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Abstract

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous, immature myeloid cell 

population with the ability to suppress innate and adaptive immune responses that promote tumor 

growth. MDSCs are increased in patients with multiple myeloma (MM) and have bidirectional 

interaction with tumors within the MM microenvironment. MM-MDSCs promote MM tumor 

growth and induce immune suppression, while conversely, MM cells induce MDSC development 

and survival. Although the role of MDSCs in infections, inflammatory diseases and solid tumors 

has been extensively characterized, their tumor-promoting and immune-suppressive role in MM 

and the MM microenvironment is only beginning to emerge. The presence and activation of 

MDSCs in MM patients has been well documented, however direct actions and functional 

consequences of MDSCs on cancer cells is poorly defined. Immunosuppressive MDSCs play an 

important role in tumor-progression primarily because of their capability to promote immune-

escape, angiogenesis, drug resistance and metastasis. However, their role in the bone marrow 
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(BM), the primary MM site, is poorly understood. MM remains an incurable malignancy, and it is 

likely that the BM microenvironment protects MM against chemotherapy agents and the host 

immune system. A growing body of evidence suggests that host immune cells with a suppressive 

phenotype contribute to a myeloma immunosuppressive network. Among the known suppressor 

cells, MDSCs and T regulatory cells (Tregs) have been found to be significantly increased in 

myeloma patients and their levels correlate with disease stage and clinical outcome. Furthermore, 

it has been shown that MDSC can mediate suppression of myeloma-specific T-cell responses 

through the induction of T-cell anergy and Treg development in the MM microenvironment. Here, 

we review clinical correlations and the preclinical proof-of-principle data on the role of MDSCs in 

myeloma immunotolerance and highlight the mechanistically relevant MDSC-targeted compounds 

and their potential utility in a new approach for anti-myeloma therapy.
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1. Introduction

Despite the advent of novel agents and doubling of survival rates, multiple myeloma (MM) 

is still considered an incurable malignancy 1–3. MM is characterized by generalized immune 

suppression that contributes to susceptibility to infection as well as tumor progression 4–6 

and the discovery that anti-MM novel agents (i.e., bortezomib and lenalidomide) retain 

immunomodulatory properties underlies the role of the deregulated immune effector cells in 

this disease 7–10. T-lymphocyte and natural killer mediated immunotherapy have been 

evaluated or are currently under investigation as potential new avenues to overcome the 

myeloma immunosuppressive network and boost a specific anti-MM immune response 
11–13.

A well-recognized feature of MM is the bidirectional interaction between malignant plasma 

cells and the bone marrow microenvironment, which provides a protective niche from the 

patient’s immune system and chemotherapy agents. Importantly, inadequate prediction of 

myeloma progression based on gene-expression profiling of isolated malignant plasma cells 

underscores the likely essential role for non-plasma cells components in MM disease 

progression and survival 14. While MM is a more widespread disease compared to 

smoldering multiple myeloma (SMM) and monogammopathy of unknown significance 

(MGUS), it harbors the same genetic defects as the other two subtypes of plasma cell 

dyscrasias 15,16 suggesting that genetic mutations are necessary but not enough for 

developing symptomatic myeloma. Transformation of MGUS to MM seems to be caused by 

a developing permissive myeloma microenvironment which leads to “immune escape” and 

advancement toward full-blown myeloma 12,17. Also, the myeloma microenvironment has a 

substantial role in chemotherapy resistance and thereby the persistence of residual disease, 

which is the source of frequent relapses leading to poor clinical outcomes 18–21.

The MM microenvironment includes osteoclast, osteoblasts, endothelial and immune cells 

with the structural support of an extracellular matrix, adhesion molecules and cytokines 21. 
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Increased immune suppressor cells have been reported in the bone marrow of myeloma 

patients, which correlates with clinical outcomes, emphasizing the important role of these 

cells in providing the “immune escape” that favors myeloma progression. Myeloid-derived 

suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that 

accumulate in different cancer types, including MM. Besides immune regulation, MDSCs 

promote tumor angiogenesis and tumor growth through the secretion of cytokines and 

growth factors. Recently, the role of MDSCs in tumor-induced immunosuppression has been 

established in a variety of malignancies. MDSCs are a heterogeneous mixture of myeloid 

cells in different maturation stages with the antigen-presenting ability that contributes to 

immune evasion of cancer cells 22–25. They are comprised of immature granulocytes and 

precursors of macrophages and dendritic cells that promote tumor growth by suppressive 

adaptive immunity, leading to suppression of CD4 and CD8 cell-mediated immunity 22,26,27. 

