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Abstract

The functional cofactors derived from vitamin B3 are nicotinamide adenine dinucleotide (NAD+), 

its phosphorylated form, nicotinamide adenine dinucleotide phosphate (NADP+) and their reduced 

forms (NAD(P)H). These cofactors, together referred as the NAD(P)(H) pool, are intimately 

implicated in all essential bioenergetics, anabolic and catabolic pathways in all forms of life. This 

pool also contributes to post-translational protein modifications and second messenger generation. 

Since NAD+ seats at the cross-road between cell metabolism and cell signaling, manipulation of 

NAD+ bioavailability through vitamin B3 supplementation has become a valuable nutritional and 

therapeutic avenue. Yet, much remains unexplored regarding vitamin B3 metabolism. The present 

review highlights the chemical diversity of the vitamin B3-derived anabo-lites and catabolites of 

NAD+ and offers a chemical perspective on the approaches adopted to identify, modulate and 

measure the contribution of various precursors to the NAD(P)(H) pool.

Introduction

Niacin and niacinamide, also known as nicotinic acid (NA) and nicotinamide (Nam), are the 

better known forms of vitamin B3 [1,2]. Along with tryptophan (trp), they are biosynthetic 

precursors to nicotinamide adenine dinucleotide (NAD+), nicotinamide adenine dinucleotide 

phosphate (NADP+) and their respective reduced forms (NAD(P)H), altogether referred as 

the NAD(P)(H) pool. The vitamin B3 metabolome includes the biosynthetic precursors of 

NAD+ (anabolites; Table 1a), the cofactors derived from NAD+ (i.e. the NAD(P)(H) pool; 

Table 1a) and the derivatives generated through catabolic processes (catabolites; Table 1b) 

[3–8]. Altogether, the NAD+-derived cofactors are central to cellular homeostasis and 

growth through their roles in intermediary metabolism, mitochondrial respiration, the Krebs’ 

cycle, ATP production, reactive oxygen species generation and inhibition, and additional 

roles in post-translational protein modifications, protein regulation and second messengers’ 

generation [9–16]. Sub-optimal intracellular levels of these cofactors yield to cellular 

dysfunction, while acute vitamin B3 deficiency leads to pellagra [17,18], a debilitating and 

deadly disease still endemic in some regions of the world where malnutrition is common 
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place. In more affluent countries, clinical vitamin B3 deficiency is due to poor food choices, 

adverse drug reactions, alcoholism and infectious or autoimmune diseases [19–22]. There 

are several additional excellent publications covering in detail the biological and 

physiological roles of the NAD(P)(H) pool and that of its biosynthetic precursors [23–30]. 

The present review covers the breadth of the vitamin B3 metabolome and presents an 

overview of the tools used to modulate the NAD(P)(H) pool and therefore the vitamin B3 

metabolome in biological systems with a focus on mammalian systems. First, the known 

vitamin B3 metabolites (anabolites and catabolites) and the biosynthetic pathways to 

NAD(P)(H) will be summarized. A brief foray in the chemical and chemoenzymatic routes 

to NAD+ precursors will then follow along with an overview of isotopically labeled 

metabolic NAD+ intermediates, which have been used to report on the vitamin B3 

metabolomic profiles..

The chemistry of the NAD(P)(H) pool

The anabolites and catabolites of the vitamin B3 metabolome

Once generated from vitamin B3 derivatives via independent biosynthetic pathways, NAD+ 

can be converted to its reduced form NADH via redox processes or to its phosphorylated 

form NADP+, which, in turn, can enter redox processes to generate its reduced form, 

NADPH. Alternatively, NADH can be phosphorylated to NADPH. This constitutes the 

anabolic pathways to the NAD(P)(H) pool. Upon a range of biochemical and chemically 

driven processes, the components of the NAD(P)(H) pool are converted to nicotinamide or to 

catabolites which are either eliminated through excretion or recycled. The following 

describes these components in greater detail.

Vitamin B3 anabolites—Niacin (NA) and niacinamide (Nam) fall under the vitamin B3 

denomination [1]. Intracellularly, NAD+ is generated from dietary vitamin B3 or trp (Figure 

1) with the contribution made by the latter, known as the kynurenine pathway, varying 

greatly between species and organs [31–36]. Via the kynurenine pathway, biosynthetic 

precursors to NAD+ include kynurenine, 3-hydroxykinurenine, 3-hydroxyanthranilate and 

quinolinate, leading to nicotinic acid mononucleotide (NAMN) [37]. NAMN is also an NAD
+ anabolite through the Preiss-Handler pathway, which uses NA [38], while nicotinamide 

mononucleotide (NMN) is generated in the salvage pathway, which uses Nam. Additional 

NAD+ anabolites include nicotinamide riboside (NR), nicotinic acid (NAR) and nicotinic 

acid adenine dinucleotide (NAAD) [8,39,40].

