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Abstract

Accurate forecasts of influenza incidence can be used to inform medical and public health

decision-making and response efforts. However, forecasting systems are uncommon in

most countries, with a few notable exceptions. Here we use publicly available data from the

World Health Organization to generate retrospective forecasts of influenza peak timing and

peak intensity for 64 countries, including 18 tropical and subtropical countries. We find that

accurate and well-calibrated forecasts can be generated for countries in temperate regions,

with peak timing and intensity accuracy exceeding 50% at four and two weeks prior to the

predicted epidemic peak, respectively. Forecasts are significantly less accurate in the trop-

ics and subtropics for both peak timing and intensity. This work indicates that, in temperate

regions around the world, forecasts can be generated with sufficient lead time to prepare for

upcoming outbreak peak incidence.

Author summary

Influenza is responsible for an estimated 3–5 million cases and 300–650,000 deaths each

year worldwide. If produced early enough, accurate forecasts of influenza activity could

guide public health practitioners and medical professionals in preparing for an outbreak,

reducing the subsequent morbidity and mortality. For example, hospitals could use these

forecasts to determine how many beds will be needed when an outbreak is most intense.

Despite this potential impact, influenza forecasts are primarily generated for the United

States, with forecasts for other countries being comparatively rare. Here, we use publically

available influenza data to forecast influenza activity in 64 countries. We find that accurate

forecasts can be produced several weeks before the outbreak’s peak in temperate coun-

tries, where influenza outbreaks occur regularly during the winter. Forecast accuracy is

lower in the tropics and subtropics, where outbreaks occur more sporadically. Overall,

our results suggest that forecasts have potential as an important public health tool in

many countries, not only in the US.
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Introduction

Forecasting is an important tool in a number of fields, including weather and climate [1–3],

agriculture [4,5], air quality [6,7], and consumer activity [8–10]. When operationalized for use

in real time, predictions from probabilistic forecasts can be used in decision-making to inform,

for example, emergency food aid allocation [4] or profit maximization [8]. Recently, forecast-

ing systems have also been developed for a range of infectious diseases of high public health

concern, including influenza [11–20], norovirus [21], dengue [22–25], Ebola [26–29], and,

most recently, Zika [30,31].

The ability to generate accurate, real-time forecasts of infectious disease activity has impor-

tant implications for public health. Currently, response to infectious disease outbreaks is pri-

marily reactive: medical and public health professionals attempt to deal with unexpected

spikes of disease incidence as they occur. By providing information on when an outbreak is

expected to peak and how many cases are expected at that peak, forecasts have the potential to

create a paradigm shift in infectious disease control and public health decision-making. For

example, hospitals expecting a patient surge might ensure that adequate resources are avail-

able, avoiding bed and staff shortages.

Seasonal influenza produces annual wintertime outbreaks in temperate regions, as well as

sporadic outbreaks throughout the year in the tropics and subtropics [32,33]. The World

Health Organization (WHO) estimates that influenza causes about 300,000–650,000 deaths

and 3–5 million cases of severe illness each year [34]. To date, forecasts of influenza activity in

the United States have been generated and operationalized [11,15]. However, while influenza

forecasts have been generated for countries outside the US [13,14,17,18,35,36], these efforts are

less numerous, and many countries have been ignored entirely. The tropics and subtropics are

particularly neglected, with forecasts attempted for only Hong Kong [18] and Singapore [17].

This is true despite evidence suggesting that influenza burden in the tropics is similar to that in

temperate regions [33].

The WHO collects influenza data year-round from several member states around the

world. To our knowledge, no influenza forecasts have yet been generated using these data.

Given differences in data collection procedures by country, and the importance of high data

quality for generating accurate forecasts, whether these data can be used to generate accurate

forecasts remains an open question. Here, we explore the following research questions: 1) Can

the WHO data be used to generate accurate and well-calibrated retrospective forecasts at the

country level?; 2) Does forecast accuracy significantly differ between temperate and tropical

regions?; and 3) What factors are associated with substantial changes in forecast accuracy

within both temperate and tropical regions? Based on past work, we expect that forecasting

will be feasible in all regions, but that forecast accuracy will be substantially higher in temper-

ate regions.

Materials and methods

Influenza data

Influenza syndromic and virologic data were obtained from WHO’s FluID [37] and FluNet

[38] web-tools, respectively. Briefly, these systems contain aggregated influenza data from

WHO member states, which are either submitted by member states directly or downloaded by

the WHO from existing regional databases. Good quality (see S1 Text) syndromic and viro-

logic data were available for at least one season from 64 countries, primarily in Europe and

North America (see Figs 1 and S1). Countries were classified as temperate or tropical based on

both their latitude and whether they demonstrated seasonal or sporadic influenza dynamics
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(see S1 Text). Overall, eighteen countries were classified as tropical, and three (Australia, New

Zealand, and Chile) were located in the southern temperate region.

FluID data include diagnostic counts of influenza-like illness (ILI), acute respiratory infec-

tion (ARI), severe acute respiratory infection (SARI), and pneumonia, with different countries

preferentially reporting different data types (see S1 Text for additional information). Because

these data contain no information on laboratory testing, counts include both patients infected

with influenza and patients infected by other pathogens that lead to similar signs and symp-

toms. To adjust for this lack of specificity, we use FluNet data, which includes the total number

of tests performed for influenza and the number positive for influenza. Specifically, we multi-

ply the syndromic case counts from the FluID tool by the proportion of tests positive for influ-

enza in that same country during a given week. This calculation eliminates out-of-season

syndromic cases that are unlikely to be due to influenza. Further, as the model used in this

study (described below) simulates the transmission of a single pathogen, the removal of inci-

dence due to non-influenza illness increases agreement between model input (data) and out-

put. We refer to the resulting measures as ILI+, ARI+, SARI+, or pneumonia+, or, more

broadly, syndromic+.

