods). 

A first library (“large-insert-size library”) was selected with an average insert size of 500 bp 

(34,325,116 paired reads in total; 817,265 ± 249,550 paired reads per sample after quality 

control) and used for de novo assembly of viral contigs. Smaller fragments with an average 

insert size of 300bp were purified in a second library (“small-insert-size library”) and 

sequenced. The resulting pair-end reads were merged into 25,324,163 quality filtered longer 

reads to increase mapping accuracy (602,956 ± 595,444 merged reads per sample) (See 

STAR Methods) (Table S2).

Identification of putative bacterial contaminants –

Viromes prepared and sequenced from VLPs may be contaminated with bacterial DNA 

(Roux et al., 2013). However, given that phages are major agents of horizontal gene transfer 

and that temperate viruses often comprise up to 10% of bacterial genomes in a prophage 

state, removal of potential bacterial contamination risks also removing viral reads. To assess 

bacterial DNA contamination, we mapped virome reads against a set of 8,163 fully 

assembled bacterial genomes. Our strategy consisted of evaluating the coverage along the 

length of each genome (in bins of 100Kb), and those genomes with a median coverage 

greater than 100 were considered contaminants. Reads mapping to short regions were 

considered to be prophages or horizontally transferred genes and retained (See STAR 

Methods) (Figure 2A). Reads mapping to genomes determined to be potential contaminants 

were removed from further analyses.

We identified 65 bacterial genomes as potential contaminants, with 1% ± 1.125 (average ± 

std) of reads per sample mapping to those bacterial genomes (Table S2). The majority 

(37/68) belonged to the Firmicutes phylum; at the species level, Bacteroides dorei, B. 
vulgatus, Ruminococcus bromii, Faecalibacterium prausnitzii, B. xylanisolvens, Odoribacter 
splanchnicus and B. caecimuris (in that order) were detectable in at least 50% of the samples 

(Table S2). If the most abundant bacterial species in the microbiome are the most likely 

sources of contamination, then their relative abundance as contaminants should correspond 

to their relative abundances in the microbiome. However, we observed no significant 

correlation between the relative abundances of taxa represented in the contaminant DNA and 

in the microbiomes (Figure 2B).
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Functional profiles support viral enrichment in VLP purifications –

To assess the functional content of the viromes, we annotated the “short-insert-size library” 

raw reads using the KEGG annotation of the Integrated Gene Catalog (IGC) (Li et al., 2014) 

(See STAR Methods). In line with previous reports (Breitbart et al., 2008; Minot et al., 2011; 

Reyes et al., 2010), the majority of reads (85.43 ± 5.74%) from our VLP metagenomes 

mapped to genes with unknown function (Figure 3A).

To further verify that sequences were derived from VLPs and not microbiomes generally, we 

conducted an internal check in which we generated and compared additional metagenomes 

from VLPs and bulk fecal DNA for an additional 4 individuals (2 twin pairs; Figure 1A). As 

expected, the functional profiles of viromes and microbiome-metagenomes derived from the 

same samples were dissimilar. Virome reads that mapped to annotated genes were enriched 

in two categories: Genetic Information Process (48.87% ± 12.12) and Nucleotide 

Metabolism (17.59% ± 8.81), compared to 24.31% ± 1.28 and 5.47% ± 0.4 for the 

microbiome-metagenome, respectively (Figure 3B). Most of the other functional categories 

present in the bacterial metagenomes were essentially absent from the viromes. Furthermore, 

the functional annotations of the viromes showed greater between-sample variability than 

the microbiomes and a lower intraclass correlation coefficient (Figure 3B).

Viromes are unique to individuals –

We assembled reads from the “large-insert-size library” resulting in a total of 107,307 

contigs ≥ 500 nt (max: 79,863 nt; mean 1,186nt ± 1,741; Figure S1). To assess the structure 

and composition of the viromes, a matrix of the recruitment of reads against dereplicated 

contigs was built (See STAR Methods). The recruitment matrix included 14,584 contigs that 

were both long (> 1,300 nt) and well covered (> 5X); these are referred to as ‘virotypes’ 

(Figure S1). Analysis of the recruitment matrix showed that each individual harbored a 

unique set of virotypes: 3,415 virotypes (23.41% of total) were present in only one 

individual; 413 virotypes (2.83%) were present in at least 50% of the individuals; only 18 

virotypes (0.1%) were present in all individuals.

Twins with concordant microbiomes share virotypes –

We checked for virotypes shared between twins and observed that co-twins did not share 

more virotypes than unrelated individuals (p = 0.074). We then assessed microbiome-

concordant and discordant twin pairs separately: twins with a discordant microbiome did not 

share more virotypes that unrelated individuals (p = 0.254), whereas twins with a concordant 

microbiome did share more virotypes than unrelated individuals (p = 0.048). Furthermore, 

we also found that twins with a concordant microbiome shared more virotypes than twins 

with a discordant microbiome (p = 0.015; Figure S2).

Bacteriophage dominance of the gut virome –

In order to characterize the taxonomic composition of the virome, we attempted to annotated 

all 66,446 dereplicated and well covered contigs (Figure S1) using a voting system approach 

that exploited the information in both the assembled contigs and their encoding proteins (See 

STAR Methods). In addition, we performed a custom annotation on two highly abundant 

gut-associated bacteriophage families: (i) the crAssphage (Dutilh et al. 2014; Yuting et al. 
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2018) and (ii) the Microviridae families (Székely and Breitbart 2016). For this, we used 

profile Hidden Markov Models (HMMs) to search for crAssphage (dsDNA viruses) and 

Microviridae (ssDNA viruses) contigs (See STAR Methods).

Using HMMs allowed us to identify distant homologs, which we then incorporated into a 

phylogenetic tree with known reference sequences to confirm the annotation and better 

resolve the taxonomy. We annotated 108 contigs (19 crAssphage, 90 Microviridae), 

validated the family assignment of 68 contigs, and assigned a subfamily to 97 contigs 

without previous subfamily assignment. For the Microviridae, only 11 contigs had a 

previous taxonomic assignment, all belonging to the Gokushovirinae: we confirmed these 

and 23 more as Gokushovirinae, 54 as Alpavirinae and 1 contig as Pichovirinae (Figure 

S3A). For the crAssphage, 11 contigs were clustered with the original crAssphage, 3 contigs 

grouped with the reference Chlamydia phage, and 5 contigs grouped with the reference IAS 

virus (Figure S3B).

After collating the voting system annotation and the HMM annotation, a total of 12,751 

contigs (29,62%) were taxonomically assigned (Figure S1). Viromes were dominated by 

bacteriophages with only 6.42% of contigs annotated as Eukaryotic viruses. As expected, 

most of the contigs (96.98%) were dsDNA viruses, while only 2.43% of contigs were 

annotated as ssDNA viruses. Caudovirales was the most abundant Order, with its three main 

families represented: Myoviridae (20.22% ± 4.83), Podoviridae (10.54% ± 3.27), and 

Siphoviridae (35.25% ± 7.19). The crAssphage family constituted on average 13.26% 

(± 12.24%) of the contigs, reaching a maximum contribution of 55.80% in one virome, and 

Microviridae represented 3.87% ± 2.57 of the viromes. Interestingly, we observed that 

Phycodnaviridae exceeded 1% of average abundance (1.77% ± 1.12; Figure 4A) and that 

contigs related to any nucleocytoplasmic large DNA viruses (NCLDV) had a mean relative 

contribution of 3.99% ± 2.22. The 18 contigs present in all samples included 10 annotated as 

crAssphage, 2 annotated as “unclassified Myoviridae”, 2 “unclassified Caudovirales”, 1 

classified as Microviridae, and 3 unclassified. Within a defined taxonomic profile for each 

sample, we looked for differences in composition between viromes at all taxonomic levels 

for concordant and discordant twin-pairs. There were no significant differences between 

groups for any taxa at the Order and Family levels, including crAssphage and Microviridae 
families (Figure 4B).