These cells secrete arginase, which is able to deplete the microenvironment of arginine, an 

essential amino acid for T-cell activity. Moreover, MDSCs inhibit T-cell receptors by 

nitrosylation and reactive oxygen species (ROS) release 28. MDSCs are activated by a key 

transcription factor, signal transducer and activator of transcription 3 (STAT3) 29. This 

review presents a summary of preclinical data and clinical correlations and highlights the 

MDSCs as an important target for therapeutics development for patients with MM.

2. MDSC evolution and phenotype

In mice, MDSCs are classified according to presence of Ly-6C or Ly-6G on their membrane, 

respectively. In humans, they are characterized as CD33+ cells, common myeloid marker, 

and CD11b+ with no marker for mature lymphoid or myeloid on their membrane including 

HLA-DR. They can be divided in two main groups based on CD14 positivity; granulocyte 

MDSCs (G-MDSCs) are CD11b+ CD14− CD33+ CD15+ HLA-DRlow/− and monocytic-

MDSC (M-MDSCs) that are CD11b+ CD14+ CD33+ HLA-DRlow/− 30,31. Detailed 

information about the different subsets of MDSCs can be found elsewhere 32.

MDSC evolution from hematopoietic progenitor cells (HPC) includes a primarily MDSC 

expansion phase and a second phase of MDSC activation. The first phase is mediated by a 

variety of cytokines, including GM-CSF, M-CSF, G-CSF, IL-6 and vascular endothelial 

growth factor (VEGF), produced by tumors or bone marrow stromal cells, and activation of 

STAT3 and STAT5. These signals promote proliferation of immature myeloid cells from 

hematopoietic progenitor cells and prevent their differentiation to more mature myeloid 

cells. The second phase involves MDSC activation through STAT1 and NF-kB pathway 

activation which involves a different set of cytokines such as IL-13, toll-like receptor (TLR) 

ligands and leads to upregulation of arginase and nitric oxide (NO). Importantly, to mount a 

full MDSC effect during tumorigenesis or chronic inflammation the simultaneous activation 

of two phases is required. In myeloma the G-MDSC forms the predominant MDSC 

population in bone marrow as well as peripheral blood samples as opposed to M-MDSC 33. 

MDSCs are phenotypically different in humans and mice.
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3. Clinical correlations

Higher Peripheral blood MDSC levels correlates with higher tumor stage and volume at 

diagnosis in a variety of solid tumors as well as malignant hematology neoplasms and 

confers chemoresistance34,35. On multiple reports, MDSCs were functionally and 

phenotypically different in MM patients compared to patients with MGUS and normal 

individuals 33,36,37. Also, CD14+HLA-DR−/low M-MDSCs increase in newly diagnosed and 

relapsed MM compared to a myeloma patient who is in remission. More importantly the 

MDSC burden correlates with MM stages and poor clinical outcome with proteasome 

inhibitors38. A balanced amalgam of different immune system compartments including NK 

cells, Tregs, MDSCs, Th17 and T helper cells correlates with long-term remission after 

initial anti-myeloma therapy 39,40. Details regarding the potential role of MDSCs as a 

population influencing the GVHD as well as Donor Lymphocyte Infusion (DLI) outcome 

after stem cell transplant is also emerging (section 5.2).

4. Role of MDSCs in the tumor-induced immunosuppressive network

While MDSCs are rare or absent in healthy individuals, they play a prominent role in some 

physiologic process like fetal allotolerance during pregnancy as well as in pathologic 

conditions such as limiting the inflammatory response due to infections 41, and the 

development of immunotolerance to different types of malignancies42,43. During the process 

of metastasis, the shift of myeloid-progenitor cells to MDSCs is a transition observed in the 

microenvironment of organs such as lung or liver now viewed to be a critical step in 

enabling establishment of new metastases 44.