For this study, we focused specifically on seasonal influenza outbreaks, and excluded the

2009 pandemic from the main analysis. While pandemic outbreaks often produce a strong

incidence signal that is forecastable [17], they typically appear out-of-season in temperate

regions. Seasonal influenza outbreaks, on the other hand, occur with enough frequency that,

even in the tropics, where outbreak timing is less regular, future epidemics are almost certain

to occur within the year. To maintain a consistent forecasting approach, we therefore focus on

seasonal influenza. We present results from forecasting the 2009 pandemic alone, as well as

associated methods, in S1 Text and S19 Fig.

Fig 1. Countries with good quality syndromic and virologic data for at least one season. The black dotted lines demarcate the boundaries of the tropics.

Countries classified as temperate are shaded in blue, and countries classified as tropical are shaded in purple. Of 64 countries, 18 were classified as tropical, and 3 as

southern temperate.

https://doi.org/10.1371/journal.pcbi.1006742.g001
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In addition, individual seasons were removed from the final dataset if: a) five or more con-

secutive weeks of data were missing near the outbreak peak (n = 2); b) the season consisted of

fewer than 5 non-NA and non-zero data points (n = 2); c) the total attack rate of the season

was less than 5% that of the largest outbreak (in other words, if case counts were unrealistically

low; n = 5); d) data collection began or ended at the outbreak peak (n = 4); or e) no consecutive

weeks of data were available (in other words, data were only available every other week; n = 1).

We also removed data from 2010–11 in Mexico due to the continued disruption of typical sea-

sonal patterns by the 2009 pandemic. Individual data points were removed if they occurred

outside of the influenza season (as defined below under “Delineation of Influenza Seasons”)

and were greater than 50% of the maximum value for the country over all seasons (n = 1). In

total, 15 individual seasons were removed from the dataset, and 64 countries remained. In

temperate regions, data were available for between one and seven seasons for each country for

a total of 289 seasons. A complete list of countries and seasons used for forecasting can be

found in S1 and S2 Tables, and the cleaned influenza data are available as S1 Dataset. Note

that, for the seasonal forecasts, we began fitting tropical data at week 40 of 2010.

Humidity data

Data on absolute humidity were obtained from NASA’s Global Land Data Assimilation System

(GLDAS), which uses both observed data and modeling techniques to produce high-resolution

surface meteorological data [39]. Data were available every three hours at a spatial resolution

of 1˚x1˚ for the years 1989–2008. Data from each grid cell were aggregated to the daily level,

and anomalous records were identified by visual inspection and removed. Then, climatologies

for each grid cell were generated by averaging daily specific humidity on each of 365 days

across twelve to twenty years, depending on the amount of anomalous data removed. Finally,

climatologies were aggregated to the country level by averaging the climatologies for all grid

cells lying within a country, weighted by the proportion of the grid cell situated within the

country in question. A more detailed description of how the humidity data were processed can

be found in the S1 Text, and the processed data are available as S2 Dataset.

Delineation of influenza seasons

The influenza season in temperate regions of the northern hemisphere is modeled as begin-

ning in week 40 and ending in week 20 of the following year [40]. We shift these values by one

half-year for temperate regions of the southern hemisphere; thus, the influenza season begins

in week 14 and continues until week 46.

For tropical regions, where consistent seasonality in influenza infection patterns is not

observed, the above methods are not sufficient. Individual outbreaks are instead identified

using methodology previously described in [18]. Briefly, outbreak onsets are defined as the

first of three consecutive weeks where ILI+ rates exceeded the 33rd percentile of non-zero ILI

+ values across all available data for a country. The end of an outbreak is defined as the first of

two consecutive weeks below this threshold. To ensure that sporadic spikes in influenza are

not counted, we remove any outbreaks where ILI+ counts never exceeded three times its

respective onset threshold value.

Retrospective forecast generation

Country-level retrospective forecasts are developed using a model-data assimilation system

consisting of: (1) influenza observations, as described above, (2) a model of influenza transmis-

sion, and (3) a filter to assimilate observations and optimize model simulation and ensemble
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forecast. The final two components are described here. These components differed slightly for

temperate and tropical regions, and are therefore described separately.

Temperate regions. SIRS Model: We model influenza transmission in temperate regions

using a compartmental, humidity-forced Susceptible-Infected-Recovered-Susceptible (SIRS)

model, in which members of the model population move through compartments according to

the following equations:

dS
dt
¼

N � S � I
L

�
bðtÞIS
N
� a

dI
dt
¼
bðtÞIS
N
�

I
D
þ a ð1Þ

where N is the total model population size, set arbitrarily to 100,000 for all countries; S and I
are the total number of people susceptible and infected, respectively; t is time in days; β(t) is

the transmission rate at time t; D is the mean infectious period; L is the average duration of

immunity before recovery; and α represents the rate of influenza importation from outside the

model population, here set to 0.1, or 1 case per 10 days [12]. The basic reproductive number

(R0), a key parameter in infectious disease epidemiology representing the average number of

secondary infections arising from a single primary infection in a fully susceptible population,

is related to β(t) and D by the expression R0 tð Þ ¼ b tð ÞD.

Daily specific humidity modulates R0(t) as follows:

R0ðtÞ ¼ e� 180qðtÞþlnðR0max � R0min Þ þ R0min
ð2Þ

where R0max is the maximum daily basic reproductive number, R0min is the minimum daily

basic reproductive number, and q(t) is the specific humidity on day t [12]. We set a equal to

-180, based on laboratory regression of influenza virus survival on specific humidity [41].