We used CRISPR spacer mapping and the microbe-versus-phage (MVP) database (Gao et 

al., 2018) to predict hosts for virotypes and taxonomically characterized contigs (See STAR 

Methods). As host annotation was directed to bacteriophages, we did not gain any 

information for contigs annotated as Eukaryotic viruses. These approaches allowed us to 

identify putative hosts for 910 contigs. Within these 910 contigs, only one was previously 

annotated as crAssphage, and as expected, its host was inferred to be a member of 

Bacteroidetes. In total we identified 1,280 bacterial putative host strains, including 187 

species from 87 genera over several phyla; most of them from Firmicutes (92), followed by 

Bacteroidetes (41) and Proteobacteria (38). The median number of host for each contig was 

1 (IQR=1–2), while the median number of phages per host, at the strain level, was 2 

(IQR=1–3) (Figure S4).
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Virome diversity correlates with microbiome diversity –

To assess the relationship between virome and microbiome diversity, we examined the 

within-samples diversity (α-diversity) and β-diversity of the viromes using three different 

layers of information that we recovered from the sequence data: i) virotypes, ii) 

taxonomically annotated contigs, and iii) annotated genes from short reads (Figure S1).

Alpha-diversity –—α-diversities of the microbiome and the virome were positively 

correlated in two of the three layers of information used to test the correlation (virotypes and 

taxonomy annotated contigs but not genes; Figure 5A). We used annotated contigs to ask 

about the α-diversity within subgroups of viruses: (ssDNA eukaryotic, dsDNA eukaryotic, 

ssDNA bacteria and dsDNA bacteria). Our results show that the diversity of eukaryotic 

viruses does not correlate with the microbiome α-diversity. In contrast, bacteriophages and 

microbiome α-diversity were positively correlated, for both ssDNA or dsDNA bacterial 

viruses (Figure 5B).

Beta-diversity –—We observed that concordant twins had lower virome βdiversity 

compared to discordant twins using Hellinger distances (Figure 6); the mean binary Jaccard 

distance and Bray-Curtis dissimilarity of viromes also showed the same trend (Figure S5A 

and S5B). Similar to what we observed with α-diversity, regardless of the layer of 

information used, the mean Hellinger distance of viromes within MZ twin pairs with 

concordant microbiomes was significantly lower than that of MZ twin pairs with discordant 

microbiomes (p < 0.04, Mann-Whitney’s U test) (Figure 6). We did not observe significant 

differences in β-diversity when concordant twins or discordant twins were split by sex (p > 

0.05, Mann-Whitney’s U test). Still, any inference about sex influence is limited as the 

number of individuals per group is halved. Furthermore, a similar significant positive 

correlation was observed between microbiome and virome β-diversity when using the 

annotated contigs. This relationship was driven by the bacteriophages (p = 0.009, Mann-

Whitney’s U test), but not the eukaryotic viruses (p = 0.243, Mann-Whitney’s U test).

Finally, we compared the virome and microbiome pairwise distances among related (co-

twins) and unrelated individuals. The pairwise distance matrices showed a positive 

correlation between virome and microbiome β-diversity measures not only within twin pairs 

(Pearson correlation coefficient > 0.50) but also generally across all individuals (Pearson 

correlation coefficient > 0.25; p < 0.003, Mantel test; Figure S5C). These results show that 

regardless of genetic relatedness between hosts, individuals with more similar microbiomes 

harbour more similar viromes.

DISCUSSION

Co-twins, like other siblings, generally have more similar gut microbiomes within their 

twinships compared to unrelated individuals (Lee et al., 2011; Palmer et al., 2007; Tims et 

al., 2013; Turnbaugh et al., 2009; Yatsunenko et al., 2012). Moreover, MZ twins have overall 

more similar microbiomes than DZ twins, although at a whole-microbiome level this effect 

is small and primarily driven by a small set of heritable microbiota (Goodrich et al., 2014, 

2016). Within a population of MZ twin pairs, however, the range of within-twin pair 

differences in the microbiomes can be as great as for DZ twins (Goodrich et al., 2014). We 

Moreno-Gallego et al. Page 7

Cell Host Microbe. Author manuscript; available in PMC 2020 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



took advantage of the large spread in β-diversity for MZ co-twins to select co-twins that 

were either highly concordant or discordant for their gut microbiomes. Our analysis of their 

viromes showed that despite the high variation in the gut viromes between individuals, and 

regardless of host relatedness, the more dissimilar their microbiomes, the more dissimilar 

their viromes. This pattern was driven by the bacteriophage component of the virome.

By choosing MZ twins from a distribution of β-diversities in the microbiomes, we removed 

host genetic relatedness as a variable possibly impacting the virome. Previous studies of the 

viromes and microbiomes of infant twin pairs showed that the microbiomes and viromes of 

co-twins were more similar than those of unrelated individuals, suggesting shared host 

genotype and/or environment were key (Lim et al., 2015; Reyes et al., 2015). In contrast, an 

early study of the virome of adult twins showed that adult co-twins did not have more 

similar viromes than unrelated individuals (Reyes et al., 2010); however, in light of the 

current study’s results, this was likely a power issue. Indeed, in our dataset we observed that 

regardless of whether twins were concordant or discordant for their microbiomes, co-twins 

had more similar viromes (virotypes and taxonomy) than unrelated individuals.

The previously reported greater virome similarity in young compared to adult twins has been 

related to the fact that infants have a greater shared environment compared to adult twins 

(Lim et al., 2015), particularly in terms of their diet. Minot et al., have also shown that 

individuals on the same diet have more similar gut viromes than individuals on dissimilar 

diets (Minot et al., 2011). It is well established that diet is a strong driver of daily 

microbiome fluctuation (Claesson et al., 2012; David et al., 2014; De Filippo et al., 2010; 

Wu et al., 2011), so the effect of diet on the virome is likely mediated by the microbiome. 

However, we did not control for diet, so it is possible that the microbiome discordance that 

we observe was caused by co-twins eating differently around the time of sampling. 

Regardless of what underlies the variance in microbiome concordance, it is strongly 

associated with virome concordance.

The relationship between virome richness and microbiome richness had not previously been 

directly addressed in adults. We observed that the α-diversity of the microbiome and the 

virome were positively correlated using two of the three layers of information describing 

virome diversity. Specifically, this pattern was observed for virotypes and taxonomy but not 

for genes. However, since virome genes were observed to be enriched in only two 

categories, Genetic Information Processing and Nucleotide Metabolism, we would not 

expect differences in diversity of virome genes between subjects. The taxonomic annotation 

layer showed that the bacteriophage component of the virome, not the eukaryotic viruses, 

was driving this α-diversity correlation pattern.