Vitamin B3 functional catabolites—NAD+ and NADP+ are substrates of enzymes 

capable of cleaving the glycosidic linkage between the northern ribose of the dinucleotide 

and nicotinamide, and replacing the latter with water, nucleophilic nucleobases or side 

chains of peptidic residues (e.g. hydroxyl or carboxylate) [41–49]. Unless chemical 

hydrolysis occurs, this cleavage is a finely orchestrated nucleophilic enzymatic process, 

leading to an exquisitely specific derivative. These derivatives are unique with regard to the 

biology they regulate [50]. NAADP is generated by an as-yet undiscovered biosynthetic 

pathway either from NAAD or from NADP+, regulating intracellular Ca2+ signaling 

processes [51]. The cyclic form of adenosine diphosphoribose, cADPR, produced by a 
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cyclase [5], specifically mobilizes Ca2+ from ryanodine receptors [52], while its linear form, 

ADPR (adenosine diphosphoribose), generated from NAD+ by glycohydrolases, promotes 

Ca2+ cellular uptake [53]. Unlike ADPR itself, acylated forms of ADPR are products of 

NAD+- dependent post-translation modification catalyzed by sirtuins [10,26,54] hydrolyzed 

to ADPR by esterases [55]. Finally, the polymeric forms of ADPR, product of PARP 

enzymes, either covalently bound to proteins or free in solution, act as major complex 

recruiting agents in DNA repair [56–58].

Vitamin B3 catabolites—Many catabolic pathways are responsible for the loss of 

vitamin B3-derived cofactors and of their anabolites. Upon high NA intake, excess NA is 

converted to nicotinuric acid (NUA, Table 1b) in a phase 2 metabolic process when 

conjugated to glycine [59]. Excess Nam is readily oxidized to N-oxide-Nam ( Table 1b) by 

cytochrome P450 [60,61]. Yet, under standard dietary conditions, the bigger contributor to 

vitamin B3 catabolism in human physiology is the methylation of Nam, leading to N-

methyl-Nam (N-Me-Nam; Table 1b). The formation of N-methyl-Nam requires S-

adenosylmethionine. Therefore, in conjunction with homocysteine, N-methyl-Nam is a 

reporter of both the 1-carbon pathway efficacy and the vitamin B3 dietary status [62,63].

Trigonelline is N-methyl nicotinic acid, found abundantly in fenugreek and thought to be 

generated during coffee bean processing [64,65]. Trigonelline is also a catabolite found in 

tissues but less often measured [66] and for which the physiological properties remain 

unexplored. Oxidation of circulating N-methyl-Nam by aldehyde oxidase yields N-

methyl-4-pyridone3-carboxamide (N-Me-4PY) and N-methyl-2-pyridone-5-carboxamide 

(N-Me-2PY) [6,67–69]. Much confusion exists in the literature as to the nomenclature of 

these two entities. The relative production of these catabolites is species-specific as well as 

driven by age and health status [70]. N-Me-2PY has been described as a uremic toxin 

because of the correlation between its abundance in blood and kidney disease states [71]. 

Critically, these two pyridones are produced systemically [72,73]. There, N-Me-2PY is 

thought to be an inhibitor of PARP function at physiologically relevant concentrations 

[67,74,75]. Another catabolite of vitamin B3 is N-ribosyl-3-carboxamide 4-pyridone (4PYR, 

Table 1b). This ribosylated pyridone is also found abundantly in circulation in uremic 

patients. Importantly, it is easily converted to its nucleotide forms (4PYR-MP, 4PYR-DP, 

4PYR-TP, Table 1b) or adenylated to generate pyridone adenine dinucleotide species 

[NAD(P)O, Table 1b] [76–82]. Both the phosphorylated forms of 4PYR and its dinucleotide 

forms are endogenously generated. The synthesis of NADPO has been shown to occur as a 

side-reaction on NAD(P)+ catalyzed by flavin-dependent oxidases, such as ferrodoxin 

reductase [83–85]. In vitro,, the nucleotide forms show substantial ability to inhibit ATP-

dependent kinases, while the dinucleotides are inhibitors of NAD(P)+-dependent metabolic 

redox enzymes at physiologically relevant concentrations [76,86]. A similar class of 

NAD(P)+ catabolites capable of inhibiting key metabolic enzymes are hydroxylated 

NAD(P)H (NAD(P)HX, Table 1b). The generation of these catabolites, which occurs 

chemically, is sufficiently critical to warrant a repair mechanism in all forms of life and the 

regeneration of NAD(P)H as accumulation of these catabolites causes central metabolomic 

perturbations [87,88]. Finally, other even less explored NAD(P)H catabolites are the 1,2-

NAD(P)H and the 1,6-NAD(P)H [89]. These isomers can be mistaken for the α-anomeric 
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forms of NAD(P)H [90–92] and are excellent inhibitors of isolated NAD(P)H-dependent 

redox enzymes. Renalase has been shown to re-oxidize these NAD(P)H isomers in vitro. It 
can then be viewed as a NAD(P)H repair enzyme directly affecting intracellular metabolism 

[93].