Absolute humidity has been shown to increase influenza survival and transmission in labora-

tory experiments [41], and model studies indicate that lower absolute humidity during the

winter is a significant driver of influenza seasonality in temperate regions [42]. Similar models

have been used to forecast influenza at the city and state level in the US [11,12,42], and previ-

ous work has shown that inclusion of absolute humidity forcing significantly improves forecast

performance [43].

Data Assimilation Methods: The above model is fit to the syndromic+ data using the

Ensemble Adjustment Kalman Filter (EAKF), a data assimilation method used in weather

forecasting [44]. In practice, we randomly initialize an ensemble of simulations (see Forecast

Generation below for details) that are then integrated forward per the model equations. At

each observation the integration is halted and the ensemble observed state is updated using the

EAKF algorithm and that observation, per Bayes Rule:

pðXt jO1:tÞ / pðXtjO1:ðt� 1ÞÞ � pðOtjXtÞ ð3Þ

where pðXtjO1: t� 1ð ÞÞ is the prior distribution of the observed model state (here, the number of

newly infected individuals) given all observations prior to time t, pðOtjXtÞ is the likelihood of

the observation at time t given the model state at time t, and p XtjO1:tð Þ is the posterior distribu-

tion of the model state given all observations up to and including time t. The probability of the

model state is based on the distribution of the ensemble of simulations. Unobserved state vari-

ables and parameters (S, R0max, R0min, D, and L) are updated according to cross-ensemble cov-

ariability with the observed model state. More details on the EAKF’s implementation can be

found in S1 Text, as well as in [12,19,44,45].
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Forecast Generation: A forecast for week t is produced by first iteratively fitting the ensemble

of simulations to local observations from the beginning of the season up to and including week

t, and then integrating the ensemble until the end of the epidemic period using the final inferred

states and parameters from the training period (i.e. the posterior at week t). This process is

repeated throughout the season for weeks 44 through 69 in the northern hemisphere, and weeks

18 through 43 in the southern hemisphere. Thus each ensemble forecast assimilates 5 to 30

weeks of training data. Prior to simulation and forecast, initial values of states and parameters

for each ensemble member are randomly selected using Latin hypercube sampling from ranges

previously reported ð1:3 � R0max
� 4:0; 0:8 � R0min

� 1:2; 1:5 � D � 7:0; 1:5 � D � 7:0;

365 � L � 3650Þ [12]. In order to account for any stochastic effects during this initialization 5

separate 300-member ensembles were initialized and used to generate forecasts for each location

and season. The average results over all ensembles are reported. Variance within an ensemble

permits assessment of forecast uncertainty [12].

Tropical regions. For the most part, the procedure used to generate retrospective fore-

casts in the tropics is similar to that used in temperate zones. Differences are described briefly

here.

SIRS Model: Because the relationship between absolute humidity and influenza incidence is

less clearly understood in the tropics [42,46,47], and because humidity data quality in the tropics

is poor, we use a simplified model for these countries that does not incorporate absolute humid-

ity forcing. Here, R0 is defined simply as βD, and neither β nor R0 change over time. Thus, one

less parameter (R0 vs. R0max and R0min) is fit by our model-data assimilation system when simu-

lating influenza transmission in the tropics. Initial values of R0 range from 0.8 to 2.2.

Data Assimilation Methods: Because influenza does not exhibit a coherent seasonal pattern

in the tropics, model fitting cannot be performed as described above for temperate regions.

Rather, fitting is performed continuously, beginning with the first available observation (as

early as October 2010) and ending with the last, as described in [18].

Forecast Generation: Because the duration of influenza outbreaks in the tropics cannot be

known in real time, forecasts are not run through the end of an outbreak period, as in temper-

ate countries. Rather, forecasts for a given week are run 40 weeks into the future. As in temper-

ate regions, we perform 5 simulations of 300 ensemble members each.

Choice of scaling factors

As described above, model output represents true influenza incidence per 100,000 population.

Our data, on the other hand, are obtained by multiplying nonspecific syndromic data by influ-

enza positivity rates among those who actively seek medical care. Furthermore, the majority of

countries included in the WHO data provide no information on the total number of patients

seen or the size of the catchment areas from which data were obtained. Thus, our data repre-

sent counts, not rates. In order to properly use the EAKF as described above, we must therefore

first scale the data such that they are compatible with the model-simulated state space. In

effect, the scaling factors map the observed syndromic+ data to the model state space. Scaled

data, thus, represent the estimated number of syndromic+ cases per 100,000 population, and

can be used for data assimilation. Model output—the simulations and forecasts—can then be

scaled back to their original units (e.g. ARI+) for use by individual country public health

departments.

Our previous work has shown that SIRS simulations perform optimally when 15–50% of a

model population of 100,000 is infected over the course of a modeled epidemic. Therefore,

scaling values, g, for each country were determined by first calculating the range of scaling val-

ues yielding a total attack rate between 15% and 50% for each season, i, ([g15, i, g 50, i]), then

Forecasting influenza in 64 temperate and tropical countries
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choosing a single country-specific scaling value based on the following rule:

g ¼

(
if 9 g 2 R : g15; i < g < g50; i 8 i : maxni¼1

ðg15; iÞ

else : minn
i¼1
ðg50; iÞ

)

ð4Þ

Although forecasts in the tropics were run continuously rather than by season, scaling fac-

tors for tropical countries were determined similarly using influenza outbreaks as identified

under “Delineation of Influenza Seasons” above.

Scaling values were allowed to vary by country, but not by season: that is, for each country,

a single scaling value was chosen and used in retrospective forecasts of all available seasons. As

scaling factors are controlling for differences in rates of seeking medical attention, size of the

catchment area from which influenza data are collected, and overall population size by coun-

try, they vary substantially, from 0.004 in Mexico to 374 in Peru.