The myelomagenesis process, from MGUS to symptomatic myeloma, creates a suppressed 

immunome through a complicated cross-talk of the immune effecter cells and cytokines. The 

main deregulated elements of MM immunome are: Tregs, dendritic cells (DC), MDSCs and 

T-helper 17 (TH17) 45,46. However, MDSCs are emerging as the main regulatory population, 

playing an essential role in disease progression through the orchestration of immune 

suppression (Figure 1) 47.

4.1. Suppressive effect of MDSC on T cell function

MDSCs suppress T-cell function through three main mechanisms: 1) arginine depletion 2) 

production of high levels of nitric oxide (NO) and 3) production of reactive oxygen species 

(ROS). MDSCs contain high levels of argeninase which depletes the microenvironment of 

L-arginine, leading to impaired production of the CD3ζ chain, an integral part of T-cell 

receptors (TCR). Also, L-arginine depletion causes T-cell proliferation arrest by affecting 

cell cycle regulators 48,49. NO can increase T-cell apoptosis 50,51, and can also inhibit the 

IL-2 induced inflammatory cascade by inhibiting phosphorylation of downstream IL-2 

pathways such as Stat5 or Jak3 52. Also, accumulation of ROS can suppress T-cell functions 

as peroxynitrite is known to lead to receptor modification including TCR/MHC 

modification. Lastly, MDSCs upregulate the immunoregulatory molecules, Cox-2 and 

prostaglandin E2 (PGE2) 53.
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4.2. Stimulatory effect of MDSC on regulatory T cells

MDSCs can promote regulatory T-cells (Tregs) and interfere with lymph node homing of 

naïve T-cells 54,55. MDSCs also promote the expansion of induced Treg (iTreg) cells from 

naïve Tregs through TGF-β-dependent and -independent mechanisms which involve surface 

receptor interaction of CD40-CD40L or IL-10 and IFN-gamma secretion, respectively 56. 

The latter may be important in the MDSC suppression of NK cell as well as natural killer T-

cell (NKT cell) mediated tumor responses in the myeloma microenvironment 57.

4.2.1. The MDSC role in NK cell anergy—Cancer-induced MDSCs can induce anergy 

of NK cells via membrane-bound TGF-β1 58. Also, prostaglandins are involved in MDSC-

mediated NK cell suppression 59. There is also an essential role for transforming growth 

factor β (TGF-β) in the biology of MDSCs and NK cell suppression. TGF-β1 is a cytokine 

with potent immunosuppressive effects which is overexpressed in many tumors. Inhibitors of 

TGF-β1 suppress development and function of MDSCs and enhance the efficacy of anti-

tumor vaccination 60. More importantly, MDSCs have been shown to induce NK anergy 

through membrane-bound TGF-β1, while TGF-β1 inhibition leads to more tumor-toxic NK 

cells 58. Gr-1+CD11b+ cells contribute to TGFβ-mediated metastasis through enhancing 

tumor cell invasion and metastasis 61. Tumor exosomal TGF-β1 leads to MDSCs 

accumulation and tumor growth promotion 62. NK surveillance and cytotoxicity against MM 

decreases as disease progresses 63–65.

4.3. MDSCs enhance the tumor-promoting effect of T helper 17

CD4+ T cells, upon activation and expansion, develop into different T helper cell subsets 

with different cytokine profiles. A subset of IL-17-producing effector T helper cells, called 

Th17 cells, has now been characterized which favors angiogenesis and tumor growth in a 

variety of malignancies including MM 66,67. MDSCs recruit Th17 cells and increases IL-17 

production 68,69. NLRP3 inflammasome activation has been suggested as the mechanism of 

MDSC-mediated Th17 activation 70,71.