Overall, except for N-Me-Nam and N-Me-2PY, the catabolites of the NAD(P)(H) 

metabolome are rarely accounted for in metabolomic studies [94–96]. Furthermore, these 

compounds react readily under standard analytical conditions used for cell and tissues 

metabolomic measurements unless special care is applied and therefore go undetected. As 

such, an in-depth account of the detection protocols of the vitamin B3 metabolome is 

warranted but is beyond the scope of this review. Furthermore, mammalian cells have in 

place at least two known repair mechanisms to control dinucleotidic catabolite levels, 

renalase and NAD(P)HX dehydratase/ epimerase [87,88,93]. Dysregulation of such repair 

processes and accumulation of these catabolites surely impacts cellular homeostasis. Yet, the 

function, regulation and impact of the multiple vitamin B3 repair mechanisms have been 

vastly under-explored.

Biochemical pathways known to sustain the NAD(P)(H) pool

Notably, tryptophan, NA and Nam employ three convergent pathways which require molar 

equivalents of 5-phospho-1-pyrophosphoriboside (Scheme 1; PRPP) to convert quinolinic 

acid and NA to nicotinic acid adenine dinucleotide (NAAD) or Nam to NAD+ (Scheme 1) 

[34].

While cofactors derived from riboflavin (vitamin B2) [97] and pyridoxine (vitamin B6) [98] 

are required by enzymes of the kynurenic pathway to generate quinolinic acid from 

tryptophan, NADP+ and thiamine (vitamin B1) diphosphate are cofactors required for the 

synthesis of PRPP from glucose 6-phosphate [36]. This highlights the dependency of the 

NAD(P)(H) biosynthetic pathways on the bioavailability of three other metabolic cofactors, 

all derived from water soluble B-vitamins.

Along with NA, Nam and trp, NAR and NR are also precursors of NAD+ (Scheme 1). 

Noticeably, QA, NA and Nam require phosphoribosylation as means of biosynthetic 

activation to NAMN [99] and NMN [100–102], while NR and NAR require phosphorylation 

by a specific kinase (Scheme 1) [8,39,103,104]. NAMN and NMN are biosynthetic 

intermediates to NAAD and NAD+, following an adenylyl transfer (Scheme 1) [105–109]. 

NAAD, acting as a pre-NAD+ storage pool [40], is converted to NAD+ by a ligase (NADS) 

(Scheme 1) [35,110]. NADP+ is generated from NAD+ by NAD+ kinase for which NADH is 

a weak substrate yielding NADPH [111]. It must be noted that while NR, NAR and NMN 

are PRPP-independent precursors to the NAD+, they are only molar equivalent precursors to 

NAD+. It is the generation of Nam through NAD+ consuming enzymes and its recycling to 

NAD+ which enables sustained NAD+ levels [112]. To sustain increased NAD+ levels 

through NR supplementation, NRK, NMNAT and NamPRT (nicotinamide phosphori- bosyl 

transferase; Scheme 1) must be functional, with turn-over in excess of that of Nam 

methylation by NNMT and cellular export mechanisms.
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It is only recently that NR and NMN, both found in milk [113,114], have gained recognition 

as nutraceutical precursors of NAD+. NR supplementation in cell-based assays was 

evidenced to boost the NAD(P)(H) pool with a specific effect on the mitochondrial pool and 

function. Supplementation with NA and Nam, while critical in acute vitamin B3 deficiency, 

does not demonstrate the same physiological outcomes compared with that of 

supplementation with NR or NMN [7,15,34,94], indicative of additional controlling factors, 

such as intracellular biodistribution, expression of key biosynthetic enzymes and/or 

bioavailability of PRPP. To explore the parameters controlling functionalization and 

conversion of these NAD+ precursors and their biological endpoints in cell-based assays as 

well as in animals, an extensive synthetic program has been implemented over the past 50 

years.

Accessing biosynthetic precursors of NAD+

NA and Nam can be readily obtained from bacterial broth, foodstuffs or generated from 

petroleum sources [1]. They are now widely available commercially along with some more 

clinically focused versions and formulations [115]. The ribosylated forms of NA or Nam 

have required the development of more substantial synthetic routes.