Forecast accuracy and comparison

Forecasts were evaluated based on their ability to accurately predict outbreak peak timing (the

week with the highest number of influenza cases), peak intensity (the number of influenza

cases at the peak), and onset timing (the first of three consecutive weeks with influenza activity

over some baseline value). Onset baseline values were chosen as 500 simulated cases for tem-

perate countries, and 300 cases for tropical countries (see S1 Text). A forecast was considered

accurate for peak timing and onset timing if the predicted value was within one week of the

observed, and for peak intensity if the predicted influenza case count was within 25% of the

observed. These thresholds, particularly the 1 week cutoff for peak timing accuracy, have been

routinely used both in our past work [13,14,19,43,45,48,49] and in evaluating forecasts submit-

ted to the Centers for Disease Control and Prevention’s (CDC) Predict the Influenza Season

Challenge [15], allowing for comparison between the results of this work and past work. If the

mode predicted onset timing is NA (no outbreak), predicted peak timing, peak intensity, and

onset timing were set to NA, and the forecast was removed from consideration.

Forecast accuracy was compared for temperate vs. tropical regions, as well as within tem-

perate regions by hemisphere, region, data type, season, and scaling, and within the tropics by

region, data type, and scaling. Because, in real time, the actual time to peak is unknown, we

evaluated forecast accuracy by predicted lead time (i.e. the difference between the week at

which a forecast is initiated and predicted peak timing). For most analyses, forecast accuracy

was assessed at predicted lead weeks -6 to 4 (i.e. six weeks before the predicted peak through

four weeks after). Comparisons were made for each individual variable using generalized esti-

mating equations (see S1 Text for more details). To assess whether the effects of the explana-

tory factors change over time, GEE models were also run restricting the data to either before

or after the predicted peak. Seasons with no identified onset (in other words, where no out-

break occurred) were removed before analyzing forecast accuracy. Additionally, because indi-

vidual outbreaks within tropical countries are identified during the forecasting process, and

therefore were not checked for quality previously, outbreaks where a) five or more consecutive

weeks of data were missing; or b) data collection for an outbreak began at the outbreak peak

were removed from tropical countries’ results before GEEs were run.

To assess the impact of including humidity forcing in the temperate models, we generated

an additional set of forecasts for the temperate regions, this time without including humidity

forcing in the model structure (see S1 Text). This resulted in two distinct forecasts for each

country, season, start week, and run: one incorporating humidity data and one not. In order to

fully take advantage of this paired design, forecast accuracy was compared by observed lead

week using the exact binomial test. Because individual comparisons were made for each lead
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week, we applied a Bonferroni correction and considered differences to be statistically signifi-

cant when p-values were less than 0.0045 (p = 0.05 / 11). Unlike in previous analyses, rather

than removing forecasts predicting no onset, we considered these forecasts to be “inaccurate.”

This was done to avoid ignoring pairs of forecasts where one failed to recognize an oncoming

outbreak but the other accurately predicted peak timing or intensity.

Sensitivity analyses were performed to test how forecast accuracy changes as a function of

EAKF observational error variance, onset baseline value, scaling, and accuracy metric. Find-

ings from these sensitivity analyses broadly agree with the results presented here (results in S1

Text).

Results

Influenza data

Retrospective forecasts were performed using syndromic+ data from 64 countries, of which 18

were classified as tropical. In the temperate regions, data were available for between 2 and 7

seasons, with each country contributing an average of 6 seasons of data (data in S2 Table). In

the tropics, data were available for between 29 and 345 weeks (mean = 166 weeks; median = 140

weeks). In the northern temperate region, onset timing occurred between weeks 45 and 64,

and peak timing occurred between weeks 48 and 67. In the southern temperate region, these

values were weeks 23 and 33 for onset timing and 29 and 38 for peak timing.

Forecast feasibility

Overall, we found that accurate forecasts of both peak timing and peak intensity for influenza

outbreaks are possible using publicly available WHO data. In temperate regions, we were able

to develop country-level, retrospective forecasts that exceeded 50% accuracy for peak timing

(i.e., 50% of forecasts predicted peak timing within one week of the observed value) up to four

weeks before the predicted peak, and for peak intensity (within 25% of the observed value) two

weeks before the predicted peak. Forecasts exceeded 75% accuracy for peak timing one week

before the predicted peak, and for peak intensity at the predicted peak week (Fig 2A). Forecast

accuracy was lower in the tropics, never exceeding 50% for either peak timing or peak intensity

(Fig 2B). As expected [11,12,14,17,18], forecast accuracy varied as a function of lead time, with

forecasts near and after the forecasted peak typically performing better than forecasts gener-

ated several weeks before the peak. Similar patterns were seen by observed lead time, although

tropical forecast accuracy was much higher after the observed peak, exceeding 70% (results in

S3 Fig). Broadly, these results remained consistent after altering the cutoff point at which fore-

casts were considered accurate (S11 Fig), and when correlation coefficients and symmetric

mean absolute percentage error (sMAPE) over the entire forecast period were assessed (S12

Fig), although forecast accuracy assessed using sMAPE was comparable between temperate

and tropical regions.

For both temperate and tropical regions, forecasts of outbreak onset timing showed high

accuracy post-onset, but forecasts were rarely generated in advance of the predicted onset

week (Table 1). Specifically, no temperate forecasts predicted that onset would occur with

more than a one week advanced lead, and very few forecasts in the tropics accurately predicted

onset with more than a one-week lead. In temperate regions, onset timing accuracy (onset pre-

dicted within one week of the observed value) quickly increased and remained above 95% as

soon as the predicted onset was in the past. In the tropics, accuracy reached almost 50% at the

predicted onset, and remained around 65–70% for all later lead weeks.