The positive relationship between virome and microbiome α-diversity suggests that a greater 

availability of hosts drives a greater diversity of viruses. These observations are in 

accordance with “piggyback the winner” model, which posits that in a dense environment, 

phages opt for a lysogenic cycle and multiply with their hosts (Knowles et al. 2016). Indeed, 

longitudinal studies of the human gut virome have reported genes associated with lysogeny, 

low mutation rate over time in temperate-like contigs, and long-term stability of the virome, 

suggesting preference for a lysogenic cycle (Minot et al., 2013; Reyes et al., 2010). 
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Nevertheless, phage predation has been acknowledged as an important factor for the 

maintenance of highly diverse and efficient ecosystems (Rodriguez-Valera et al., 2009) and 

may play a role in the maintenance of diversity in a rapidly changing ecosystem as the 

human gut (David et al., 2014). Short scale time-series analyses of virome-microbiome 

interactions, along with a better understanding of the lysogenic-lytic switch in viral 

reproduction, would help to interpret the observed patterns in the human gut virome.

The composition of the viromes described here was similar to what has been previously 

reported for adult fecal viromes (Minot et al., 2011, 2013; Reyes et al., 2010). From the 

annotated fraction of the virome, the order Caudovirales and its families Siphoviridae, 

Myoviridae, and Podoviridae, along with crAssphage, were the dominant phages in all 

samples. Manrique et al. have summarized the phage colonization of the infant gut as 

follows: the eukaryotic viruses first dominate the newborn gut, followed by the 

Caudovirales, and by 2.5 years of age the Microviridae start to dominate (Manrique et al., 

2017). We did observe abundant Microviridae in our sample set, but the Caudovirales were 

the dominant group. Age was not related to patterns of diversity in the set of adult subjects 

studied here.

Despite the high diversity and uniqueness of each virome described here, we nonetheless 

recovered a core virome among the subjects: 18 contigs were present in all samples. More 

than half of these contigs were annotated as crAssphage, consistent with recent reports that 

this phage is widespread (Dutilh et al., 2014; Manrique et al., 2016; Yarygin et al., 2017). 

Other shared virotypes in our dataset were classified as Myoviridae and Microviridae. We 

also recovered contigs mapping to representative families of the nucleocytoplasmic large 

DNA viruses (NCLDV), Phycodnaviridae and Mimiviridae. These types of viruses are 

increasingly reported as members of the human gut virome (Colson et al., 2013; Halary et 

al., 2016). A core set of bacteriophages consisting of nine representatives, including 

crAssphage, has previously been reported for the human gut (Manrique et al., 2016). Widely 

shared virotypes may indicate the wide sharing of specific hosts between individuals, or that 

these viruses have a broad host range within the human microbiome.

Our use of the HMMs to annotate viral contigs allowed a deep exploration into the 

taxonomic content of the virome. We annotated a diversity of contigs beyond what was 

revealed from comparisons to public databases, and also confirmed those annotations. 

Because each type of virus (e.g., family) requires its own HMM, we applied this method to a 

few key groups. When applied to the crAssphage, the HMM retrieved contigs that grouped 

only with sequences derived from fecal viromes and not with sequences from other 

environments (e.g., terrestrial or marine). This suggests that although crAssphage is a 

diverse group of bacteriophages, its diversity in the human gut is restricted to sequences 

related to the reference crAssphage genome (Dutilh et al., 2014), the IAS virus reference 

(Shkoporov et al., 2018), or Chlamydia bacteriophage (Yutin et al., 2018). We also applied 

HHM to the family Microviridae, which are single strand DNA bacteriophages. We were 

able to confirm the presence of diverse members of Gokushovirinae and Alpavirinae 

subfamilies. Although there is evidence that described Alpavirinae genomes constitute a 

third group of the Microviridae family (Krupovic and Forterre 2011; Roux et al. 2012), they 

correspond to prophages, which makes it difficult to integrate them into the taxonomy of the 
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International Committee on Taxonomy of Viruses (ICTV), thus, no contigs were annotated 

as Alpavirinae prior to application of the HMM profiles.

For each taxonomic group of viruses, there is a corresponding set of bacterial hosts. From 

the 16S rRNA gene diversity data we used to select the twin pairs, it is clear which bacteria 

phyla contribute the most to the differences in the microbiomes of concordant and discordant 

twins. But unlike for bacterial, we were not able to discern such clear patterns by order or 

family in the virome. Indeed, most of the bacteriophage diversity is grouped in just one 

order, Caudovirales, and its three families Myoviridae, Podoviridae and Siphoviridae. 

Representatives of these families can infect unrelated hosts (Barylski et al., 2017). Thus, we 

wouldn’t necessarily expect specific orders or families of viruses to show the patterns 

observed in the bacterial phyla.

Finally, we noted an interesting pattern of complete bacterial genome coverage for select 

bacterial species. As these putative contaminants were not the most abundant members of 

the microbiome, they are unlikely to represent random contamination of bulk DNA. Why 

certain bacterial genomes showed such high coverage is unclear. One possibility is that we 

are observing the host species range of transposable phages. Phages such as the Mu phage 

randomly integrate into the host genome (Taylor, 1963), amplify by successive rounds of 

replicative transposition, and then can package any section of their host’s genome (Hulo et 

al., 2011; Toussaint and Rice, 2017). Intriguingly, several of the contaminants detected here 

(e.g., B. vulgatus, B. dorei, F. prausnitzii and B. thetaiotaomicron) have also been reported 

as contaminants in other human gut virome studies (Minot et al., 2011; Roux et al., 2013), 

which could indicate host-specificity of Mu phages. Alternative explanations include vesicle 

production, gene transfer agents and/or generalized transduction processes (Biller et al., 

2014; McDaniel et al., 2010; Minot et al., 2011). Further comparisons of whole bacterial 

genomes recovered in diverse virome datasets may help shed light on their source, 

particularly if the same bacterial species are recovered across multiple studies.

Prospectus –

Our results show that gut microbiome richness and diversity correlate to virome richness and 

diversity, and vice-versa. The mechanics underlying this association remain to be resolved 

for the human gut. This relationship may be useful to take into consideration when designing 

future studies of the virome and the factors that affect it. Baseline microbiome diversity may 

be important to balance between groups, for instance, prior to assessing the diversity of the 

virome.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Ruth Ley (ruth.ley@tuebingen.mpg.de).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fecal Samples –—Fecal samples used in this study were obtained as part of previous 

studies (Goodrich et al., 2014; Jackson et al., 2016). From 16S rRNA gene diversity 

previously measured for 354 monozygotic twin pairs whose fecal samples were received 

between January 28th 2013 and July 14th 2014 (Goodrich et al., 2014), we selected 11 

concordant and 13 discordant MZ co-twins based on three microbiota β-diversity distances 

within twin pairs: unweighted UniFrac, weighted UniFrac (Lozupone et al., 2007) and Bray-

Curtis (Bray and Curtis, 1957). Twins pairs in the concordant and the discordant groups 

were selected to be balanced between those two groups for sex, age, BMI, and BMI 

difference within a twin pair (Table S1). Twins within the concordant group ranged in age 

from 23 to 77 years old and included 5 men and 4 women, while those in the discordant 

group ranged in age from 29 to 81 years old with 5 men and 7 women. All work involving 

the use of these previously collected samples was approved by the Cornell University IRB 

(Protocol ID 1108002388).

