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Study Objectives: Snoring is perceived to be directly proportional to sleep apnea severity, especially obstructive sleep apnea (OSA), but this notion has 
not been thoroughly and objectively evaluated, despite its popularity in clinical practice. This might lead to overdiagnosis or underdiagnosis of OSA. The 
goal of this study is to examine this notion and objectively quantify the relationship between sleep apnea and snoring detected using advanced signal 
processing algorithms.
Methods: We studied adults referred for polysomnography, from which the apnea-hypopnea index (AHI) was derived. Breath sounds were recorded 
simultaneously, from which snoring was accurately quantified using acoustic analysis of breath sounds and machine-learning computer algorithms. The snore 
index (SI) was calculated as the number of snores per hour of sleep.
Results: In 235 patients, the mean AHI was 20.2 ± 18.8 and mean SI was 320.2 ± 266.7 events/h. On the one hand, the overall correlation between SI and 
AHI was weak but significant (r = .32, P < .0001). There was a significant stepwise increase in SI with increasing OSA severity, but with a remarkable overlap 
in SI among OSA severity categories. On the other hand, SI had weak negative correlation with central AHI (r = −.14, P = .035). SI had modest positive and 
negative predictive values for OSA (0.63 and 0.62 on average, respectively) and good sensitivity but low specificity (0.91 and 0.31 on average, respectively) 
attributed to the large number of snorers without OSA.
Conclusions: Snoring on its own is probably of limited usefulness in assessing sleep apnea presence and severity, because of its weak relationship with 
AHI. Thus, the complaint of snoring should be interpreted with caution to avoid unnecessary referrals for sleep apnea testing. Conversely, clinicians should be 
aware of the possibility of missing diagnosis of patients with sleep apnea who have minimal snoring.
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BRIEF SUMMARY
Current Knowledge/Study Rationale: Snoring, along with other symptoms, is routinely used in screening tools for sleep apnea. It is often thought 
that the more prominent the snoring, the worse the sleep apnea. Most studies that examined this notion relied on self-reporting of snoring. Objective 
quantification of snoring and its relationship to the presence and severity of sleep apnea have not been thoroughly investigated.
Study Impact: This is the first study to deploy advanced techniques for accurate determination of snoring frequency. Snoring frequency was found 
to have a modest predictive value for sleep apnea and a tenuous relation with its severity. Our findings suggest that assessment of snoring alone is 
probably of limited usefulness in screening for obstructive or central sleep apnea, and it should be more appropriately combined with assessment of 
other features of sleep apnea, such as daytime sleepiness.

INTRODUCTION

Sleep apnea is characterized by recurrent cessation of breath-
ing during sleep. The two main types are obstructive sleep ap-
nea (OSA), which results from upper airway narrowing and 
collapse, and central sleep apnea (CSA), which results from 
lack of central respiratory drive and also by an overshoot and 
undershoot of breathing regulation during periodic breathing. 
Apneas are frequently terminated by arousals that disrupt sleep 
and lead to excessive daytime sleepiness and fatigue.1 OSA is 
the more common of the two conditions and affects approxi-
mately 7% of adults2,3 in whom it is independently associated 
with increased risk of motor vehicle accidents,4 cardiovascular 

diseases,5 and impaired cognitive function.6 The physiological 
presence and severity of OSA are most commonly assessed 
by the frequency of apneas and hypopneas per hour of sleep 
(apnea-hypopnea index or AHI).