For the tropics only, we also evaluated how often forecasts correctly recognized an existing

or upcoming outbreak, without mistakenly predicting outbreaks during periods in which no
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outbreaks occurred. Specifically, we calculated sensitivity, specificity, positive predictive value,

and negative predictive value. We found that both sensitivity (98.56%) and the negative predic-

tive value (98.10%) were high, but that specificity (56.22%) and the positive predictive value

(63.12%) were much lower. Thus, while forecasts are unlikely to predict dormancy before or

during an outbreak, forecasts suggesting a current or upcoming outbreak were inaccurate

more often than accurate.

Comparison to method of analogues. We also compared our forecasting results to results

obtained using the method of analogues, a non-mechanistic forecasting method previously

used by Viboud et al. to forecast influenza incidence in France [36]. In temperate countries,

our mechanistic forecasting approach outperformed the method of analogues slightly for peak

timing, and substantially for peak intensity before the predicted peak (S13A and S13B Fig). In

the tropics, the two methods performed similarly for both peak timing and intensity (S13C

and S13D Fig) before the peak, and the method of analogues performed slightly better after the

predicted peak. Thus, the mechanistic forecasting methods used in this work only improve

upon the analogue forecasting method in temperate regions. Additional details can be found

in S1 Text, and in [36].

Factors influencing forecast accuracy

Temperate vs. tropical regions. As expected, forecast accuracy was significantly lower in

the tropics than in temperate regions. Overall, the odds that a forecast accurately predicted

peak timing in the tropics was 0.123 (95% CI: 0.091, 0.165) times that in temperate regions,

and the odds of accurately predicting peak intensity in the tropics were 0.103 (95% CI: 0.072,

Fig 2. Peak timing and intensity forecast accuracy by predicted lead week. (A) Forecast accuracy in temperate regions. (B) Forecast accuracy in

tropical regions. Peak timing accuracy is shown in red, and peak intensity in blue. The size of the circles represents the number of forecasts generated

at a particular lead week.

https://doi.org/10.1371/journal.pcbi.1006742.g002

Table 1. Onset timing accuracy and number of forecasts predicting any onset by predicted onset week.

Lead Week -6 -5 -4 -3 -2 -1 0 1 2 3 4

Temperate (w/ humidity) Accuracy - - - - - 41.4% 87.0% 95.6% 95.7% 95.5% 95.2%

# of Fcasts 0 0 0 0 0 29 1076 1257 1335 1319 1320

Tropical Accuracy 13.3% 12.7% 11.1% 10.7% 6.7% 50.0% 47.2% 67.3% 70.7% 69.1% 69.1%

# of Fcasts 165 267 305 290 104 14 339 284 300 285 285

https://doi.org/10.1371/journal.pcbi.1006742.t001
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0.148) times that in temperate regions. This pattern held when comparisons were restricted to

predicted lead weeks of 0 and greater (i.e. forecasts predicting that the peak was either the cur-

rent week or in the past; peak timing aOR = 0.115 (0.084, 0.160); peak intensity aOR = 0.070

(0.045, 0.108)).

Impact of humidity forcing. Inclusion of humidity forcing in the temperate region fore-

casts significantly increased both peak timing and peak intensity forecast accuracy prior to the

observed peak, and peak timing accuracy at the observed peak (Table 2). Post-peak, no signifi-

cant differences in forecast accuracy were observed by inclusion of humidity forcing.

Additional factors. Forecast accuracy was also assessed by hemisphere, region, data type,

season, and scaling in the temperate regions, and by region, data type, and scaling in the trop-

ics. Few consistent, significant relationships were found. In temperate regions, peak timing

accuracy was lower for countries reporting ARI+ data vs. ILI+ data both before (aOR = 0.645,

95% CI: 0.428–0.973) and after (aOR = 0.567, 95% CI: 0.334–0.965) the predicted peak. Peak

timing accuracy was highest after the peak in Eastern Europe (aOR = 2.068, 95% CI: 1.095–

3.889, compared to Southwest Europe; see S1 Text for information on how countries were clas-

sified into regions). Finally, compared to countries with scaling values between 2 and 10, coun-

tries using scaling values between 0 and 0.5 performed worse for both peak timing

(aOR = 0.420, 95% CI: 0.181–0.982) and peak intensity (aOR = 0.170, 95% CI: 0.051–0.568)

after the predicted peak. Post-peak, countries using scaling values between 10 and 20

(aOR = 0.145, 95% CI: 0.038–0.571), 20 and 100 (aOR = 0.147, 95% CI: 0.033–0.646), and 100

and 500 (aOR = 0.229, 95% CI: 0.066–0.801) also performed significantly worse for peak inten-

sity only. No significant differences in forecast accuracy were observed by hemisphere or sea-

son for either peak timing or intensity (results in S3 Table).

Because very few forecasts were generated prior to the predicted peak week in the tropics, it

was only possible to rigorously compare forecast accuracy at and after the predicted peak. No

statistically significant associations between forecast accuracy and data type, region, or scaling

value were found for either peak timing or intensity in the tropics (results in S4 Table).

Forecast calibration

It is important to consider not only how accurate forecasts are, but also forecast uncertainty.

This is especially true in the case of real-time forecasting: different medical and public health

responses might be affected given forecast of an 80% chance of a particular outcome rather

than a 20% chance. Because each forecast is based on 300 individual ensemble members, we

could assess forecast certainty through the spread of the ensemble variance, where narrower

ensemble spread ideally indicated greater certainty.

Table 2. Accuracy of forecasts incorporating vs. omitting absolute humidity forcing by observed lead week for both peak timing and intensity.