METHOD DETAILS

Isolation of virus-like particles (VLPs) from human fecal samples –—VLP 

isolation procedures were based on the previously described protocols (Gudenkauf et al., 

2014; Minot et al., 2013). For VLP isolation, ~0.5 g of fecal sample was resuspended by 

vortexing for 5–10 minutes in 15 ml PBS, previously filtered through 0.02 μm filter 

(Whatman). The homogenates were centrifuged for 30 min at 4,500 xg, and the supernatant 

was filtered through 0.22 μm polyethersulfone (PES) Express Plus Millipore Stericup (150 

ml) to remove cell debris and bacterial-sized particles. The filtrate was then concentrated on 

a Millipore Amicon Ultra-15 Centrifugal Filter Unit 100K to ~1 ml. The concentrate was 

transferred to 5 Prime Phase Lock Gel and incubated with 200 μl chloroform for 10 min at 

room temperature. After being centrifuged for 1 min at 15,000 ×g, the aqueous layer was 

transferred to a new microcentrifuge tube, and was treated with Invitrogen TURBO DNase 

(14 U), Promega RNase One (20 U) and 1 μl Benzonase Nuclease (E1014 Sigma 

Benzonase® Nuclease) at 37 °C for 3 hr (Gudenkauf and Hewson, 2016; Reyes et al., 2012). 

After incubation, 0.04 volumes 0.5 M EDTA was added to each sample. The sample was 

then stored at −80 °C before further processing.

Viral DNA shotgun sequencing –—The viral DNA was extracted with PureLink® 

Viral RNA/DNA Mini Kit from Invitrogen™. Each viral DNA sample was then amplified 

using GenomePlex® Complete Whole Genome Amplification (WGA2) Kit from Sigma-

Aldrich (Gudenkauf and Hewson, 2016). Two blank controls were included in this step, but 

very low yield precluded library construction. The amplified product was then fragmented 

with Covaris S2 Adaptive Focused Acoustic Disruptor with the parameters set as follows: 

the duty cycle set at 10%, cycle per burst 200, intensity 4 and duration 60 seconds. Each 

viral sequencing library was prepared following Illumina TruSeq DNA Preparation Protocol 

with one unique barcode per sample. All barcoded libraries were pooled together. Half of the 

pool was size selected by BluePippin (Sage Science, Beverly, MA, USA) to enrich 

fragments with longer inserts (425 bp to 875 bp including the adapters). Both pools, the 

“large-insert-size library” and the “short-insert-size library”, were sequenced in independent 
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lanes on an Illumina HiSeq 2500 instrument, operating in Rapid Run Mode with 250 bp 

paired-end chemistry at the Cornell Biotechnology Resource Center Genomics Facility.

Whole fecal metagenome shotgun sequencing –—The genomic DNA was isolated 

from an aliquot of ~100 mg from each sample using the PowerSoil® - htp DNA isolation kit 

(MoBio Laboratories Ltd, Carlsbad, CA). Each sequencing library was then prepared 

following Illumina TruSeq DNA Preparation Protocol with 500 ng DNA using the gel-free 

method, 14 cycles of PCR, and with one unique barcode per sample. Sequencing was 

performed on an Illumina HiSeq 2500 instrument in Rapid Run mode with 2×150 bp paired-

end chemistry at the Cornell Biotechnology Resource Center Genomics Facility.

Assessment of Bacterial Contamination –—A set of 8,163 finished bacterial 

genomes was retrieved from the NCBI FTP on 21 February 2017. Reads per sample were 

mapped against this bacterial genomes dataset using Bowtie2 v.2.2.8 (Langmead and 

Salzberg, 2012) with the following parameters: --local --maxins 800 - k=3. Genome 

coverage per base was calculated considering only reads with a mapping quality above 20 

using view and depth Samtools commands v.1.5 (Li et al., 2009). Next, genome coverage 

was averaged for 100Kbp bins. We observed that evenly covered genomes had a median bin 

coverage of at least 100; those genomes with a median bin coverage greater than 100 were 

considered as contaminants. The reads mapping to those genomes were removed. Bacterial 

genomes can have one or more prophage(s) in their genomes (Munson-McGee et al., 2018); 

bursting events of those prophages can occur, generating several VLPs. As a conservative 

measure to avoid the loss of reads originating from prophages and not the bacterial genome 

per se, bins with a coverage over three standard deviations of the bacterial mean coverage 

were also identified and catalogued as prophages-like regions. Reads mapping to potential 

contaminant genomes were tagged as “contaminants” and removed from further analysis 

while reads mapping to high coverage bins were tagged as “possible prophages”.

A matrix of the abundance of each potential contaminant per sample was built using an in-

house Python script and normalized by RPKM. In parallel, from Goodrich et al. data 

(Goodrich et al., 2014), the relative abundance of each OTU was recovered and summarized 

at the species level using summarize_taxa.py qiime script. The Spearman rank order 

correlation between relative abundances of contaminants and their corresponding 16S 

rRNAs data was calculated for species in both sets.

Functional profiles –—The joined and trimmed reads from the “short-insert-size library” 

were mapped onto Integrated Gene Catalogs (IGC), an integrated catalog of reference genes 

in the human gut microbiome (Li et al., 2014) by BLASTX using DIAMOND v.0.7.5 

(Buchfink et al., 2015) with maximum e-value cutoff 0.001, and maximum number of target 

sequences to report set to 25.

After the mapping onto IGC, an abundance matrix was generated using an inhouse Python 

script. The matrix was then annotated according to the KEGG annotation of each gene 

provided by IGC. The annotated abundance matrix was rarefied (subsampling without 

replacement) to 2,000,000 read hits per sample. The KEGG functional profile was then 

generated using QIIME 1.9 (Quantitative Insights Into Microbial Ecology) (Caporaso et al., 
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2010) using the command summarize_taxa_through_plots.py. The Intraclass Correlation 

Coefficient of the functional profiles for each group (additional microbiomes, additional 

viromes, viromes of concordant-microbiome samples and viromes of discordant-microbiome 

samples) was calculated using the Psych R package.

De-novo assembly –—Reads from the “large-insert-size library” that remain paired 

(forward and reverse) after the trimming step were assembled using the Integrated 

metagenomic assembly pipeline for short reads (InteMAP) (Lai et al., 2015) with insert size 

325 bp ± 100 bp. Each sample was assembled separately. After the first run of assembly, all 

clean reads were mapped to the assembled contigs using Bowtie2 v.2.2.8 (Langmead and 

Salzberg, 2012) with the following parameters: --local --maxins 800. The pairs of reads that 

aligned concordantly at least once were then submitted for the second run of assembly by 

InteMAP. Contigs larger than 500 bp from all samples were pooled together and compared 

all vs all, using an in-house Perl script. From this analysis, it was possible to identify 

potential circular genomes, and to dereplicate contigs that were contained in over 90% of 

their length within another contig.

The recruitment of reads to the dereplicated metagenomic assemblies was used to build an 

abundance matrix, applying a filter of coverage and length as recommended in Roux et al. 
(Roux et al., 2017). Reads (not tagged as contaminants in the previous step) were mapped to 

dereplicated contigs using Rsubread v.1.28.0 (Liao et al., 2013). Mapping outputs were 

parsed using an in-house Python script into an abundance matrix that was normalized by 

reads per kilobase of contig length per million sequenced reads per sample (RPKM) and 

transformed to Log10(x+1), x being the normalized abundance. Contigs with a normalized 

coverage bellow 5× were excluded. Finally, a filter on contig length was applied to obtain 

virotypes. A length threshold was chosen as the elbow of the decay curve generated when 

plotting the number of contigs as a function of length, which occurred at a length of 1,300 

bp.

