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Abstract

Objective: Cancer-associated fibroblasts (CAFs) play an important role in the progression of 

pancreatic ductal adenocarcinoma (PDAC) by promoting tumor cell migration and drug resistance. 

We determined the impact of CAFs on PDAC cancer stem cells (CSCs).

Methods: Fibroblast cell lines from patients’ tumors were co-cultured with PDAC cells and 

examined for clonogenic growth and self-renewal using colony forming assays and migration in 
vitro. Changes in the frequency of CSCs was determined by flow cytometry. The effect of integrin-

Focal Adhesion Kinase (FAK) signaling on CAF-mediated clonogenic growth was evaluated using 

shRNAs against β1 integrin and FAK as well as a small molecule FAK inhibitor.

Results: Cancer-associated fibroblasts enhanced PDAC clonogenic growth, self-renewal, and 

migration that was associated with an increase in the frequency of CSCs. These fibroblast cells 

were activated by PDAC cells and increased collagen synthesis resulting in FAK activation in 

PDAC cells. Knock-down of β1-Integrin and FAK or the inhibition of FAK kinase activity in 

PDAC cells abrogated the impact of CAFs on clonogenic growth.

Conclusion: Therefore, CAFs enhance PDAC clonogenic growth, self-renewal, and the 

frequency of CSCs through type I collagen production that enhances integrin-FAK signaling in 

PDAC cells.
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Introduction

Cancer stem cells (CSCs) have been prospectively identified in many diseases based on their 

increased tumor-initiating capacity, self-renewal potential, and the ability to phenotypically 

recapitulate the original tumor in the ectopic setting.1–3 In PDAC, CSCs are highly 

migratory and found in metastatic lesions suggesting an additional role in disease 

progression.4 A number of cell-intrinsic pathways regulating PDAC CSCs have been 

identified,5 but the impact of extrinsic cell factors are not well understood.

The tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC) is 

characterized by a dense desmoplastic reaction composed of stromal, immune, and 

endothelial cells as well as extracellular matrix (ECM) proteins. Changes in the TME are 

associated with poor clinical outcomes, and the activation of cancer-associated fibroblasts 

(CAFs) can impair intratumoral drug delivery by inducing fibrosis and facilitate metastatic 

disease by promoting the epithelial-mesenchymal transition (EMT) and tumor cell 

migration.6–8 The reactive stroma has been found to impact stem cell functional properties 

in breast, lung, and colon carcinoma,9–11 and we examined the impact of CAFs on PDAC 

CSCs.

We co-cultured CAFs and PDAC cells and found that direct cell to cell interactions 

enhanced tumor cell clonogenic growth, self-renewal, and migratory potential that was 

associated with an increased frequency of aldehyde dehydrogenase (ALDH) expressing 

PDAC CSCs. Type I collagen has been shown to increase PDAC tumor-initiating potential 

and self-renewal by signaling through β1-Integrin and Focal Adhesion Kinase (FAK),12 and 

we found that the inhibition of integrin-FAK signaling in PDAC cells partially abolished the 

impact of CAFs on these cells. In addition, PDAC cells enhanced the expression of type I 

collagen in CAFs. Therefore, the interaction between CAFs and PDAC cells may establish a 

positive feedback mechanism promoting stem cell features.

MATERIALS AND METHODS

Cell Lines and Xenografts

Primary cancer-associated fibroblasts (CAFs) were isolated from surgically resected primary 

tumors as previously described.13 Normal human lung fibroblasts (nHLFs), Capan-1, and 

BxPC-3 cell lines were purchased from the American Type Culture Collection (Manassas, 

Va) and cultured in DMEM containing 10% fetal bovine serum (Sigma, St. Louis, Mo), 1% 

penicillin/streptomycin, and 2mM L-glutamine. Pancreatic cancer cells and CAFs were co-

cultured at a 1:1 ratio for 7 or 14 days then washed with phosphate buffered saline (PBS), 

trypsinized, flow-sorted, and re-suspended in medium containing 10% FBS. Treatment with 

the FAK-inhibitor PF573228 (500nM; Sigma) was carried out for 7 days. The low passage 

patient-derived xenograft (PDX) JH102 has been previously described.14,15 Conditioned 
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media from CAFs was collected after 7 days of culture and used at a final concentration of 

50%.

Plasmids

pLVX-IRES-mCherry and pLVX-IRES-zsGreen lentiviral vectors were purchased from 

Clontech Laboratories (Mountain View, Calif), and stable lines were generated following 

FACS sorting. Short hairpin RNA (shRNA) constructs against FAK (shFAK), or a scrambled 

control sequence was cloned into the Tet-pLKO-puro lentiviral vector (Addgene, Watertown, 

Mass).12 The shRNA constructs against β1-Integrin were cloned into the pLKO-puro vector. 

Cell lines expressing shRNA against FAK or β1-Integrin were selected using puromycin 

(Thermo Fisher Scientific, Waltham, Mass).