4.4. MDSC expansion as a counter-regulatory mechanism after anti-myeloma therapy

The alkylating agents melphalan and cyclophosphamide induce a robust initial antitumor 

immune response, which however is also associated with M-MDSC expansion, and an 

attenuated antitumor CD4+ T cell response through activation of PD1-PD-L1 axis 72. This 

may provide a conceptual platform to test the potential synergistic effect of alkylating agents 

and MDSC-directed therapies to enhance the anti-myeloma immune response.

IMiDs modify the myeloma immunome in a specific way. Busch et al. provided a 

comprehensive analysis of the immune system in 68 myeloma patients who were treated 

with these agents73. These investigators showed increased numbers of Tregs and MDSCs, 

consistent with observations reported by others 74,75. The observations include a 

demonstrated increase in both the number and activity of effector T and NK cells along with 

elevated HLA-DR expression, consistent with other studies 76–78. These findings suggest 

that MDSC expansion exists as a counter-regulatory mechanism elicited by certain anti-

myeloma agents, and suggests concomitant MDSC suppression could be an important 

strategy to prevent relapse after autologous stem cell transplant and chemoimmunotherapy 
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79. Interestingly, dexamethasone potentiates MDSC immunosuppressive effects 80,81 which 

is considered a mechanism of action for glucocorticoids in the allograft setting 82.

5. Role of MDSC in Myeloma Immunotherapy

5.1. MDSC impairs the efficacy of Myeloma vaccine and check point inhibitors

The premise of implementing different modalities of immunotherapy in MM is based upon 

the observation that myeloma evolution that correspond by progressive loss of T cell 

repertoire surveillance, suppression of antigen-presenting function and increased number 

and function of inhibitory accessory cells. A variety of strategies to reverse the myeloma-

induced immunosuppression has been developed and are in clinical trials.

Dendritic cell (DC) has a critical role in the antigen presenting and developing anti-myeloma 

immune response. DC vaccination using different tumor antigens can render an active and 

potentially long lasting immunization against the tumor. In this method DCs are loaded with 

tumor antigen exhibit a potent T-cell stimulatory activity currently is under study. However, 

the vaccine trials have had mixed result. Studies suggest MDSC impair the immune response 

from DC vaccines 83. This is important because the current method of DC ex vivo growth 

may collect MDSC. The most common approach to generate DC vaccine is DC ex vivo 

expansion before load them with tumor antigen. In this method most protocols uses CD14+ 

cells to generate their DC produce from primary patient samples. Although this method can 

generate active DCs from normal individuals but has limitation to generate matures DC 

population from cancer patients that correlate with abundance of monocytes with altered 

surface marker expression (CD14+HLA-DRlo/neg) which shows similarity with increased 

MDSC population in patient with cancer84. This underlines the importance of MDSC-

suppressive strategies to augment the DC vaccination effect.

MDSCs from peripheral blood and bone marrow of myeloma patient contains more PD-L1 

in compare to normal individuals 85. Indeed, PD-L1 expression on MDSC is higher than 

antigen-presenting cells including dendritic cells and PD-1/PD-L1 blockade limits myeloma-

promoting effect of MDSC 86. In another study, Disruption of MDSC trafficking abrogate 

the response to PD1 inhibition 87, providing the framework for evaluation of check point 

inhibitor combination with MDSC-targeted agents.

5.2. MDSC role in GVHD and stem cell transplant outcomes

Allogeneic hematopoietic stem cell transplant and donor lymphocyte infusion (DLI) confers 

a prolonged remission in a subgroup of myeloma patients. This is due to “graft versus 

myeloma” effect as an effective immunologic therapy. However, the application of this 

modality of therapy is limited by high transplant-related mortality and GVHD. Interestingly, 

MDSCs are collected with G-CSF-mobilized stem cell collection from healthy donors 88, 

and the fraction of MDSC in the collected peripheral blood CD34+ cells inversely correlates 

with occurrence of acute Graft vs. Host Disease (GVHD) 89 89. Messmann et al. 