Snoring, the most common symptom of OSA, is reported by 
up to 94% of patients with OSA.7 Snoring is a harsh respira-
tory sound caused by passage of air through a narrowed airway 
resulting in tissue vibration. It is commonly thought that the 
louder and more frequent the snoring, the worse the OSA. How-
ever, a substantial proportion of the general population (10% to 
60%) are habitual snorers,8–11 but most do not have OSA.2 This 
relationship was mostly assessed by self-reporting or by means 
of OSA screening questionnaires, which are limited by their 
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subjectivity and are likely biased by self-perception, and the 
presence or absence of a bedmate who witnesses snoring.12

Few studies tried to objectively investigate the relationship 
between snoring and OSA severity, but such studies have relied 
mainly on the sound intensity (amplitude) or sound bursts.13,14 
This approach assumes that snoring has a higher sound inten-
sity than nonsnoring breath sounds. This approach has limita-
tions; first, snoring is not uniform in intensity. For example, 
snoring associated with obstructive events is louder than snor-
ing not associated with obstructive events.15 Second, this ap-
proach does not take into account that some nonsnoring breath 
sounds, such as postapneic hyperventilation or gasping, which 
have high amplitude, might be falsely misclassified as snoring 
by an amplitude-based snoring detection system. Accordingly, 
using a sound amplitude threshold to detect snoring can result 
in missing low amplitude snores or falsely labeling high ampli-
tude breath sounds as snoring. This is manifested by the very 
low specificity (38.5%) of sound amplitude levels in detecting 
snoring.16 Thus, the relationship between accurately measured 
snoring and OSA remains to be fully elucidated. Addition-
ally, snoring has been very sparsely examined in the context 
of CSA.

To overcome these limitations, we have developed a sys-
tem to detect individual snores based on the acoustic nature 
of the breath sounds regardless of its amplitude solely.17 This 
system is capable of accurately identifying individual snores, 
which are then quantified in order to evaluate their relation-
ship to sleep apnea (both OSA and CSA). Machine learning 
algorithms have been deployed by other researchers for iden-
tifying snoring and examining snoring acoustic features in 
snorers with and without OSA, in a small set of participants.18 
However, to our knowledge, there are no reports on using ma-
chine learning–identified snoring to accurately and objectively 
examine relationship between snoring frequency and the pres-
ence and severity of sleep apnea, which is the goal of this study.

METHODS

Participants
We recruited consecutive patients at least 18 years of age re-
ferred for polysomnography (PSG) due to a history suggestive 
of sleep apnea including at least two of the following symp-
toms: a history of loud habitual snoring, restless sleep, morn-
ing headaches, or excessive daytime sleepiness. Exclusion 
criteria were breath sound recordings less than 3.5 hours or 
sleep efficiency less than 30% on the PSG. The protocol was 
approved by the local research ethics board and participants 
provided written informed consent prior to participation.

Polysomnography
Participants underwent overnight PSG using standard tech-
niques and scoring criteria for sleep stages and arousals from 
sleep.19,20 Thoracoabdominal movements and tidal volume 
were measured by respiratory inductance plethysmography 
(Respitrace, Ambulatory Monitoring Inc, Ardsley, New York, 
United States). Airflow was measured by nasal pressure cannu-
lae (Binaps, Salter Labs, Arvin, California, United States) and 

a thermistor (ThermiSense, Salter Labs). Arterial oxyhemo-
globin saturation (SaO2) was measured by oximetry (Nellcor, 
N-200 pulse oximeter, Nellcor Inc, Minneapolis, Minnesota, 
United States). Signals were recorded on a computerized sleep 
scoring system (Sandman, Nellcor Inc). An infrared camera 
recording (Sony PTZ IP/Analog Hybrid Camera) was used to 
determine body position throughout the night. Apnea was de-
fined as a reduction in the respiratory signals by ≥ 90% last-
ing ≥ 10 seconds and hypopnea as a reduction by ≥ 30 to 90% 
lasting ≥ 10 seconds and accompanied by a ≥ 3% desaturation 
or an arousal from sleep. Respiratory events were classified 
as obstructive if there was out-of-phase thoracoabdominal 
motion or flow limitation on the nasal pressure tracing, and 
central if there was absent or in-phase thoracoabdominal mo-
tion without evidence of airflow limitation, during apneas and 
hypopneas, respectively. The AHI was calculated as the total 
number of apneas and hypopneas per hour of sleep. Obstruc-
tive AHI (AHIO) and central AHI (AHIC) were calculated as 
the number of obstructive events or central events per hour of 
sleep, respectively. Sleep apnea was considered to be an OSA 
disorder if ≥ 50% of events were obstructive, and CSA if ≥ 50% 
of events were central. Sleep apnea was further classified into 
mild (AHI 10 to < 20 events/h), moderate (AHI 20 to < 30 
events/h), and severe (AHI ≥ 30 events/h).