HMM annotation –—Independent HMM profiles were built to identify crAss-like contigs 

and Microviridae contigs. To build the HMM-crAsslike profile, sequences for the Major 

Capsid Protein (MCP) of the proposed crAss-like family (Yutin et al., 2018) were retrieved 

from ftp.ncbi.nih.gov/pub/yutinn/crassphage_2017/. Multiple sequence alignments (MSA) 

were done using MUSCLE v.3.8.31(Edgar, 2004) and inspected using UGENE v.1.31.0 

(Okonechnikov et al., 2012); positions with more than 30% of gaps were removed. Finally, 

the HMM-crAsslike profile was built using hmmbuild from the HMMER package v.3.1b2 

(http://hmmer.org/) (Eddy, 1998). For the Microviridae case, all HMM-profiles for the viral 

protein 1 (VP1) developed by Alves et al. (Alves et al., 2016) were adopted.

Predicted proteins of the assembled contigs were queried for matching the HMM-profiles 

using hmmsearch (Eddy, 1998). Matching proteins with an e-value below 1×10−5 were 

considered as true homologs but only proteins between the size rank of the reference 

proteins (crAsslike MCP: 450–510 residues; Microviridae: 450–800 residues), a coverage of 

at least 50% and a percentage of identity of at least 40% to at least one reference sequence 

were used for further analysis. Coverage and identity percentages were determined with a 

BLASTp search of the true homologues against the reference sequences.
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True homologues passing the filters mentioned above were used in phylogenetic analysis. 

Reference and homologous sequences were aligned using MUSCLE v.3.8.31 and sites with 

at least 30% of gaps were removed using UGENE v.1.31.0. A maximum-likelihood (ML) 

phylogenetic analysis was done using RAxML v.8.2.4 (Stamatakis, 2014), the best model of 

evolution was obtained with prottest v.3.4.2 (Darriba et al., 2011) and support for nodes in 

the ML trees were obtained by bootstrap with 100 pseudoreplicates.

Taxonomic profiles –—To infer the taxonomic affiliation of the assembled VLPs, genes 

were predicted from all assembled contigs larger than 500 bp using GeneMarkS v.4.32 

(Besemer et al., 2001). The amino acid sequence of the predicted genes was then used in a 

BLASTp search against the NR NCBI viral database using DIAMOND v.0.7.5 (Buchfink et 

al., 2015) with maximum e-value cutoff 0.001 and maximum number of target sequences to 

report set to 25. Using the BLASTp results, the taxonomy of each gene was assigned by the 

lowest-common-ancestor algorithm in MEtaGenome ANalyzer (MEGAN5) v.5.11.3 (Huson 

et al., 2011) with the following parameters: Min Support: 1, Min Score: 40.0, Max 

Expected: 0.01, Top Percent: 10.0, Min-Complexity filter: 0.44. Independently, the 

taxonomy annotation of each contig was obtained using CENTRIFUGE v.1.0.4 (Kim et al., 

2016) against the NT NCBI viral genomes database. The final taxonomic annotation of each 

contig was then assigned using a voting system where the taxonomic annotation of each 

protein and the CENTRIFUGE annotation of the contig were considered as votes. With all 

the possible votes for a contig, an N-ary tree was built and the weight of each node was the 

number of votes including that node. The taxonomic annotation of a contig will be the result 

of traversing the tree passing through the heaviest nodes with one consideration: if all 

children-nodes of a node have the same weight the traversing must be stopped. The 

taxonomic profile was considered as a subset of the recruitment matrix containing all contigs 

annotated either by the voting system or annotated through the HMM profiles (see above).

Prediction of phage-host interaction –—Clustered Regularly Interspaced Short 

Palindromic Repeats (CRISPRs) were identified using the PilerCR program v.1.06 (Edgar, 

2007) from the same set of 8,163 bacterial used to asses the bacterial contamination. Spacers 

within the expected size of 20 bp and 72 bp (Horvath and Barrangou, 2010) were used as 

queries against virotypes and taxonomically annotated contigs using BLASTn (v.2.6.0+) 

with short query parameters (Camacho et al., 2009). Matches covering at least 90% of the 

spacer and with an e-value < 0.001 were considered to be CRISPR spacer-virus associations. 

Additionally, virotypes and taxonomically annotated contigs were mapped against the 

representatives genomes of the viral clusters in the MVP database (Gao et al., 2018) using 

LAST-959 (Kiełbasa et al., 2011). As viral clusters in MVP comprise sequences that have at 

least 95% identity along at least 80% of their lengths, only matches that fulfill those 

constraints were kept. The host(s) of a contig was determined from its matching viral cluster.

Diversity indexes –—The Shannon diversity index within-samples (α-diversity) and the 

Hellinger distance within co-twins (β-diversity) were calculated using diversity and vegdist 
functions of Vegan R package for all three abundance matrices generated (function, 

taxonomy and read recruitment matrices). Correlations between virome α-diversity and 

microbiome α-diversity were measured using the Pearson correlation coefficient. 
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Correlations between viromes β-diversity and the microbiomes β-diversity were computed 

with a the Mantel test using the Pearson correlation coefficient. Additionally, the β-diversity 

between concordant MZ co-twins was compared to the β-diversity between discordant MZ 

co-twins; p values were calculated using a Mann-Whitney U test.

QUANTIFICATION AND STATISTICAL ANALYSIS

The number of twins/individuals in each group (Figure 1C, Figure 4B, Figure 6, Figure S5.A 

and Figure S5.B) or the number of comparisons (Figure 5, Figure S2 and Figure S5C) is 

denoted using “n”; p values were obtained using Mann-Whitney U test or Mantel test using 

the Python library “scipy”; correlation coefficients were measured as the Pearson correlation 

coefficient using the Python library “scipy”; alpha and beta-diversity metrics were calculated 

with the R package “vegan”; Intraclass coefficient was calculated using the R package 

“psych”; maximum-likelihood phylogenetic analysis was done using RAxML.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGEMENTS

We thank Laura Avellaneda-Franco for helpful discussions. This work was supported by the Max Planck Society, 
by grants from the NIH (NIDDK RO1 DK093595 and DP2 OD007444), and by a Fellowship in Science and 
Engineering to RL from the David and Lucile Packard Foundation. The TwinsUK cohort is supported by the 
Wellcome Trust; European Community’s Seventh Framework Programme (FP7/2007–2013); National Institute for 
Health Research (NIHR)- funded BioResource, Clinical Research Facility and Biomedical Research Centre based at 
Guy’s and St Thomas’ NHS Foundation Trust in partnership with King’s College London.