demonstrated in-vitro-generated MDSCs prevent murine GVHD by tipping the TH2/TH1 

balance in favor of TH2 cells without disabling antitumor cytotoxicity of the graft. This 

effect is independent of MHC class I and may be exploited to treat GVHD without affecting 
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graft-versus-tumor (GVT) effect by expansion and infusion of autologous MDSCs from an 

individual patient 90. In another study the number of circulating peripheral blood MDSCs 

negatively correlates with donor lymphocyte infusion (DLI) efficacy in the post allogeneic 

stem cell transplant setting 91. The intensity of the conditioning regimen affects the 

expansion rate of MDSC populations post-transplant inversely, which may contribute to the 

higher GVHD incidence by myeloablative compared to a non-myeloablative conditioning 

regimens 92. Moreover, MDSCs populate the bone marrow and increase Treg activity, 

leading to delayed T-cell immunity 93.

5.3. MDSCs role in future anti-myeloma CAR-T cells therapies

Genetically engineered T-cells with chimeric antigen receptors (CAR-T) endow T cell 

populations with high antigen specificity and remarkable anti-tumor activity in acute 

leukemia94,95. Currently, there are two ongoing clinical trials using CAR-T targeting the 

kappa light chain and CD138 testing the effectiveness of this modality in MM. There are 

more anti-myeloma CARs in pre-clinical development using the B cell maturation antigen 

(BCMA) and cell surface glycoprotein CS1 antigens 96. This modality of therapy is 

emerging as an effective therapy with a curative potential of allogeneic stem cell transplant 

without morbidities related to graft versus host disease (GVHD). However, there have been 

challenges to implement this modality. Although, CAR-T cells are designed based on a 

restrictive antigen on tumor cells and are invariably able to lyse tumor cells in-vitro, they 

most often fail to expand and mount an anti-tumor effect in-vivo 97. Mounting evidence 

suggests the suppressive role of MDSCs against in-vivo expansion of these engineered T-

cells 98. It has been observed that MDSCs are able to inhibit CAR-T cell expansion in vitro 

and the extent of T-cell proliferation correlates inversely with circulating MDSC counts in a 

pivotal trial of CAR-T therapy in acute leukemia 95. Importantly, suppression of MDSCs by 

all-trans retinoic acid (ATRA) followed by infusion of antigen specific CART enhanced the 

anti-tumor effect of CAR-T therapy 87.

6. Myeloma preclinical models and therapeutic targeting of MDSCs

6.1. Immunocompetent myeloma mouse models

Most preclinical studies of the development and function of immune suppressor cells in MM 

have been done using an immunocompetent mouse model, C57BL/KaLwRij, and two 

murine myeloma cell lines originated from the mice, 5T2MM and 5T33MM. These models 

resemble the human myeloma disease as they exhibit widespread systemic disease with bony 

lesions. 5T33MM cells develop a more aggressive myeloma that grows in 3 weeks, while 

5T2MM cells grow in 12 weeks with a slower paced disease.

Valckenborgh and colleagues, using the immunocompetent mouse and murine myeloma 

cells, demonstrated that immunosuppressive MDSCs subsets (CD11bhighLy6Glow) are 

present in MM and their immunosuppressive capacity is induced by myeloma cells 99. In 

another study, the Dana-Farber group demonstrated a bidirectional interaction between 

myeloma cells and MDSCs, influencing the cell mediated immune response. They 

demonstrated that myeloma cells promote development of MDSCs from healthy donor 

peripheral blood mononuclear cells and conversely, that MDSCs favor myeloma growth by 
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suppressing T-cell mediated immune responses 30. MDSC-mediated T-cell suppression is 

partially dependent on arginine and NO synthase. Interestingly, they showed that bortezomib 

and melphalan abrogate the effect of MDSC suppressor factors (IL-6, IL-10, ARG1, iNOS 

and ROS).