Identification of Snores
Simultaneous with PSG, breath sounds were captured by a 
portable monitoring device, BresoDX (BresoTec Inc., Toronto, 
Ontario, Canada).21,22 It consists of an open lightweight face 
frame with an embedded electronic module and a microphone 
as shown in Figure 1, of which the technical details have 
been described previously.22 Breath sounds from the nose and 
mouth were sampled at 16 kHz and stored continuously for 
up to 8 hours on a micro SD card. Upon completion of the 
overnight study, data were transferred to a central server for 
acoustic analysis.

Snores were automatically detected using an algorithm for 
breath sounds classification that has been previously described 
and validated against the human ear.17 Briefly, in that study, a 
human operator, who was blinded to the machine score, man-
ually annotated audio of breath sounds based on this defini-
tion: snoring is a harsh, low- pitched sound produced by tissue 
vibration during passage of air through a partially collapsed 
upper airway during sleep.23,24 Separately, audio files were seg-
mented into 64 ms, from each 10 acoustic variables (features) 
that were calculated to be used by the machine learning algo-
rithm. The main features were: periodicity, which detects peri-
odic sounds resulting from vibration of tissues during snoring; 
signal energy, which is proportional to sound amplitude; ratio 
of frequencies bands above and below 400 Hz; flatness of the 
frequency spectrum; uniformity of the signal; and entropy, a 
measure of signal’s uncertainty.17 Subsequently, the acoustic 
features were fed into a machine learning algorithm known as 
Random Forest classifier, along with the human annotations 
as the ground truth. The algorithm learns the statistical dis-
tribution of the acoustic features for snoring and other breath 
sounds in a phase referred to as the training phase. The last 
phase is the validation phase, in which each participant was 
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treated according to the algorithm as new unseen data and their 
audio was classified into snoring and nonsnoring classes. The 
machine classifier output was compared against the human an-
notations in each participant, and the accuracy of the machine 
was calculated for each participant. The average accuracy for 
all participants we reported was 97.5%.17

This method is far more sophisticated than detection of 
snoring by simply relying on sound amplitude (loudness or 
intensity) because it incorporates other sound features, which 
makes it sensitive to even low-amplitude snores. For example, 
Figure 2 shows that although snoring was lower in amplitude 
than some nonsnoring breath sounds, the algorithm accurately 

delineated the beginning and end of the snores. Finally, the 
total number of snores per hour of sleep was considered as the 
snoring index (SI).

Statistical Analysis
The correlation coefficient between SI and AHI was calculated 
for the entire population. Data normality was tested using Jarque-
Bera normality test. Kruskal-Wallis test, the equivalent to analy-
sis of variance, for nonparametric data was performed to detect 
differences in SIs among subgroups of sleep apnea severity. Post 
hoc analyses were then performed by the Tukey-Kramer method 
to compare between-group medians. To evaluate the likelihood 

Figure 2—Illustration of breath sounds waveforms.

A 19-second waveform of breath sounds showing 5 breaths. The identification function found by the automatic classifier (shown in red) is high when snoring 
is present and low otherwise. The second snore (B) is enlarged to show the periodic nature of its waveform as compared with the more aperiodic waveforms 
of inspiration (C) and expiration (D) that were not considered snores. Although snoring was generally similar or lower in amplitude than other breath sounds 
such as the expiration in (D), the classifier correctly identified snoring because of incorporation of the acoustic features of the breath sounds. Reprinted 
from Singh et al. The effect of sitting and calf activity on leg fluid and snoring. Respiratory Physiology & Neurobiology. 2017;240:1-7, copyright 2017, with 
permission from Elsevier (license number 4458921247048).