REFERENCES

Alves JMP, de Oliveira AL, Sandberg TOM, Moreno-Gallego JL, de Toledo MAF, de Moura EMM, 
Oliveira LS, Durham AM, Mehnert DU, Zanotto PM de A, et al. (2016). GenSeed-HMM: A tool for 
progressive assembly using profile HMMs as seeds and its application in Alpavirinae viral 
discovery from metagenomic data. Front. Microbiol 7, 269. [PubMed: 26973638] 

Barylski J, Enault F, Dutilh BE, Schuller MBP, Edwards RA, Gillis A, Klumpp J, Knezevic P, 
Krupovic M, Kuhn JH, et al. (2017). Genomic, proteomic, and phylogenetic analysis of 
spounaviruses indicates paraphyly of the order Caudovirales. bioRxiv. doi: 10.1101/220434

Besemer J, Lomsadze A, and Borodovsky M (2001). GeneMarkS: a self-training method for prediction 
of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. 
Nucleic Acids Res. 29, 2607–2618. [PubMed: 11410670] 

Biller SJ, Schubotz F, Roggensack SE, Thompson AW, Summons RE, and Chisholm SW (2014). 
Bacterial vesicles in marine ecosystems. Science 343, 183–186. [PubMed: 24408433] 

Bray JR, and Curtis JT (1957). An Ordination of the Upland Forest Communities of Southern 
Wisconsin. Ecol. Monogr 27, 326–349.

Breitbart M, Hewson I, Felts B, Mahaffy JM, Nulton J, Salamon P, and Rohwer F (2003). 
Metagenomic analyses of an uncultured viral community from human feces. J. Bacteriol 185, 6220–
6223. [PubMed: 14526037] 

Breitbart M, Haynes M, Kelley S, Angly F, Edwards RA, Felts B, Mahaffy JM, Mueller J, Nulton J, 
Rayhawk S, et al. (2008). Viral diversity and dynamics in an infant gut. Res. Microbiol 159, 367–
373. [PubMed: 18541415] 

Buchfink B, Xie C, and Huson DH (2015). Fast and sensitive protein alignment using DIAMOND. 
Nat. Methods 12, 59–60. [PubMed: 25402007] 

Moreno-Gallego et al. Page 15

Cell Host Microbe. Author manuscript; available in PMC 2020 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, and Madden TL (2009). 
BLAST+: architecture and applications. BMC Bioinformatics 10, 421. [PubMed: 20003500] 

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, 
Goodrich JK, Gordon JI, et al. (2010). QIIME allows analysis of high-throughput community 
sequencing data. Nat. Methods 7, 335–336. [PubMed: 20383131] 

Castro-Mejía JL, Muhammed MK, Kot W, Neve H, Franz CMAP, Hansen LH, Vogensen FK, and 
Nielsen DS (2015). Optimizing protocols for extraction of bacteriophages prior to metagenomic 
analyses of phage communities in the human gut. Microbiome 3, 64. [PubMed: 26577924] 

Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, Harris HMB, Coakley M, 
Lakshminarayanan B, O’Sullivan O, et al. (2012). Gut microbiota composition correlates with diet 
and health in the elderly. Nature 488, 178–184. [PubMed: 22797518] 

Colson P, Fancello L, Gimenez G, Armougom F, Desnues C, Fournous G, Yoosuf N, Million M, La 
Scola B, and Raoult D (2013). Evidence of the megavirome in humans. J. Clin. Virol 57, 191–200. 
[PubMed: 23664726] 

Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, Almeida M, Quinquis B, Levenez 
F, Galleron N, et al. (2013). Dietary intervention impact on gut microbial gene richness. Nature 
500, 585–588. [PubMed: 23985875] 

Darriba D, Taboada GL, Doallo R, and Posada D (2011). ProtTest 3: fast selection of best-fit models of 
protein evolution. Bioinformatics 27, 1164–1165. [PubMed: 21335321] 

David LA, Materna AC, Friedman J, Campos-Baptista MI, Blackburn MC, Perrotta A, Erdman SE, 
and Alm EJ (2014). Host lifestyle affects human microbiota on daily timescales. Genome Biol. 15, 
R89. [PubMed: 25146375] 

De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, 
and Lionetti P (2010). Impact of diet in shaping gut microbiota revealed by a comparative study in 
children from Europe and rural Africa. Proc. Natl. Acad. Sci. U. S. A 107, 14691–14696. 
[PubMed: 20679230] 

Dutilh BE, Cassman N, McNair K, Sanchez SE, Silva GGZ, Boling L, Barr JJ, Speth DR, Seguritan V, 
Aziz RK, et al. (2014). A highly abundant bacteriophage discovered in the unknown sequences of 
human faecal metagenomes. Nat. Commun 5, 4498. [PubMed: 25058116] 

Eddy SR (1998). Profile hidden Markov models. Bioinformatics 14, 755–763. [PubMed: 9918945] 

Edgar RC (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. 
Nucleic Acids Res. 32, 1792–1797. [PubMed: 15034147] 

Edgar RC (2007). PILER-CR: fast and accurate identification of CRISPR repeats. BMC 
Bioinformatics 8, 18. [PubMed: 17239253] 

Gao NL, Zhang C, Zhang Z, Hu S, Lercher MJ, Zhao X-M, Bork P, Liu Z, and Chen W-H (2018). 
MVP: a microbe–phage interaction database. Nucleic Acids Res. 46, D700–D707. [PubMed: 
29177508] 

Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, Van Treuren W, 
Knight R, Bell JT, et al. (2014). Human genetics shape the gut microbiome. Cell 159, 789–799. 
[PubMed: 25417156] 

Goodrich JK, Davenport ER, Beaumont M, Jackson MA, Knight R, Ober C, Spector TD, Bell JT, 
Clark AG, and Ley RE (2016). Genetic determinants of the gut microbiome in UK Twins. Cell 
Host Microbe 19, 731–743. [PubMed: 27173935] 

Gudenkauf BM, and Hewson I (2016). Comparative metagenomics of viral assemblages inhabiting 
four phyla of marine invertebrates. Frontiers in Marine Science 3, 23.

Gudenkauf BM, Eaglesham JB, Aragundi WM, and Hewson I (2014). Discovery of urchin-associated 
densoviruses (family Parvoviridae) in coastal waters of the Big Island, Hawaii. J. Gen. Virol. 95, 
652–658. [PubMed: 24362962] 

Halary S, Temmam S, Raoult D, and Desnues C (2016). Viral metagenomics: are we missing the 
giants? Curr. Opin. Microbiol 31, 34–43. [PubMed: 26851442] 

Horvath P, and Barrangou R (2010). CRISPR/Cas, the immune system of bacteria and archaea. Science 
327, 167–170. [PubMed: 20056882] 

Moreno-Gallego et al. Page 16

Cell Host Microbe. Author manuscript; available in PMC 2020 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hoyles L, McCartney AL, Neve H, Gibson GR, Sanderson JD, Heller KJ, and van Sinderen D (2014). 
Characterization of virus-like particles associated with the human faecal and caecal microbiota. 
Res. Microbiol 165, 803–812. [PubMed: 25463385] 

Hulo C, de Castro E, Masson P, Bougueleret L, Bairoch A, Xenarios I, and Le Mercier P (2011). 
ViralZone: a knowledge resource to understand virus diversity. Nucleic Acids Res. 39, D576–
D582. [PubMed: 20947564] 

Huson DH, Mitra S, Ruscheweyh H-J, Weber N, and Schuster SC (2011). Integrative analysis of 
environmental sequences using MEGAN4. Genome Res. 21, 1552–1560. [PubMed: 21690186] 

Kiełbasa SM, Wan R, Sato K, Horton P, and Frith MC (2011). Adaptive seeds tame genomic sequence 
comparison. Genome Res. 21, 487–493. [PubMed: 21209072] 

Kim D, Song L, Breitwieser FP, and Salzberg SL (2016). Centrifuge: rapid and sensitive classification 
of metagenomic sequences. Genome Res. 26, 1721–1729. [PubMed: 27852649] 