5.2. MDSC cellular interactions in the myeloma microenvironment

The S100A9 knock-out (KO) murine model lacks S100A9, a STAT3-inducible myeloid-

related protein crucial in MDSC production and accumulation in a tumor-bearing mouse, 

and thus provides a good model to study the effect of MDSC depletion in MM progression 
33. Ramachandran and colleagues showed that MDSCs play an essential role at early stages 

of MM as well as disease progression using this murine myeloma model 33. These 

experiments were done in mice on a mixed FVB/N × C57BL/6 background, which develop 

spontaneous MM and subsequent widespread myeloma measurable by serum 

electrophoresis. Th1 CD4+ cell activation and antigen-mediated T-cell expansion in the BM 

is accelerated in the S100A9KO model leading to slower myeloma progression in this 

model. These data highlight the important role of MDSC to create a quiescent 

immunological microenvironment for myeloma cells. Apart from immunosuppressive 

effects, MDSCs also exert a direct tumor-promoting effect on myeloma cells. AMP-activated 

protein kinase (AMPK), a key regulator of energy homeostasis in MM, increases after co-

culture of MDSCs with myeloma cells with increased protection against apoptosis induced 

by bortezomib and melphalan 100. Furthermore, the intrinsic plasticity of MDSCs to 

differentiate to osteoclasts, an essential element of the myeloma niche, may contribute to the 

dynamics of the myeloma microenvironment, favoring disease progression101,102. It appears 

that the osteoclast differentiation of MDSCs is mediated through a variety of 

osteoclastogenic growth factors, including RANTES and MCP-1 secreted by tumor cells. 

Zoledronic acid, a potent bisphophonate, is able to reduce accumulation of MDSCs within 

the bone marrow and a concomitant decrease in osteoclastogenesis 101.

5.3. MDSC distribution through myeloma progression

Veirman et al. studied MDSC distribution throughout the myeloma progression course. They 

showed that BM MDSCs increase early in MM progression in the 5TMM mouse model, and 

that they appear in the peripheral blood at later stages. Also, the immunosuppressive 

capacity of MDSC subsets is increased early in the myelomagenesis process. Furthermore, 

co-culture with MDSCs promotes MM cell survival by upregulation of AMPK, the anti-

apoptotic factors MCL-1 and BCL2, and contributes to resistance to bortezomib and 

melphalan 100. Also, they demonstrated that MDSC-suppressive therapies by anti-GR1 and 

5-fluorouracil can augment the anti-myeloma effects of bortezomib.

MDSCs have been shown to exert T-cell suppression and to prolong survival of MM cells in 

vitro 103. Also, MDSC targeting by anti-GR1 antibody resulted in a significant anti-tumor 

effect in vivo. MCL-1 up-regulation showed a major survival mechanism for MM-induced 

MDSC. STAT3 inhibition abolishes the suppressive effect of MDSCs on T cells 104 and 

inhibition of MDSC STAT3 mediated by sunitinib, a multitargeted tyrosine kinase inhibitor, 

blocks MDSCs proliferation and restores T-cell function 105,106.
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5.4. MDSC-targeted strategies

The increased understanding of the underlying mechanisms responsible for MDSC 

development, trafficking and function has contributed to the exploration of a variety of 

strategies that may effectively target the cancer immunosuppression network. For example, 

ATRA has been used to promote MDSC differentiation into more mature cells 107. STAT3 

inhibitors lead to S100A9 protein depletion, which affects MDSC accumulation and their 

activation in cancer sites 29. There are several promising STAT3 inhibitor compounds which 

are in phase II and III clinical trials, mainly for malignancies other than MM, and some of 

their anti-tumor efficacy may be attributed to MDSC-suppressive effects 108. The 

combination of these compounds with standard anti-myeloma agents should be explored in 

early phase clinical trials. The downregulatory effect of phosphodiesterase inhibitors on 

arginase 1, nitric oxide synthase-2 expression and subsequent MDSC inaction and depletion 
28 was translated into MDSC-directed clinical trials for myeloma patients; Gosh and 

colleges reported a combination therapy study using tadalafil, a phosphodiesterase 5 

inhibitor, and lenalidomide 109. Thirteen lenalidomide-refractory patients were recruited; 

one patient achieved minimal response and 4 patients, stable disease. Although tolerable, 

this approach lacked efficacy. MDSCs were measured by flow cytometry using CD14+, 

CD33+, HLADRlow, IL4Rα+ or CD15+, CD33+, HLADRlow on pre and post-treatment 

samples. Importantly, MDSCs were not detected in the pre-treatment blood or bone marrow 

samples of these heavily treated patients. Therefore, it was speculated that the poor response 

from MDSC-suppressive therapy was due to the lack of sufficient target cells (MDSCs) in 

these patient populations.