Figure 1—Illustration of the BresoDX device.

Illustration of the BresoDX device used to capture breath sounds.
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of snoring to predict OSA, the positive and negative predictive 
values (PPV and NPV), sensitivity, and specificity were calcu-
lated. Because an SI cutoff that defines a snorer does not exist 
in the literature, we used two nominal SI cutoffs of 50 and 100 
snores/h to define a snorer. Additionally, the receiver operating 
characteristic (ROC) curves of SI for detecting OSA were plot-
ted, in which sensitivity (the true positive rate) is plotted against 
1-specifity (false-positive rate) for different AHI cutoffs. The ar-
eas under the ROC curves were calculated as a measure of how 
useful SI is in distinguishing those with and without OSA.

RESULTS

A total of 235 patients met the inclusion criteria and were included 
in the study, whose characteristics, AHIs, and SIs distributions 
are displayed in Table 1. Of those, 82 had no sleep apnea, 69 
had mild, 33 had moderate, and 51 had severe sleep apnea. A to-
tal of 1,180,156 breaths were identified including 410,949 snores. 
Figure 3 demonstrates the distribution of 3 of the 10 acoustic 
features of snoring, normal inspiration, and expiration.

Correlation Between Snoring and AHI
The relationship between SI and overall AHI was weak but 
significant (r = .32, P < .0001). There was a somewhat stron-
ger relationship between SI and AHIO (r = .40, P < .0001) and 
very weak negative correlation with AHIC (r = −.14, P = .035) 
as demonstrated in Figure 4. A total of 136 patients had an 
AHIO ≥ 10, whose mean SI was 385.6 ± 284.3 snores/h. 
However, 16 patients had an AHIC ≥ 10 whose mean SI was 
220.4 ± 188.8 snores/h, which was significantly lower than that 
of the former group (P = .016). Because SI is positively related 
to the AHIO but not AHIC, subsequent results examine the rela-
tionship between SI and AHIO only.

Change in SI According to OSA Severity
There is a stepwise increase in SI with increasing OSA severity 
(ie, no sleep apnea, mild, moderate, and severe), but with a sub-
stantial overlap in the SI among categories of OSA severity as 
depicted in Figure 5. The Kruskal-Wallis test showed that the 
groups’ medians are statistically different (P < .001). Post hoc 
analysis showed that distant groups had statistically different 
medians whereas adjacent ones did not (Figure 5.)

Snoring Predictive Value for OSA
Of patients with OSA and an AHIO ≥ 15 events/h, 3.2% had 
minimal snoring with an SI < 50 and 10.8% with an SI < 100 
snores/h. Conversely, of patients without OSA (AHIO < 15 
events/h), 82.4% were snorers with an SI ≥ 50 and 66.2% with 
SI ≥ 100 snores/h. Sensitivity, specificity, PPV, and NPV of snor-
ing for detecting OSA, defined as AHIO ≥ 5, 10, or 15 events/h, 
are displayed in Table 2. The area under the ROC of SI for iden-
tifying OSA using AHIO cutoffs of ≥ 5, 10, and 15 events/h were 
0.78, 0.67, and 0.73 respectively, as depicted in Figure 6.

DISCUSSION

Although the complaint of snoring is commonly considered 
a cardinal feature of sleep apnea, there is little objective evi-
dence to support this self-reported observation. We therefore 
examined relationships between objectively measured indices 
of snoring frequency and the presence and severity of sleep ap-
nea assessed by the AHI. The two novel and most important 

Figure 3—Feature space of breath sounds.