Knowles B, Silveira CB, Bailey BA, Barott K, Cantu VA, Cobián-Güemes AG, Coutinho FH, Dinsdale 
EA, Felts B, Furby KA, et al. (2016). Lytic to temperate switching of viral communities. Nature 
531, 466–470. [PubMed: 26982729] 

Lai B, Wang F, Wang X, Duan L, and Zhu H (2015). InteMAP: Integrated metagenomic assembly 
pipeline for NGS short reads. BMC Bioinformatics 16, 1–14. [PubMed: 25591917] 

Langmead B, and Salzberg SL (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 
357–359. [PubMed: 22388286] 

Lee S, Sung J, Lee J, and Ko G (2011). Comparison of the gut microbiotas of healthy adult twins 
living in South Korea and the United States. Appl. Environ. Microbiol 77, 7433–7437. [PubMed: 
21873488] 

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, and 
1000 Genome Project Data Processing Subgroup (2009). The sequence alignment/map format and 
SAMtools. Bioinformatics 25, 2078–2079. [PubMed: 19505943] 

Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, Arumugam M, Kultima JR, Prifti E, Nielsen T, et 
al. (2014). An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol 
32, 834–841. [PubMed: 24997786] 

Liao Y, Smyth GK, and Shi W (2013). The Subread aligner: fast, accurate and scalable read mapping 
by seed-and-vote. Nucleic Acids Res. 41, e108. [PubMed: 23558742] 

Lim ES, Zhou Y, Zhao G, Bauer IK, Droit L, Ndao IM, Warner BB, Tarr PI, Wang D, and Holtz LR 
(2015). Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat. 
Med 21, 1228–1234. [PubMed: 26366711] 

Lozupone CA, Hamady M, Kelley ST, and Knight R (2007). Quantitative and qualitative beta diversity 
measures lead to different insights into factors that structure microbial communities. Appl. 
Environ. Microbiol. 73, 1576–1585. [PubMed: 17220268] 

Manrique P, Bolduc B, Walk ST, van der Oost J, de Vos WM, and Young MJ (2016). Healthy human 
gut phageome. Proc. Natl. Acad. Sci. U. S. A. 113, 10400–10405. [PubMed: 27573828] 

Manrique P, Dills M, and Young MJ (2017). The human gut phage community and its implications for 
health and disease. Viruses 9, 10.

McDaniel LD, Young E, Delaney J, Ruhnau F, Ritchie KB, and Paul JH (2010). High frequency of 
horizontal gene transfer in the oceans. Science 330, 50. [PubMed: 20929803] 

Minot S, Sinha R, Chen J, Li H, Keilbaugh SA, Wu GD, Lewis JD, and Bushman FD (2011). The 
human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 21, 
1616–1625. [PubMed: 21880779] 

Minot S, Bryson A, Chehoud C, Wu GD, Lewis JD, and Bushman FD (2013). Rapid evolution of the 
human gut virome. Proc. Natl. Acad. Sci. U. S. A. 110, 12450–12455. [PubMed: 23836644] 

Munson-McGee JH, Peng S, Dewerff S, Stepanauskas R, Whitaker RJ, Weitz JS, and Young MJ 
(2018). A virus or more in (nearly) every cell: ubiquitous networks of virus-host interactions in 
extreme environments. ISME J.

Ogilvie LA, and Jones BV (2017). The human gut virome: form and function. Emerging Topics in Life 
Sciences 1, 351–362.

Okonechnikov K, Golosova O, Fursov M, and UGENE team (2012). Unipro UGENE: a unified 
bioinformatics toolkit. Bioinformatics 28, 1166–1167. [PubMed: 22368248] 

Moreno-Gallego et al. Page 17

Cell Host Microbe. Author manuscript; available in PMC 2020 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Palmer C, Bik EM, DiGiulio DB, Relman DA, and Brown PO (2007). Development of the human 
infant intestinal microbiota. PLoS Biol. 5, e177. [PubMed: 17594176] 

Reyes A, Haynes M, Hanson N, Angly FE, Heath AC, Rohwer F, and Gordon JI (2010). Viruses in the 
faecal microbiota of monozygotic twins and their mothers. Nature 466, 334–338. [PubMed: 
20631792] 

Reyes A, Semenkovich NP, Whiteson K, Rohwer F, and Gordon JI (2012). Going viral: next-
generation sequencing applied to phage populations in the human gut. Nat. Rev. Microbiol 10, 
607–617. [PubMed: 22864264] 

Reyes A, Wu M, McNulty NP, Rohwer FL, and Gordon JI (2013). Gnotobiotic mouse model of phage-
bacterial host dynamics in the human gut. Proc. Natl. Acad. Sci. U. S. A 110, 20236–20241. 
[PubMed: 24259713] 

Reyes A, Blanton LV, Cao S, Zhao G, Manary M, Trehan I, Smith MI, Wang D, Virgin HW, Rohwer F, 
et al. (2015). Gut DNA viromes of Malawian twins discordant for severe acute malnutrition. Proc. 
Natl. Acad. Sci. U. S. A 112, 11941–11946. [PubMed: 26351661] 

Rodriguez-Brito B, Li L, Wegley L, Furlan M, Angly F, Breitbart M, Buchanan J, Desnues C, Dinsdale 
E, Edwards R, et al. (2010). Viral and microbial community dynamics in four aquatic 
environments. ISME J. 4, 739–751. [PubMed: 20147985] 

Rodriguez-Valera F, Martin-Cuadrado A-B, Rodriguez-Brito B, Pasić L, Thingstad TF, Rohwer F, and 
Mira A (2009). Explaining microbial population genomics through phage predation. Nat. Rev. 
Microbiol. 7, 828–836. [PubMed: 19834481] 

Roux S, Krupovic M, Debroas D, Forterre P, and Enault F (2013). Assessment of viral community 
functional potential from viral metagenomes may be hampered by contamination with cellular 
sequences. Open Biol. 3, 130160. [PubMed: 24335607] 

Roux S, Emerson JB, Eloe-Fadrosh EA, and Sullivan MB (2017). Benchmarking viromics: an in silico 
evaluation of metagenome-enabled estimates of viral community composition and diversity. PeerJ 
5, e3817. [PubMed: 28948103] 

Sender R, Fuchs S, and Milo R (2016). Are we really vastly outnumbered? revisiting the ratio of 
bacterial to host cells in humans. Cell 164, 337–340. [PubMed: 26824647] 

Shkoporov A, Khokhlova EV, Brian Fitzgerald C, Stockdale SR, Draper LA, Paul Ross R, and Hill C 
(2018). ΦCrAss001, a member of the most abundant bacteriophage family in the human gut, 
infects Bacteroides. bioRxiv. doi: 10.1101/354837

Stamatakis A (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large 
phylogenies. Bioinformatics 30, 1312–1313. [PubMed: 24451623] 

Suttle CA (2007). Marine viruses--major players in the global ecosystem. Nat. Rev. Microbiol 5, 801–
812. [PubMed: 17853907] 

Taylor AL (1963). Bacteriophage-induced mutation in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A 
50, 1043–1051. [PubMed: 14096176] 

Thingstad TF (2000). Elements of a theory for the mechanisms controlling abundance, diversity, and 
biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol. Oceanogr 45, 1320–
1328.