Clonogenic Assay

Tumor colony formation in methylcellulose was carried out as previously described.14,15

Quantitative Real-time PCR Analysis

Total RNA was extracted using the RNeasy Plus Mini Kit (Qiagen, Hilden, Germany) and 

reverse-transcribed with SuperScript III reverse transcriptase (Invitrogen, Carlsbad, Calif). 

Quantitative RT-PCR was carried out using TaqMan probes (Applied Biosystems, Foster 

City, Calif) for GAPDH (Hs99999905_m1), COL1A1 (Hs00164004_m1), 

SNAI1(Hs00195591_m1), SNAI2 (Hs00161904_m1), ZEB1 (Hs01566407_m1), ZEB2 

(Hs00207691_m1), or CDH2 (Hs00983056_m1).

Flow Cytometry

Aldefluor staining was performed according to the manufacturer’s protocol (Stemcell 

Technologies, Vancouver, Canada), and flow cytometry was carried out as previously 

described.14,15 For intracellular staining, cells were fixed with 2% formalin for 10 minutes, 

followed by permeabilization with 1% NP40 for 10 minutes at room temperature. Cells were 

stained with rabbit monoclonal anti-pY397-FAK (Invitrogen), monoclonal alpha-Smooth 

Muscle Actin (M0851, DAKO-Agilent, Santa Clara, Calif), or rabbit polyclonal anti-FAK 

(Cell Signaling, Danvers, Mass) antibodies followed by the monoclonal anti-rabbit-APC 

antibody (Invitrogen).

Migration Assay

Cell migration assay was carried out as previously described.14,15

Statistics

Statistical differences between two groups were analyzed using the two-tailed, unpaired 

Student t-test (Version- Prism 6, GraphPad Prism Software, Inc.. La Jolla, Calif). P values < 

0.05 were considered significant.
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RESULTS

Cancer-associated Fibroblasts Enhance the Clonogenic Growth Potential of PDAC

Cancer-associated fibroblasts are a major cellular component of the reactive stroma and 

contribute to PDAC progression by secreting ECM proteins and cytokines.16 To determine 

their impact on clonogenic tumor growth, CAF cell lines established from primary surgical 

specimens and stably expressing mCherry or zsGreen fluorescent proteins were co-cultured 

with PDAC cells.13 Tumor cells were then isolated by FACS and plated in methylcellulose to 

quantify clonogenic growth potential (Supplemental Fig. 1A). Compared to Capan-1 and 

BxPC-3 cells cultured alone or with nHLFs, CAFs derived from multiple primary tumors 

significantly increased tumor colony formation by 1.3–2.5 fold (Fig. 1A; P ≤ 0.05). 

Similarly, PDAC cells isolated from a low passage PDX (JH102) formed significantly more 

colonies when co-cultured with CAFs (Fig. 1B; P ≤ 0.001). This enhanced clonogenic 

growth potential was cell-contact dependent as tumor cell colony formation was not 

significantly impacted by CAF-conditioned media (Supplemental Fig. 1B). Notably, 

increased colony formation was not due to changes in the proliferation (data not shown) of 

PDAC cells. The maintenance of clonogenic growth over time is required for disease 

relapse, and tumor colonies were harvested and serially replated to quantify the impact of 

CAFs on PDAC self-renewal. Although cells were not further exposed to CAFs, secondary 

colony formation by Capan-1 cells remained significantly increased > 1.3 fold (Fig. 1C; P ≤ 

0.05). Therefore, CAFs enhance PDAC clonogenic growth and self-renewal.

Cancer-associated Fibroblasts Induce EMT and Facilitate PDAC Migration

The migratory potential of CSCs is increased compared to bulk tumor cells and suggests a 

role in metastatic PDAC progression.4 Following co-culture with CAFs, the migration of 

PDAC cells was significantly increased by 1.3–2.1 fold (Fig. 2A, Supplemental Fig. 2A; P ≤ 

0.05) similar to other reports in PDAC and other cancers.17–20 In contrast, the treatment of 

PDAC cells with CAF-conditioned medium did not affect migration (Supplemental Fig. 2B) 

suggesting that direct interaction with CAFs was required. In various cancers, including 

PDAC, EMT contributes to metastasis by promoting cell invasion and migration.21–28 

Cancer stem cells may express features suggestive of EMT,29 and we found that the co-

culture of Capan-1 cells with CAFs decreased E-cadherin expression and increased the 

expression of genes such as Snail, Slug, Zeb1, Zeb2, and N-cadherin that are associated with 

EMT (Figs. 2B–D). Therefore, CAFs promote PDAC cell migration by inducing EMT.

Cancer-associated Fibroblasts Enhance the Frequency of ALDH+ PDAC CSCs

We previously demonstrated that highly clonogenic PDAC CSCs express aldehyde 

dehydrogenase (ALDH) activity.4 Since co-cultures enhanced PDAC clonogenic growth and 

migration, the impact of CAFs on the frequency of ALDH+ CSCs was examined. In Capan-1 

and BxPC-3 cells, the frequency of ALDH+ cells significantly increased by 1.6–8 fold 

following co-cultures with CAFs compared to PDAC cells cultured alone or with nHLFs 

(Fig. 3A, Supplemental Fig.3A; P ≤ 0.05). Similarly, the frequency of ALDH+ CSCs was 

increased by 2.3 fold in cells from the JH102 PDX when cultured with CAFs (Fig. 3C). 