Feature space: three-dimensional distribution of three acoustic features: 
periodicity, frequency bands ratio, and spectral flatness for three breath 
sounds, snoring, inspiration, and expiration. All features are normalized 
between 0–1 with arbitrary units. The three sound classes show distinct 
clustering of their features, which allows the machine learning algorithm 
to identify breath sound classes. Each point represents the average 
value of 500 instances, eg, 1 blue point represents 500 snores.

Table 1—Patient characteristics.
Sex (M:F), n (%) 148 (63.0): 87 (37.0)
Age, years 54.8 ± 15.0
BMI, kg/m2 30.5 ± 7.1
SI, snores/h 320.2 ± 266.7
Mean AHI, events/h 20.2 ± 18.8
Mean AHIO, events/h 17.0 ± 17.5
Mean AHIC, events/h 3.1 ± 7.5
Obstructive events

Total number 21,497.0
Mean 91.5 ± 91.9

Central events
Total number 4,311.0
Mean 18.3 ± 46.5

Mean O2 saturation, % 94.5 ± 2.2
Lowest O2 saturation, % 83.0 ± 13.6
Epworth Sleepiness Scale score 7.5 ± 4.3
Sleep efficiency, % 79.0 ± 14.4 

Data are presented as mean ± standard deviation. AHI = apnea-
hypopnea index, BMI = body mass index, SI, snore index.
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findings of this study in participants with suspected sleep apnea 
are that: (1) there is only a weak positive correlation between 
the SI and the AHI, and this relationship only holds for OSA, 
but not for CSA, in which the correlation is inverse, and (2) 
although the SI increases with increasing OSA severity, there is 
substantial overlap in SI among categories of OSA severity. The 
method for snoring detection used in this study is unique in that 
it identifies individual snores using sophisticated acoustic fea-
tures and machine learning algorithms. Therefore, it is sensitive 
to all snores, even those with very low amplitude, and excludes 

nonsnoring high-amplitude breath sounds such as gasps and 
postapneic hyperventilation from the SI. Accordingly, it has ad-
vantages over commonly used self-reporting of snoring or use 
of simple sound amplitude levels as a marker of snoring.

There are many definitions of snoring in the literature. A 
commonly used objective definition identifies snoring as any 
spike in sound intensity that exceeds a certain level such as 
40 dB25 or 50 dB.12 This definition is susceptible to variation 
depending on the type and gain of the microphone and distance 
from the mouth, which have a substantial effect on sound am-
plitude, and thus, could compromise the accuracy of snoring 
detection. Using sound amplitude is also subject to contamina-
tion by high-amplitude sounds such as gasps and hyperven-
tilation, which might be detected falsely as snores. It is also 
prone to missing low amplitude snores that indicate upper air-
way narrowing and vibration. The means of identifying snor-
ing in the current study involved detection of tissue vibration 
regardless of the sound amplitude. It makes use of a large set 
of acoustic features that characterize turbulence, periodicity, 
and vibration.17 Using this method, high-amplitude nonsnor-
ing sounds are not classified as snores, whereas low-amplitude 
sounds that satisfy the criteria for snoring are classified as 
snores. Accordingly, our data likely provide a representative 
picture of the relationship between the frequency of snoring 
and the presence, type, and severity of sleep apnea.

Habitual snoring is very common among adults, especially 
men, but reports of its prevalence vary substantially, likely be-
cause of variations in the means of quantifying snoring and 

Figure 5—Difference in SI among OSA severity categories.

Distribution of SI by OSA severity. The boxplots illustrate the distribution 
of snoring indices across the entire range for each category of OSA 
severity. OSA = obstructive sleep apnea, SI = snore index.

Figure 4—Correlation between AHI and SI.