Immunosuppressive effects of MDSCs can also be inhibited by the class of small molecules 

known as triterpenoids 110. In mouse models, RTA 408 depletes tumor nitrotyrosine burden 

and inhibits MDSC activity with subsequent enhancement of T-cell antitumor activity. This 

finding was utilized to augment the effect of checkpoint inhibitors in melanoma. Currently, 

the next generation of synthetic triterpenoids RTA 408 I are in a phase 1b/2 clinical trial in 

melanoma patients to test their ability to augment checkpoint inhibitors such as ipilimumab 

and PD1 inhibitors. A summary of the different MDSC-targeting agents based on the 

mechanism of action is presented in Table 1.

7. Summary and future directions

During the last decade, a growing effort has been devoted to understanding the role of 

immune regulatory cells in tumor progression. MDSCs appear to play a critical role in the 

generation of an immune dysfunctional microenvironment in patients with multiple 

myeloma. Identification of molecular pathways involved in MDSC evolution, circulation and 

function could potentially lead to new targets for therapeutics development. Novel agents 

targeting intermediates in these pathways will have the capacity to disrupt the myeloma 

immunosuppressive network, and will be incorporated in unique strategies that could 

improve the efficacy of current therapies as well as form the basis for cancer 

chemoprevention throughout the myelomagenesis process. Inhibition of the tumor-

promoting and immune-suppressive functions of MDSCs in MM represents a needed and 

promising novel immune-based therapeutic approach in this disease.
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Practice Points

• Myeloma-induced immunosuppression is result of a complex cross-talk 

between immunoeffector and immunosuppressive cells.

• MDSCs are increased in myeloma patients in compare to normal individuals 

and their presence correlate to response to therapy.

• There is bidirectional talk between myeloma cells and MDSC; Myeloma cells 

promote MDSC differentiation and function and MDSC contributes to 

chemotherapy resistance.

• MDSCs play a central role to orchestrate the myeloma immunosuppression 

network by affecting NK, effector T cells, Tregs and dendritic cells.

• Therapeutics to overcome MDSCs can augment the effect of upcoming 

immunotherapy for MM.
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Research Agenda

• Investigate MDSC trafficking further to elucidate the underlying mechanisms 

of cell-cell interactions between MDSC and other component of immune 

system.

• Study MDSC-targeting agents in conjunction with current and future anti-

myeloma agents, specifically immunotherapy modalities.
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Figure 1. 
Myeloid derived suppressor cells (MDSCs) interaction with myeloma cells and multiple 

mechanisms used by these cells to dampen anti-myeloma immunity. AMPK: AMP-activated 

protein kinase; MCP-1: Monocyte chemoattractant protein-1; MCL-1: Myeloid Cell 

Leukemia 1; TGF: Transforming growth factor.
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Table 1

Potential therapeutic agents targeting MDSC classified according to mechanism.

Mechanism of Action Compounds

Differentiation Promotion Triterponoids111

HDAC inhibitor112

All-trans-retinoic-acid (ATRA)113,114

Vit D3115

Maturation blockage Sunitinib116

STAT3 inhibitors (anti-apoptotic genes suppression and reduced ROC)29

MMP9 inhibitors117

Bevacizumab118

Anti-BV8 mAb119

Axitinib120

Amino-Bisphoonates (Zoldronate) 117

MDSC Trafficking Gemcitabine121

5-FU122

Doxorubicin123

CXCR2 and CXCR6 antagonist124

Function Phosphodiestrase-5 inhibitor125

Triterponoids111

TGF-β inhibitors60

ROS inhibitor (Nitraspirin and N-Acetyl Cysteine)126

COX2 inhibitors (decrease in ARG and NOS expression)127
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