Thingstad TF, Våge S, Storesund JE, Sandaa R-A, and Giske J (2014). A theoretical analysis of how 
strain-specific viruses can control microbial species diversity. Proc. Natl. Acad. Sci. U. S. A 111, 
7813–7818. [PubMed: 24825894] 

Tims S, Derom C, Jonkers DM, Vlietinck R, Saris WH, Kleerebezem M, de Vos WM, and Zoetendal 
EG (2013). Microbiota conservation and BMI signatures in adult monozygotic twins. ISME J. 7, 
707–717. [PubMed: 23190729] 

Toussaint A, and Rice PA (2017). Transposable phages, DNA reorganization and transfer. Curr. Opin. 
Microbiol 38, 88–94. [PubMed: 28551392] 

Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe 
BA, Affourtit JP, et al. (2009). A core gut microbiome in obese and lean twins. Nature 457, 480–
484. [PubMed: 19043404] 

Weitz JS, and Dushoff J (2008). Alternative stable states in host–phage dynamics. Theor. Ecol 1, 13–
19.

Moreno-Gallego et al. Page 18

Cell Host Microbe. Author manuscript; available in PMC 2020 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://bioRxiv


Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA, Bewtra M, Knights D, Walters 
WA, Knight R, et al. (2011). Linking long-term dietary patterns with gut microbial enterotypes. 
Science 334, 105–108. [PubMed: 21885731] 

Yarygin K, Tyakht A, Larin A, Kostryukova E, Kolchenko S, Bitner V, and Alexeev D (2017). 
Abundance profiling of specific gene groups using precomputed gut metagenomes yields novel 
biological hypotheses. PLoS One 12, e0176154. [PubMed: 28448616] 

Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo 
G, Baldassano RN, Anokhin AP, et al. (2012). Human gut microbiome viewed across age and 
geography. Nature 486, 222–227. [PubMed: 22699611] 

Yutin N, Makarova KS, Gussow AB, Krupovic M, Segall A, Edwards RA, and Koonin EV (2018). 
Discovery of an expansive bacteriophage family that includes the most abundant viruses from the 
human gut. Nat Microbiol 3, 38–46. [PubMed: 29133882] 

Moreno-Gallego et al. Page 19

Cell Host Microbe. Author manuscript; available in PMC 2020 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• The gut virome is highly unique to each individual and dominated by 

bacteriophages

• Gut microbiome diversity, within and between subjects, is mirrored in their 

viromes

• These patterns of diversity are driven by bacteriophages, not by eukaryotic 

viruses

• Microbiome abundances and diversity is predicative of virome richness and 

diversity
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Figure 1. Microbiome discordance in twin pairs.
(A) The β-diversity measures of the microbiotas of 354 monozygotic twin pairs from a 

previous study (Goodrich et al., 2014) are shown. Each dot represents the β-diversity of a 

pair of twins, measured by the weighted UniFrac (x-axis), unweighted UniFrac (z-axis), and 

Bray-Curtis (y-axis) β-diversity metrics. The plane is the least squared fitted plane Bray-

Curtis ~ Weighted UniFrac + Unweighted UniFrac. A subset of twin pairs with concordant 

microbiotas (blue) and discordant microbiotas (orange) were chosen from the two edges. 

Black dots indicate the samples used for virome and whole fecal metagenome comparison. 
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(B) Comparison of the taxonomic profiles (relative abundance) at the Phylum level for the 

21 MZ twin pairs concordant (1–9) or discordant (10–21) for their microbiotas. (C) 
Differences in the relative abundances for the major phyla for concordant (blue points, n=9) 

and discordant (orange points, n=12) twin pairs. Mann-Whitney’s U test. *** p < 0.0005, * 

p = 0.055.
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Figure 2. Bacterial contamination in VLP preparations.
(A) Heatmaps of VLP reads from a single sample (4A) mapping to bacterial genomes before 

(upper) and after (lower) the removal of reads determined as contaminants. Genomes are 

sorted by length and split in bins of 100,000 bp. Bacterial genomes with a median coverage 

greater than 100 were considered as contaminants. (B) Cladogram based on the NCBI 

taxonomy of the 65 genomes identified as contaminants across all VLP extractions. (Right) 
Spearman rank correlation coefficient (rho) between the abundance of the bacterial genomes 

in the VLP extractions and 16S rRNA gene profile from the microbiome. (Left) Total 

abundance of each bacterial genome added across all individuals.
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Figure 3. Comparison of the gene content of whole fecal metagenomes and viromes.
(A) The relative abundance of KEGG categories in whole fecal metagenomes and viromes, 

including all hits to IGC genes, regardless of the annotation. (B) Heatmap of the relative 

abundance of the second level of KEGG categories in whole fecal metagenomes and 

viromes, excluding the IGC genes with unknown annotation. A.V.: Additional viromes; 

A.M.: Additional microbiomes (whole genome extractions). Intra-class coefficient (ICC) for 

A.M. = 0.99; ICC for A.V. = 0.85; ICC concordant-microbiome co-twins = 0.69; ICC 

discordant-microbiome cotwins = 0.68.
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Figure 4. Virome composition.
Comparison of the taxonomic profiles at the Family level for the 21 MZ twin pairs 

concordant (1–9) or discordant (10–21) for their microbiomes. (A) The viral family 

composition of the MZ twins. (B) Differences of the relative abundances of each family for 

concordant (blue points, n=9) and discordant (orange points, n=12) twin pairs.
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Figure 5. Bacteriophages diversity correlates with microbiome diversity but eukaryotic viruses 
diversity does not.
(A) Correlation of Shannon α-diversity of viromes to Shannon α-diversity of microbiomes 

(n=42). Virotypes: Pearson correlation coefficient = 0.406, m = 0.3, p = 0.007, R2 = 0.165; 

Taxonomy: Pearson correlation coefficient = 0.389, m = 0.25, p = 0.010, R2 = 0.151; 

Genes: Pearson correlation coefficient = 0.105, m = 0.11, p = 0.506, R2 = 0.011 (B) 
Correlation of the Shannon α-diversity of the virome, calculated from contigs annotated as 

ssDNA eukaryotic viruses, ssDNA phages, dsDNA eukaryotic viruses, and dsDNA phages, 
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to Shannon α-diversity of the microbiome (n=42). ssDNA eukaryotic viruses: Pearson 

correlation coefficient = 0.027, m = 0.034, p = 0.863, R2 = 0.000751; ssDNA 
bacteriophages: Pearson correlation coefficient = 0.394, m = 0.35, p = 0.009, R2 = 0.155; 

dsDNA eukaryotic viruses: Pearson correlation coefficient = 0.143, m = 0.15, p = 0.368, 

R2 = 0.020; dsDNA bacteriophages: Pearson correlation coefficient = 0.400, m = 0.25, p = 

0.008, R2 = 0.16.
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Figure 6. Virome Beta-diversity patterns mirror microbiome Beta-diversity.
Box plots show the distribution of Hellinger distances for microbiomes and viromes, 

according to the three different layers of information recovered (virotypes, genes, and 

taxonomy), for concordant co-twins (solid blue, n=9), discordant co-twins (solid orange, 

n=12), unrelated samples within the concordant co-twins (blue outline, n=144), and 

unrelated samples within the discordant co-twins (orange outline, n=264). Significant 

differences between means (Mann-Whitney’s U test, p < 0.020) are denoted with different 

letters.
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