Relationships between the SI and the overall AHI (A), obstructive AHI 
(B) and central AHI (C). All three panels contain the entire population. In 
panel (C), most of the data points are skewed to the left because AHIC for 
most patients was very low. AHI = apnea-hypopnea index, AHIC = central 
apnea-hypopnea index, AHIO = obstructive apnea-hypopnea index, 
SI = snore index.
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in the populations studied. In large epidemiological studies, 
52.8% of 22,745 American participants8 and 62% of 12,700 
Japanese participants self-reported habitual snoring.10 In a 
French study, 32% of 299 men self-reported snoring,11 whereas 
in a British study, including 890 men, only 10% self-reported 
snoring often and 50% self-reported snoring sometimes.9 De-
spite the wide range in reported prevalence of snoring, it is 
reasonably clear that a significant proportion of the adult popu-
lation snore for at least some part of the night. Yet, the relation-
ship between the frequency of snoring and sleep apnea severity 
has not been thoroughly and objectively examined.

Our work took a more objective approach to this issue by 
deploying machine learning algorithms for quantifying snor-
ing accurately and its relationship to sleep apnea. We found 
that the SI correlates weakly and positively with the AHIO, but 
weakly and negatively with the AHIC. The negative correla-
tion is driven by the high SI in individuals without sleep apnea 
and the low SI in the 12 patients with an AHIC ≥ 10 events/h 

(Figure 4C). Although the number of patients with CSA was 
small, our data are in keeping with the observation that among 
patients with heart failure and who have CSA, the prevalence 
of self-reported habitual snoring is much less than that among 
patients with heart failure and OSA (28% versus 78%).26 These 
findings are probably attributable to the relative stability of the 
upper airway, and a lesser propensity to collapse during sleep 
in patients with CSA compared to those with OSA. However, 
this property was not examined in the current study and could 
be the topic of future work. Despite the small number of pa-
tients with CSA, to our knowledge this is the first report on 
objective quantification of snoring in patients with CSA.

In standard clinical practice and in most commonly used 
OSA screening questionnaires, snoring has been considered 
one of the cardinal features of OSA.27,28 Our study showed only 
a modest PPV of snoring for OSA, ranging between 0.47 to 
0.84. This is a reflection of the remarkable number of patients 
without OSA with SIs in the range of and sometimes exceed-
ing that of patients with sleep apnea (Figure 4 and Figure 5). 
Using objective methods, our study agrees with that of Young 
et al., who found that the 86.8% of people who self-reported 
habitual snoring were found to have an AHI < 15 events/h on 
PSG.2 Therefore, a history of heavy snoring, in the absence of 
other symptoms of OSA, might yield high scores on OSA ques-
tionnaires and lead to unnecessary referral for sleep studies.

Snoring frequency was only a weak indicator of OSA sever-
ity as revealed by the low correlation coefficient between SI and 
AHI and by the lack of significant differences between SI medi-
ans of adjacent classes of OSA severity (Figure 5). More impor-
tantly, there was a large overlap in snoring frequency between 
participants with and without OSA (Figure 4 and Figure 5). Of 
particular significance are patients with sleep apnea with low 
SI, including a few patients with severe OSA (Figure 4). We 
found that 10.8% of patients with OSA (AHIO ≥ 15 events/h) had 
minimal snoring with an SI < 100 snores/h. Such patients could 
be referred to as “quiet OSA.” Similarly, Young et al. showed 
that 13% of patients with OSA (AHI ≥ 15 events/h) didn’t re-
port snoring. Because of the paucity of snoring in these patients, 
they are less likely to come to clinical attention for evaluation of 
sleep apnea. Therefore, relying on a history of snoring might re-
sult in missing the diagnosis of OSA in a substantial proportion 
of people who do not snore, have OSA, and may benefit from 
treatment. However, most patients with severe OSA (AHI ≥ 30 
events/h) were heavy snorers with a SI well above that of those 

Table 2—Positive and negative predictive values of snoring for OSA.
SI ≥ 50 SI ≥ 100