Obs. Lead Week: -6 -5 -4 -3 -2 -1 0 1 2 3 4

Timing AH 4.8% 18.6% 36.7% 47.3% 54.4% 53.6% 55.4% 70.9% 80.2% 82.1% 82.0%

No AH 2.0% 13.2% 32.3% 41.8% 50.4% 48.3% 50.4% 71.6% 81.4% 83.6% 83.3%

Sig. �� �� �� �� �� �� ��

Intensity AH 6.9% 10.1% 18.9% 26.3% 40.3% 56.8% 70.1% 86.7% 90.2% 91.0% 90.1%

No AH 4.2% 7.5% 14.1% 25.2% 41.6% 52.8% 68.4% 87.4% 90.4% 91.8% 91.1%

Sig. �� �� �� �

� p<0.001,

��p<0.0001

https://doi.org/10.1371/journal.pcbi.1006742.t002
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Fig 3A and 3B show average peak timing and intensity forecast accuracy, respectively, for

temperate regions plotted against ensemble variance (separated into 10 quantiles). For peak

timing, we generally saw a slight decrease in forecast accuracy as ensemble variance increases

at all predicted lead weeks, indicating that we can infer expected forecast accuracy from

ensemble spread. For peak intensity, this pattern only held prior to the predicted peak. Corre-

sponding plots for the tropics are shown in Fig 3C and 3D. For peak timing, no clear relation-

ship existed between ensemble variance and forecast accuracy, indicating that no information

about expected forecast accuracy can be inferred from ensemble spread. For forecasts of peak

intensity, on the other hand, increases in ensemble variance corresponded to substantial

decreases in forecast accuracy.

We also explored how often the observed peak timing and intensity fall within certain pre-

diction intervals of ensemble spread prior to the predicted peak (Fig 4). In a well-calibrated

forecast, we expect that the observed intensity will fall within the nth% prediction interval n%

of the time. Overall, forecasts appeared to be well calibrated for both peak timing and intensity

in temperate regions at all lead times, although prediction intervals tended to be too wide for

Fig 3. Forecast calibration as the relationship between forecast accuracy and ensemble spread. The relationship between peak timing (A and C)

and peak intensity (B and D) ensemble variance and forecast accuracy by predicted lead week is shown for temperate (A and B) and tropical (C and

D) regions. Point size represents how many forecasts are included in the point, and only lead week ranges with at least 100 (A and B) or 10 (C and D)

forecasts were included.

https://doi.org/10.1371/journal.pcbi.1006742.g003
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peak timing, especially several weeks before the peak. In the tropics, peak intensity forecasts

appeared well calibrated, while peak timing forecasts rarely included the observed peak timing.

Further exploration of forecast calibration can be found in S10 Fig.

Discussion

While skillful forecasts of influenza activity have repeatedly been shown to be possible [11–

17,36,49–51], few attempts to forecast non-pandemic influenza outbreaks in areas other than

the US have been made. Here, we use publicly-available syndromic and virologic data to gener-

ate retrospective forecasts of influenza transmission at the country scale for 64 countries in

both temperate and tropical regions. We find that accurate and well-calibrated forecasts are

Fig 4. Forecast calibration as percent of observed peak timing/intensity values falling within prediction intervals. Here we show the percentage of forecasts

where the observed peak timing (A and C) or intensity (B and D) value falls within the 25%, 50%, 80%, 90%, 95%, and 99% prediction intervals of 300 ensemble

members by predicted lead week for temperate (A and B) and tropical (C and D) regions. The gray line represents the expected case in which exactly 25% of

observations are falling within the 25% prediction interval, and so on.

https://doi.org/10.1371/journal.pcbi.1006742.g004
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possible in temperate regions. On average, peak timing and peak intensity of outbreaks can be

predicted within 1 week and within 25% of the observed values, respectively, over 50% of the

time starting four (peak timing) and two (peak intensity) weeks before the predicted peak,

although forecast accuracy differs substantially by country (results in S2 Fig). These results are

broadly consistent with past forecasting results in various US cities [11,12] as well as in Victo-

ria, Australia [13,14], indicating that the larger spatial scale employed here does not substan-

tially compromise forecast accuracy.

As expected, forecasts were both less accurate and less well calibrated in the tropics. Typi-

cally, peak timing and intensity could not be predicted within 1 week or 25% of observed val-

ues, respectively, until after the peak was estimated to have occurred, and the proportion of

forecasts achieving these accuracy levels never exceeded 50%, even several weeks after the pre-

dicted peak. For peak timing in particular, prediction intervals based on 300 ensemble runs

rarely included the observed peak week, and ensemble variability was not strongly associated

with forecast accuracy, making forecast calibration challenging. Finally, while sensitivity and

the negative predictive value were high, specificity and the positive predictive value were low,

indicating that forecasts often predicted outbreaks when no outbreaks occurred in reality. Pre-

viously, Yang et al. produced forecasts of non-pandemic influenza in Hong Kong using meth-

ods similar to those employed here, and found that both peak timing and intensity accuracy

reached 50% by lead week 0 [18]. On average, our tropical forecasts perform more poorly,

although we note that, as in temperate regions, forecast performance varied substantially by

country (results in S2 Fig). It is possible that the data for many of the tropical countries used in

forecasting here are simply noisier than the Hong Kong data. If so, this issue may be difficult

to surmount without changes in surveillance methods: smoothing our tropical data using a

simple moving average over three weeks did not substantially improve forecast accuracy

(results in S1 Text and S8 Fig), nor did performing model fitting and forecasting by individual

outbreak instead of continuously across multiple outbreaks (results in S1 Text and S9 Fig). We

also emphasize that, while our method is well tested in temperate regions, very little forecasting

has been performed in the tropics. Our results do not suggest tropical countries will always

yield forecasts with low accuracy, simply that the combination of data and methods applied in

temperate countries may be insufficient.