Enzymatic syntheses—NR may be prepared enzymatically from NAD+ and NMN by 

using snake venom phosphodiesterase and subsequent transformation of NMN to NR with 

prostatic monoesterase [116] or with 5’-nucleotidase [117]. Alternatively, NR can be 

generated from α-D-ribose-1-phosphate and Nam using purine nucleoside phosphor-ylase 

and sucrose phosphorylase [118]. There are only few reports in the literature describing the 

efficient chemical generation of NMN from NR [119–121]. In general, this process is often 

low yielding and associated with difficulties in removing phosphate contaminants. As such, 

enzymatic conversions with isolated NRK or whole cell production have been explored, but 

they too remain challenging. Accessing NAR has been even less explored. Yet, the 

generation of NAMN from NMN using a new cross-linked deamidase aggregate biocatalyst 

has been reported [122]. This offers new opportunities for a facile access to NAR via 

enzymatic routes using phosphatases such as 5’-nucleotidase [8].

Chemical syntheses of nicotinoyl ribosides and derivatives—Two main synthetic 

strategies have been developed to access NR salt forms (NR+X-) (Figure 2). One proceeds 

via a reaction between Nam or derivative A and a peracylated (halo)-D-ribofuranoside B 
resulting in acylated intermediate C that is subsequently converted into the desired NR+X– 

salt. This approach was also applied for the synthesis of NAR (NAR zwitterion). The other 

proceeds via the condensation of N-(2,4-dinitrophenyl)-3-carbamoylpyridinium salt D with 

derivatives of D-ribofuranosylamine E [120]. To date, the first approach has proved the most 

efficient in terms of overall yields and chemo-selectivity. We will summarize advances made 

with this first approach.

Two anomeric α- and β-forms of NR (α-C and β-C; Figure 2) can be generated by 

glycosylation reactions with the stereochemical outcome of the synthesis being dependent 

on the nature and stereochemical position of the leaving group X, nature of the substituents 

at amide nitrogen atom in Nam and conditions of glycosylation, such as solvent and 
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temperature. Because only the β-form of NR or NAR is of biochemical relevance, the most 

valuable synthetic methods offer β-stereoselectivity.

The first chemical syntheses of NR salts (NR+X-) was described by Todd and coworkers 

[123,124] and entailed the glycosylation of nicotinamide (Nam) 1a with either 1-

bromo-2,3,5-tri-O-acetyl-D-ribofuranose to yield the bromide salt, 1-chloro-2,3,5-tri-O-

acetyl-D-ribofuranose to yield the triacetylated chloride salt or 1-chloro-2,3,5-tri-O-benzoyl-

D-ribofuranose to yield the tribenzoylated chloride salt. The halosugars were obtained from 

1,2,3,5-tetra-O-acetyl-D-β-ribofuranose (2a) or 1-O-acetyl-2,3,5-tri-O-benzoyl-D-β-

ribofuranose (2b) [125]. Such chemistry resulted in the generation of both pyridinium 

riboside anomers, with the best results in terms of β-/α-anomer stereoselectivity obtained 

when chlorosugars were used as precursors. Removal of the protecting groups in anhydrous 

methanol saturated with dry ammonia at 0°C yielded NR+Cl— as a 4: 1 mixture of β- and α-

anomers [124]. Low temperature was required to minimize Nam release (Scheme 2).

While several routes and optimization studies have been conducted [126] since the first 

synthetic route development, the most versatile uses tetra-acylated ribosides and TMSOTf as 

a catalyst [127,128]. Sauve and coworkers improved on the method and reported a very 

efficient one-pot procedure for the synthesis of β-NR from ethyl nicotinate [129,130]. Both 

routes generate the triflate salt forms of NR. The triflate salts, deemed unsuitable for 

pharmacological use, must be exchanged for pharmaceutically acceptable anions. Anion 

exchange either by liquid/liquid extraction [131] or by treatment with ion exchange resin 

such as using Amberlite IRA400-Cl have been successfully applied to generated NR+Cl— 

[132]. Oxidation of the reduced form of NR 7 on charcoal in the presence of protic salts, 

such as ammonium salts NH4X-, is an alternative method to anion exchange resulting in 

different salt forms of NR+X—. Acylated NR-triflate and acylated NAR prepared via 

mechanochemical methods, reduced to the acylated 1,4-dihydronicotinamide and 

dihydronicoti- noyl riboside, can be readily extracted in pure form in organic solvents 

(Scheme 3) [133]. The reduced forms of NR 6a-b and NAR are stable to Bronsted bases 

and, therefore, the acyl groups can be removed at room temperature at increased rates 

[134,135]. 1,4-Dihydronicotinamide riboside derivatives may be also oxidized with 

hexachloroacetone or cobalt(II) acetate in the presence of hydrogen peroxide. The later 

process requires removal of cobalt cations with QuadraSil AP resin [136].