AverageAHIO ≥ 5 AHIO ≥ 10 AHIO ≥ 15 AHIO ≥ 5 AHIO ≥ 10 AHIO ≥ 15
Sensitivity 0.94 0.93 0.97 0.85 0.82 0.89 0.90
Specificity 0.30 0.19 0.18 0.52 0.34 0.34 0.31
PPV 0.80 0.61 0.43 0.84 0.63 0.47 0.63
NPV 0.64 0.68 0. 89 0.53 0.59 0.83 0.62

Sensitivity and specificity of snoring as an OSA marker and PPV and NPV values that being a snorer is a predictor of OSA. We used commonly used 
AHIO cutoffs with two SI thresholds to define a snorer: SI ≥ 50 or ≥ 100. AHIO = obstructive apnea-hypopnea index, NPV = negative predictive value, 
OSA = obstructive sleep apnea, PPV = positive predictive value, SI = snore index.

Figure 6—Receiver operating characteristic curves.

Receiver operating characteristic curves depicting accuracy of SI 
against AHIO for detecting OSA at three cutoffs: AHIO ≥ 5, ≥ 10, and ≥ 15 
events/h. AHIO = obstructive apnea-hypopnea index, OSA = obstructive 
sleep apnea, SI = snore index.
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without OSA (Figure 4B). This shows that only when a patient 
has severe OSA does snoring become a sensitive, although not 
specific, marker of OSA (Table 2).

In studies that used sound intensity as a marker for snor-
ing, stronger relationships between SI and AHI (with correla-
tion coefficients between 0.7329 and 0.9114) were observed than 
between SI and AHI in the current study. However, in one of 
those studies, only patients with OSA were included; thus, 
snoring was not examined in patients without OSA.29 In the 
other study, snoring was defined as amplitude bursts preceded 
by an apnea or a hypopnea, so that snoring was associated with 
apneas and hypopneas by design, which would artificially en-
hance any relationship between snoring and AHI.14 Accord-
ingly, those studies are not comparable to ours, and would 
overestimate the relationship between snoring and OSA sever-
ity, and underestimate the degree of snoring that is not asso-
ciated with OSA. Our approach, conversely, detects snoring 
regardless of the presence or absence of apneas and hypopneas, 
and therefore should provide a more accurate assessment of 
snoring frequency in patients with and without OSA.

One limitation of this study is that it included patients re-
ferred for PSG, and therefore with a high pretest probability 
for snoring and OSA. Our results may therefore not be directly 
representative of the general population. Because a significant 
proportion of our sample had a high SI without OSA, it is likely 
that this proportion would be higher in the general population. 
Thus, a complaint of heavy snoring on its own should not nec-
essarily lead to a sleep study unless accompanied by other signs 
and symptoms of OSA, such as restless sleep, daytime sleepi-
ness, hypertension, obesity, or morning headaches. Another 
limitation is that we did not quantify the loudness of snoring. 
Finally, the number of patients with CSA was small, reflecting 
the relative rarity of this disorder in the general population.30

CONCLUSIONS

Our data demonstrate that the presence and severity of snoring, 
assessed objectively as the snore index, bear only a weak posi-
tive relationship to the presence and severity of OSA, but a nega-
tive relationship to CSA. The overlap between the frequency of 
snoring among those with and without OSA is substantial. Mini-
mal or no snoring does not always rule out OSA. Very frequent 
snoring is a sensitive but not specific indicator of severe OSA, 
because a large proportion of patients without OSA snored as 
frequently as those with severe OSA. Thus, the presence and fre-
quency of snoring on its own is probably of limited usefulness in 
screening for the possibility of either OSA or CSA.

ABBRE VI ATIONS

AHI, apnea-hypopnea index
AHIC, central apnea-hypopnea index
AHIO, obstructive apnea-hypopnea index
CSA, central sleep apnea
NPV, negative predictive value
OSA, obstructive sleep apnea

PPV, positive predictive value
PSG, polysomnography
ROC, receiver operating characteristic
SI, snore index
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