Unlike peak timing and intensity, onset timing was not accurately predicted before out-

break onset in either temperate or tropical regions. This poor performance is likely due to a

lack of signal in the data prior to the start of an outbreak, and is not surprising. Past work has

shown that models including travel between US states [19] and boroughs of New York City

[52] significantly improve forecast accuracy, particularly onset timing accuracy. Future work

will incorporate travel between countries in the model, allowing forecasts of onset timing in a

given country to be informed by signal from connected countries in which an outbreak has

already begun. While a variety of models exist for forecasting the spatial dynamics of influenza

transmission [53–55], we believe that our approach, in which a model is iteratively fit to influ-

enza observations, can offer significant improvements.

Significant differences in forecast accuracy were observed by a variety of factors for both

peak timing and intensity. In temperate regions, forecasts of peak timing are less accurate for

countries reporting ARI data than for those reporting ILI data. Because ARI is a less specific

measure than ILI, these data tend to be noisier. This, in turn, likely contributes to the lower

forecast accuracy. We also observe lower peak timing accuracy with particularly small scaling

values, and lower peak intensity accuracy with particularly small or large scaling values, at least

after the peak.

Including absolute humidity forcing in our models improved temperate forecast accuracy

prior to the observed peak, with no differences observed post-peak. These results are consistent
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with the results of a recent paper by Shaman et al., which found that, on average, including

absolute humidity forcing improved forecast accuracy in 95 US cities before the predicted

peak [43]. Given the large spatial and latitudinal scale of several of the countries examined

here, it is interesting that mean country-level absolute humidity still significantly improves

forecast accuracy. Our results suggest that absolute humidity forcing should continue to be

included in models forecasting influenza in temperate regions, even when humidity must be

averaged over large regions. Furthermore, given evidence that climatic factors such as absolute

and relative humidity [56–59] and precipitation [47,56,57,59] may influence influenza trans-

mission in the tropics and subtropics, future work should consider how climatic factors may

be incorporated into model fitting and forecasting outside of the temperate zones.

Despite the novelty of this work, we are cognizant of several important limitations. First,

our data exhibit a strong spatial bias, with little to no representation in Africa and South Amer-

ica. Information on influenza dynamics in general are particularly lacking in the tropics,

which precludes forecasting. As always, forecast accuracy findings may also be dependent on

the choice of accuracy metrics, although we note that our results are robust to various accuracy

cutoffs, as well as to choice of alternative accuracy metrics (see S1 Text and S11 and S12 Figs).

Furthermore, our method outperforms the method of analogues, a robust non-mechanistic

forecasting method [36] in temperate regions (S1 Text and S13 Fig).

Additionally, as mentioned in the Methods, data do not perfectly reflect reality. All syndro-

mic data types include some people with non-influenza respiratory conditions, and exclude

those with influenza who do not seek treatment or meet specific criteria. Multiplying by per-

cent of tests positive for influenza only partially mitigates these issues. In particular, differences

in noisiness between different data types persist. Information on the size of the catchment area

from which data were obtained is also largely lacking, so forecasts must be generated based on

raw counts rather than rates. This leads to substantial variability in case counts by country.

While this can be partially compensated through the use of scaling factors, it is crucial that

these values are chosen appropriately [13]. As we base scaling values on past data, forecast

accuracy may therefore be compromised when data are not available for several past seasons.

Furthermore, if new countries begin submitting influenza data, real-time forecasts cannot be

generated immediately, as at least one full season or outbreak must pass before an appropriate

scaling can be calculated.

Finally, all forecasts at this point have been generated at the country level. Thus, while our

results and future real-time forecasts may be of public health relevance for smaller countries,

they are likely to provide less actionable results for much larger countries, such as Russia or

Brazil. Future work should attempt to incorporate subnational data, where available. In addi-

tion to increased public health relevance, we may also expect forecast accuracy to improve

when smaller subunits within a country are used for forecasting. We note, however, that real-

time forecasts are only plausible when data are submitted in a timely fashion. At present, this

occurs for most of the northern hemisphere temperate countries included in this study, but is

uncommon in southern hemisphere temperate countries and for countries in the tropics and

subtropics.

Conclusions

We have shown that, in temperate regions, accurate and well-calibrated retrospective forecasts

of seasonal influenza activity are feasible. Work is currently being conducted to determine

whether real-time forecasts are similarly feasible, and future work will incorporate travel

between countries with the goal of improving forecast accuracy, particularly onset timing

accuracy. Although this work is at an early stage, we note the importance of eventually
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incorporating forecasts into medical and public health decision-making. Accurate real-time

probabilistic forecasts have the potential to inform decisions such as antiviral stockpiling by

governments or staff and bed management by hospitals, preventing morbidity and mortality.

Therefore, it is critical that these forecasts not be produced solely as an academic exercise.

Supporting information

S1 Text. Supplementary methods and results.

(PDF)

S1 Dataset. Processed syndromic+ data from 64 countries. The data provided here are not

yet scaled by the chosen scaling factors.

(CSV)

S2 Dataset. Processed absolute humidity climatologies for 46 temperate countries. Each

column represents the average specific humidity for days 1–365 of the year for a single coun-

try.

(CSV)

S1 Fig. Syndromic+ data by region. All data are divided by the maximum observed incidence

in a given country since the 2010–11 season.

(PDF)

S2 Fig. Forecast accuracy by predicted lead week by country. (A) Peak timing accuracy. (B)

Peak intensity accuracy. NA values are represented by gray boxes.