Chemical reduction in N-substituted pyridinium salts results in three possible isomeric 

products: 1,2-, 1,4- and 1,6-dihydropyridines (DHP) as illustrated in Figure 3 for 

corresponding dihydro-1-P-D-ribofuranosyl-3- pyridinecarboxamides.

Reduction in pyridinium salts to dihydropyridines has been extensively reviewed in the 

literature [137–140]. Sodium borohydride (NaBH4) and sodium dithionite (Na2S2O4) are the 

most commonly used reducing agents to reduce NAD(P), NMN and NR. However, these 

reagents are not equivalent. Na2S2O4 regioselectively reduces NAD+ to 1,4-

dihydronicotinamide adenine dinucleotide (NADH), and NR to the 1,4–3-carboxamide 

dihydropyridinyl riboside, while reduction in NAD+ and NR+ with NaBH4 or milder 

hydride-based reducing agents results in a mixture of the 1,2-, 1,4- and 1,6-isomers.
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Synthesis of pyridones—While the hydroxylated forms of 1,4–3-carboxamide 

dihydropyridinyl riboside derivatives (e.g. NAD(P)HX) are readily generated from the 

ribosylated species, the pyridone-derived catabolites (N-Me-2/4-PY, 4-PYR, NAD(P) O, 4-

PYR-M/D/TP; Table 1b) require chemical syntheses. 4-Pyridone-3-carboxamide (4PY) and 

2-pyridone-5- carboxamide (2PY) are generated from 4-chloro-3-carboxypyridine and 2-

hydroxy-5-cyanopyridine, respectively [79]. These can then be used to prepare the 

nucleosides [79,141]. Critically, the nucleotide- and dinucleotide-derived pyridones are only 

prepared on analytical scale, generated as enzymatic side-reaction products [142].

Synthesis of isotope-labeled NAD+ precursors (isotopomers and 

isotopologues)

Decaying and stable isotope-labeled derivatives [143–146] have been used to study 

metabolic pathways and bio-distribution processes. Combining separation to detection and 

quantification allows for complex product distributions to be measured. To differentiate 

between biosynthetic components and pathways of the NAD(P)(H) pool, anabolites 

incorporating different profiles of stable isotopes can be used if their incorporation into 

NAD+ leads to versions of NAD+ which can be differentiated by mass (MS) or 

fragmentation patterns (MS2). Here, enter two critical definitions: that of isotopomers which 

are molecules which vary in the position of labeled atom, such as 2’−2H-NR versus 1’−2H-

NR and isotopologues which are molecules which differ by containing different isotopes, 

such as 2H-NR versus 13C-NR. These isotopically labeled compounds will possess different 

exact molecular mass and/or fragments’ exact mass.

Presently, the rationale applied to selecting appropriate isotopologues is driven by the 

question being asked and the levels of the isotopically labeled derivatives to be detected. 

Bioavailability and biodistribution studies in animals are often addressed using decaying 

isotopomers. Combined to liquid chromatography, this highly sensitive method differentiates 

between the bio-transformed radio-isotopically labeled products, e.g. [147]. Furthermore, 

the uniformly labeled NAD+ is commercially available and amenable to chemoenzymatic 

transformations. For instance, radio-isotopically labeled NAD+ can be converted to its 

NADP+ parent by NAD+ kinase [148]. It is also reduced enzymatically to NADPH [148]. 

These can be used as starting materials in some of the enzymatic processes described below.

Non-decaying isotopomers provide the necessary versatility to interrogate fluxes if the 

building blocks and products can be traced with enough statistical confidence at levels above 

natural isotopic abundance. For instance, to establish in mammals whether NR was directly 

converted to NMN, or hydrolyzed to Nam prior to it being incorporated into NMN, the use 

of a doubly labeled isotopomer of NR was used [94]. This isotopomer incorporated one 

heavier isotope on the nicotinamide ring and one heavier isotope on the furanose. The glyco- 

sidic breakage led to mono-labeled NAD+, while the direct incorporation led to doubly 

labeled NAD+ being detected. In cell work study, this type of multi-site labeling informs on 

the regulation of the biosynthetic pathways and of the turn-over of NAD+ by consuming and 

biosynthetic enzymes [34,40,107].

Makarov et al. Page 7

Biochem Soc Trans. Author manuscript; available in PMC 2020 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Isotopically labeled forms of Nam, NA and trp are available commercially and can thus be 

selected at will. Similarly, ribosylated derivatives, for which isotope labels may be 

incorporated into the sugar residue (2H, 3H, 18O, 13C and 14C isotopes) and the nicotinamide 

or nicotinic core (18O, 13C, 14C and 15N isotopes), or both (Figure 4), require dedicated 

chemoenzymatic or chemical syntheses.

Decaying isotopically labeled NAD+ anabolites, such as synthetic tritiated nucleotides and 
32P-containing ATP, have been combined to chemoenzymatic preparations to allow for the 

efficient generation of radiolabeled NAD(P)(H) pools [149–155]. The enzymatic methods 

allow preparation of not only NR derivatives labeled in the Nam core but in the ribosyl 

moiety as well when labeled phosphoribosyl pyrophosphate (PRPP) is used. An example of 

this methodology is found in work of Kašarov and Moat describing preparation of 

[carbonyl-14C]NR from corresponding 14C-labeled NAD+ catalyzed by enzymes from 

Proteus vulgaris OX-19 [156]. Saunders et al. [117] describe the preparation of 

[carbonyl-14C]NR and [4-3H]NR by the treatment of corresponding radiolabeled NMN with 

5’-nucleotidase. Chemical synthesis of tritium-labeled NR and subsequent enzymatic 

synthesis of tritium-labeled NMN as well as corresponding [2’−3H]-NAD+ are described in 

work of Cen and Sauve [157], which also describes the synthesis of NAD+ containing 18O-

label in the NR portion of the molecule and originating from [5-18O]glucose. Bull et al. 

[158] describes the chemical synthesis of deuterium-labeled [1’−2H]NR+Br— and 

[1’−2H]NMN. Once purified, this was used to prepare [1’−2H]NAD+ enzymatically, which 

was then enzymatically converted to [carbonyl-14C,1’−2H]NAD+ with [carbonyl-14C]Nam. 

In a series of papers by Schramm et al. dealing with the enzymatic synthesis of [3H,14C] 

NAD+ isotopomers, the authors used [2-3H]-, [5-3H]-, [6-3H]-, [2-14C]- and [6-14C]glucose 

and nicotinic acid to generate corresponding [1’−3H]-, [2’−3H]-, [4’−3H]-, [5’−3H]-, 

[1’−14C]-, [5’−14C]NAD+; they also describe preparation of 15N-labeled NAD+ 

isotopologues, such as [1’−14C,1-15N]NAD+ and [5’−14C,1-15N]NAD+ (primed numbers 

indicate atomic locations in the ribosyl residue of NR part of NAD+), using 15N-labeled NA 

as a source of the label [159–162]. The enzymatic synthesis of [14C]NR was achieved from 

unlabeled NAD+ and [carbonyl-14C] Nam in the presence of ADP-ribosylcyclase to give 
14C-NAD+, followed by treatment with phosphodiesterase I and alkaline phosphatase [163].

While extremely sensitive, detection of radiation-emitting entities requires special laboratory 

set-up and therefore limits its use by the wider research community. Detection of non-

decaying isotopic modifications are less sensitive but rely on more generally adopted 

protocols [145]. Yet, accurate measurements of the vitamin B3 metabolome in biological 

systems have been limited by the chemical availability of chemical standards and tailor-

made vitamin B3 metabolites. However synthetic efforts have been undertaken towards 

achieving higher availability of labeled and non-labeled standards for an increased coverage, 

characterization and quantification of the metabolome. The use of isotopically labeled 

vitamin B3 metabolites combined to powerful targeted metabolomic analytical methods has 

proved particularly suited to improving our knowledge of vitamin B3 both at cellular and 

organismal levels, allowing rapid translational discoveries [34,164]. This has been enabled 

by dramatic advances in the field of mass spectroscopy, metabolomics and large data set 

management along with an increased access to molecules purposefully incorporating 
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isotopes that enable their detection and quantification as well as inform of their 

modifications.

According to the approach described by Tran et al. [163], [13C,18O]NR can be generated 

from [U-13C] glucose and NA enzymatically converted to [13C]NAAD containing fully 13C-

labeled ribosyl residue in NAR part of the NAAD molecule. This synthesis requires usage of 

10 enzymes, along with ATP, phospho(enol)pyru-vate, NADP+ and α-ketoglutarate. In the 

second — again enzymatic — step, purified 13C-labeled NAAD was transformed to 

corresponding [13C]NAD+ by NAD+ synthetase. Then, purified [13C]NAD+ was incubated 

with [18O]Nam (prepared by chemical reaction of 3-cyanopyridine with 18O-water) in the 

presence of ADP-ribosylcyclase to give [13C,18O]NAD+ that was subsequently degraded by 

using phosphodiesterase I and alkaline phosphatase to quantitatively afford [13C,18O]NR. 