(TIF)

S3 Fig. Peak timing and intensity forecast accuracy by observed lead week. (A) Forecast

accuracy in temperate regions. (B) Forecast accuracy in tropical regions. Peak timing accuracy

is shown in red, and peak intensity in blue.

(TIF)

S4 Fig. Forecast accuracy by OEV denominator choice. Peak timing (A and C) and intensity

(B and D) accuracy for different OEV denominators in temperate (A and B) and tropical (C

and D) regions.

(TIF)

S5 Fig. Forecast calibration by OEV denominator choice. Peak timing (A and C) and inten-

sity (B and D) calibration by OEV denominator in temperate (A and B) and tropical (C and

D) regions.

(TIF)

S6 Fig. Forecast accuracy by choice of onset value. Onset timing accuracy by choice of onset

value in temperate (A-C) and tropical (D-F) regions.

(TIF)

S7 Fig. Forecast accuracy by choice of scaling rule. Peak timing (A and C) and intensity (B

and D) accuracy by choice of scaling rule in temperate (A and B) and tropical (C and D)

regions.

(TIF)

S8 Fig. Forecast accuracy for the tropics using smoothed and unsmoothed data. (A) Peak

timing accuracy. (B) Peak intensity accuracy.

(TIF)
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S9 Fig. Forecast accuracy for individual tropical outbreaks.

(TIF)

S10 Fig. Histograms of peak timing and intensity forecast error. Distribution of peak timing

(A and C) and intensity (B and D) errors relative to observed for temperate (A and B) and

tropical (C and D) regions. To make peak intensity errors comparable between countries,

errors are standardized by the observed peak intensity for a given country and season.

(TIF)

S11 Fig. Forecast accuracy using alternative accuracy cutoffs. Percent of forecasts accurately

predicting peak timing and intensity in temperate (A and C) and tropical (B and D) countries.

(A and B) Forecasts are considered accurate if they predict peak timing exactly, and predict

peak intensity within 12.5% of the observed value. (C and D) Forecasts are considered accurate

when forecasts are within 2 weeks of the observed peak timing and 50% of the observed peak

intensity.

(TIF)

S12 Fig. Forecast accuracy using correlation coefficients and symmetric mean absolute

percentage error (sMAPE). Ranges of correlation coefficients (A and B) and sMAPE (C and

D) for temperate (A and C) and tropical (B and D) countries. Points represent median values,

and error bars show the 95% credible interval. Point size represents the number of forecasts

contributing data to the point in question.

(TIF)

S13 Fig. Forecast accuracy using the method of analogues. A comparison of peak timing (A

and C) and peak intensity (B and D) accuracy in both temperate (A and B) and tropical (C and

D) countries between the methods described in the main text (red) and the method of ana-

logues (blue).

(TIFF)

S14 Fig. Inferred model states and parameters. Ranges for S0, Re, R0, D, and L by temperate

versus tropics designation (A), hemisphere (B), and data type separated by temperate (C) and

tropical (D) regions.

(TIF)

S15 Fig. Ranges of R0max and R0min by latitude. Distribution of inferred values for R0max (A

and B) and R0min (C and D) by latitude (absolute value), defined as the latitude at the country’s

centroid (A and C) or the latitude of the country’s capital (B and D). Values derived from tem-

perate countries are shown in blue, and values from countries in the tropics are in red.

(TIF)

S16 Fig. Posterior visualizations. Mean posterior fit for 5 models runs of 300 ensemble mem-

bers each for Norway, Poland, Italy, Mexico, and Ecuador. Fit is plotted for the 2015–16 season

for the temperate countries, and for the entire duration of the available data for Ecuador.

Observed data are plotted as black x’s, while the posterior model fit is plotted in blue.

(TIF)

S17 Fig. Temperate forecast visualizations. Forecast trajectories for Norway, Poland, Italy,

and Mexico for the 2015–16 season. Forecasts are presented starting 6 weeks prior to the

observed week through 2 weeks after the peak. Black x’s represent observed data, blue lines

show model incidence during the training period, and red lines represent forecast trajectory.

For each forecast, the 5 runs are shown separately.

(TIF)
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S18 Fig. Tropical forecast visualization. Forecast trajectory for the fifth recorded outbreak in

Ecuador in our dataset. Forecasts are presented as in S17 Fig. Because tropical forecasts were

generated by fitting the model to the observations continuously, rather than by season, model

fitting for all data prior to the fifth outbreak in Ecuador is shown.

(TIF)

S19 Fig. Forecast accuracy for the 2009 influenza pandemic. Peak timing (red) and intensity

(blue) accuracy for forecasts of the 2009 pandemic in temperate (A) and tropical (B) countries.

(TIF)

S1 Table. Countries used for retrospective forecasting, by region, data type, and scaling.

(PDF)

S2 Table. Countries and seasons used for retrospective forecasting.

(PDF)

S3 Table. Peak timing and intensity accuracy overall, before the predicted peak, and at or

after the predicted peak in temperate regions by hemisphere, season, region, data type,

and scaling. Cells shaded in green indicate improved forecast accuracy over the reference

level, while cells shaded in red indicate reduced accuracy.

(PDF)

S4 Table. Peak timing and intensity accuracy at or after the predicted peak in the tropics

by region, data type, and scaling. Cells shaded in green indicate improved forecast accuracy

over the reference level, while cells shaded in red indicate reduced accuracy.

(PDF)

S5 Table. Inferred model states and parameters for all countries and outbreaks. Results for

each of 5 individual runs for each country and outbreak are included. For tropical countries,

the “season” column contains a number from 1 to x, where x is the total number of outbreaks

(as defined in the main text) observed in a country over the considered years, denoting which

of the x sequential outbreaks the inferred values refer to.

(CSV)
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