Furthermore, the enzymatic synthesis of 18O-labeled NAD+ from non-labeled NAD+ can be 

achieved using glycohydrolase/cyclase CD38 and 18O-nicotinamide (20-fold excess) [165]. 

Mills et al. [105] used double-labeled NMN prepared via a procedure based on the work of 

Lee et al., while Ratajczak et al. mention the synthesis of 18O-labeled NR from [18O]Nam 

and subsequent synthesis of 18O-labeled NNM by phosphorylation with NRK1 [94,107]. 

Chemical sequences described above were applied to generate [18O]NR from 18O-labeled 

Nam and [2’−2H,carbonyl-13C]NR generated from the 2’−2H-1,2,3,5-tetra-O-acetyl-β-D-

ribofuranose and [carbonyl-13C]Nam to establish biodistribution and function [104]. Finally, 

[2’−2H,carbonyl-13C]NAR was synthesized and compared with [2’−2H, 18O]NR in 

metabolic fluxes and organelle transport experiments [34,40].

Conclusion

Overall, many chemical syntheses and chemoenzymatic syntheses have been developed to 

identify and trace the metabolites and precursors of NAD(P)(H) and quantify the metabolic 

distribution following supplementation. Current limitations associated with establishing a 

true representation of the vitamin B3 metabolome are associated with the breadth of 

molecules which this metabolome includes, the synthetic challenges associated with their 

individual preparation, the cost of the isotopically labeled reagents and the scale on which 

syntheses are carried out. However, these limitations appear to slowly fade as more efficient 

syntheses become available and enable cell-based kinetic studies and animal 

pharmacokinetics investigations. This review aimed to update our view of the vitamin B3 

metabolome and the current chemical efforts undertaken in the field of NAD+ biology to 

better understand its role in cellular biology and physiology.
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Abbreviations

4PYR N-ribosyl-3-carboxamide 4-pyridone

ADPR adenosine diphosphoribose
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ADPRP adenosine diphosphoribose phosphate

N-Me-2PY N-methyl-2-pyridone-5-carboxamide

N-Me-4PY N-methyl-4-pyridone3-carboxamide

NA nicotinic acid

NAAD nicotinic acid adenine dinucleotide

NAADP nicotinic acid adenine dinucleotide phosphate

NAD adenine dinucleotide

NADH 1,4-dihydronicotinamide adenine dinucleotide

NADP nicotinamide adenine dinucleotide phosphate

NADS nicotinamide Adenine dinucleotide synthase

Nam nicotinamide

NAMN nicotinic acid mononucleotide

NAPRT Nicotinic acid phosphoribosyl transferase

NAR nicotinic acid

NMN nicotinamide mononucleotide

NMNAT nicotinamide mononucleotide adenylyl transferase

NR nicotinamide riboside

NRK nicotinamide riboside kinase

PRPP 5-phospho-1-pyrophosphoriboside
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Perspectives

1. Since NAD+ seats at the cross-road of metabolism and cellular signaling, 

there is an urgent need to acquire a greater evidence-based understanding of 

vitamin B3 metabolism and of its role in health, diseases and ageing.

2. Increased access to fit-for-purpose chemical entities and biosynthetic 

intermediates has greatly enabled the recent discoveries in the NAD+ field and 

facilitated translational research in ageing, metabolic diseases and nutrition.

3. As further analytical refinements are achieved, and analytical standards 

become more widely available, the cellular functions of endogenously 

generated vitamin B3 catabolites will come under greater scrutiny. 

Furthermore, as the functional co-dependence between the NAD(P)(H) pool 

and cofactors derived from vitamin B1 (thiamine), vitamin B2 (riboflavin), 

vitamin B5 ( pantothenate), vitamin B6 ( pyridoxine) and vitamin B9 (folate) 

becomes more apparent, vitamin B-targeted metabolomics will offer new 

functional perspectives on the B-vitaminome.
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Figure 1. Precursors to NAD+.
Blue box: PRPP-dependent NAD+ biosynthetic pathways; Green box: PRPP and vitamin B1, 

B2 and B6-independent pathways; PRPP, 5-phospho-1-pyrophosphoriboside; vitamin B1, 

thiamine; vitamin B2, riboflavin; vitamin B6, pyridoxine; NA, niacin/nicotinic acid; Nam, 

niacinamide/nicotinamide; NR, nicotinamide riboside; NAR, nicotinic acid riboside.
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Figure 2. 
Synthetic routes to nicotinamide riboside (NR+X—).
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Figure 3. 
Reduction in derivatives of NR+X— into corresponding NRH derivatives.
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Figure 4. 
General representation of isotope-labeled NR derivative; illustrative labeled sites are shown 

by colored asterisks.
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Scheme 1. Detailed biosynthetic pathways to the NAD(P)(H) pool components.
trp, tryptophan; Gln, glutamine; PRPP, 5-phosphoriboside pyrophosphate; NAPRT, nicotinic 

acid phosphoribosyl transferase; NamPRT, nicotinamide phosphoribosyl transferase; 

NMNAT, nicotinamide mononucleotide adenylyl transferase; NRK, nicotinamide riboside 

kinase; NADS, nicotinamide adenine dinucleotide synthase; NADK, nicotinamide adenine 

dinucleotide kinase; NADHK, NADH kinase; NQO2: N-ribosyldihydronicotinamide : 

quinone reductase 2.
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Scheme 2. 
Synthetic sequence to 1-β-D-ribofuranoside nicotinamide chloride.
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Scheme 3. 
Synthesis of the reduced form of NR as a synthetic intermediate to NR.

Makarov et al. Page 27

Biochem Soc Trans. Author manuscript; available in PMC 2020 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Makarov et al. Page 28

Table 1a

Chemical structures and abbreviations of the anabolites constituting the vitamin B3 metabolome

Anabolites of the vitamin B3 metabolome, precursor to the NAD(P)(H) pool

Abbreviations: NA, niacin/nicotinic acid; Nam, niacinamide/nicotinamide; NR, nicotinamide riboside; NAR, nicotinic acid riboside; NAMN, 
nicotinic acid mononucleotide; NMN, nicotinamide mononucleotide; NAAD, nicotinic acid adenine dinucleotide; NAADP*, nicotinic acid adenine 

dinucleotide phosphate; NAD+, nicotinamide adenine dinucleotide; NADP+, nicotinamide adenine dinucleotide phosphate; NADH, nicotinamide 
adenine dinucleotide reduced form; NADPH, nicotinamide adenine dinucleotide phosphate reduced form. *Generated via a yet unknown 
mechanism.
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Table 1b

Chemical structures and abbreviations of the catabolites constituting the vitamin B3 metabolome

Catabolites of the vitamin B3 metabolome

Abbreviations: N-Me-Nam, N-methyl nicotinamide or trigonellinamide; N-methyl-NA, N-methyl nicotinic acid or trigonelline; N-Oxide-Nam, N-
oxide nicotinamide; N-Me-4PY, N-methyl-4-pyridone-3-carboxamide; N-Me-2PY, N-methyl-2-pyridone-4-carboxamide; 4PYR, 1-β-D-
ribofuranosyl 4-pyridone-3-carboxamide; 4PYR-MP (n = 1), 1 -β-D-ribofuranosyl 4-pyridone-3-carboxamide monophosphate; 4PYR-DP (n = 2), 1 
-β-D-ribofuranosyl 4-pyridone-3-carboxamide diphosphate; 4PYR-TP (n = 3), 1 -β-D-ribofuranosyl 4-pyridone-3-carboxamide triphosphate; 
NADO, 4-pyridone-3-carboxamide adenine dinucleotide; NADPO, 4-pyridone-3-carboxamide adenine dinucleotide phosphate; 1,2-NADH, 1,2-
dihydronicotinamide adenine dinucleotide; 1,2-NADPH, 1,2-dihydronicotinamide adenine dinucleotide phosphate; 1,6-NADH, 1, 6-
dihydronicotinamide adenine dinucleotide; 1,6-NADPH, 1,6-dihydronicotinamide adenine dinucleotide phosphate; NADHX, adenosine 5’-
(trihydrogen diphosphate), P′ 5′ -ester with 1,4,5,6-tetrahydro-6-hydroxy-1 -β-D-ribofuranosyl-3-pyridinecarboxamide also known as 6-

hydroxylated nicotinamide adenine dinucleotide reduced form. NADPHX, adenosine 5’-(trihydrogen diphosphate), P′ 5′-ester with 1,4,5,6-

tetrahydro-6-hydroxy-1-β-D-ribofuranosyl-3-pyridinecarboxamide phosphate also known as 6-hydroxylated nicotinamide adenine dinucleotide 
phosphate reduced form. cADPR, cyclic adenosine diphosphoriboside; ADPR, adenosine diphosphoribose; ADPRP, adenosine diphosphoribose 
phosphate; PAR, poly adenosine diphosphoriboside; Ac-ADPR, acetyl adenosine diphosphoribose; Suc-ADPR, succinyl adenosine 
diphosphoribose; acyl-ADPR, acyl adenosine diphosphoribose.
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