Therefore, CAFs enhance the frequency of ALDH+ PDAC CSCs.
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Co-cultured CAFs Induce Integrin-FAK Signaling in PDAC Cells

Activated CAFs express alpha-smooth muscle actin (αSMA) and several ECM proteins, and 

their presence in primary PDAC tumors is associated with the poor outcomes.16,30 

Following co-culture with PDAC cells, the expression of αSMA was increased (Fig. 4A, 

Supplemental Fig.4A) suggesting that their activation was induced by tumor cells. In 

addition, CAFs co-cultured with PDAC cells expressed significantly higher levels of type I 

collagen (Fig 4B; P = 0.0002). We previously demonstrated that type I collagen specifically 

increases tumor initiation and self-renewal potential by signaling through β1-Integrin and 

activating FAK.12 Following co-culture with CAFs, FAK activation, determined by 

phosphorylation at residue 397 (pY397), was increased in Capan-1 cells (Fig 4C). To 

determine the role of β1-Integrin and FAK in the interaction between tumor and stromal 

cells, Capan-1 cells with shRNA against β1-Integrin were co-cultured with CAFs and 

evaluated for clonogenic growth. Compared to cells with a control shRNA construct, the loss 

of β1-Integrin expression abrogated the enhanced clonogenic growth of CAFs (Fig. 4D; P ≤ 

0.05). Similarly, treatment with a small molecule FAK inhibitor (PF573228) inhibited the 

enhanced clonogenic growth induced by CAFs. In our previous study, we also found that the 

loss of FAK expression inhibited CSCs to a greater extent than FAK kinase inhibition likely 

due to the loss of its role as a cellular scaffold.12 Similarly, FAK knock-down significantly 

inhibited tumor colony formation even in the presence of CAFs (Fig 4E; P = 0.002, 

Supplemental Fig. 4B). Therefore, both the kinase and non-kinase activities of FAK impact 

the interactions between CAFs and PDAC cells.

DISCUSSION

In normal systems, the surrounding microenvironment regulates stem cell fate decisions that 

include proliferation, self-renewal, and differentiation. In many diseases, specific 

components of the TME, including specific cellular components, such as mesenchymal stem 

cells, stromal cells, immune cells, and endothelial cells have been found to regulate CSC 

self-renewal and differentiation.31 In some cancers, direct cell contact or the production of 

cytokines by non-tumor cells within the TME can promote stem cell functional properties 

and the expansion of CSCs.10,32–34 In PDAC, CAFs are a distinct part of the TME, and we 

found that these cells enhance the clonogenic growth and self-renewal of PDAC cells. 

Pancreatic CSCs are relatively more invasive and migratory than non-CSCs implicating a 

role in metastatic tumor dissemination, and previous studies have demonstrated that CAFs 

increase PDAC cell migration.35,36 We found that CAFs increased the migratory potential of 

PDAC cells as well as the frequency of ALDH+ cells suggesting that this enhancement may 

be in part due to increased CSCs.

The activation of CAFs leads to the production of several ECM proteins that contribute to 

the desmoplastic reaction in PDAC. We previously demonstrated that type I collagen 

enhances stem cell properties in PDAC by signaling through β1-Integrin and activating FAK.
12 In other diseases, ECM molecules produced by CAFs have also been found to induce 

stem cell properties.12,37 Here we demonstrate that CAFs are activated by PDAC cells to 

express type I collagen that subsequently activates FAK in PDAC CSCs. Therefore, it is 
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possible that the bidirectional interactions between CAFs and PDAC cells ultimately lead to 

disease relapse and progression by stimulating CSCs.

Fibrosis produced by the reactive stroma may play an important role in PDAC therapeutic 

resistance by restricting adequate intratumoral levels of chemotherapeutic agents.38 

Attempts to clinically target the stromal cellular compartment by inhibiting the Hedgehog 

signaling pathway have not been successful.39 Furthermore, inhibiting αSMA resulted in 

more aggressive tumors in transgenic mice models, suggesting that the stroma may be 

protective in restricting tumor dissemination.40,41 We found that the loss of β1-Integrin or 

FAK activity in PDAC cells inhibited the impact of CAFs on clonogenic growth. Therefore, 

strategies to block the effects of the TME, such as FAK inhibitors,12,42 rather than CAFs 

themselves may represent a novel therapeutic approach.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Cancer-associated fibroblasts enhance the clonogenic growth potential of PDAC. A, Colony 

formation by PDAC cell lines (Capan-1, and BxPC-3) and B, a PDX (JH102) cells following 

co-culture with CAFs or nHLFs for 7 days. Data represent the mean and SD of 4 

experiments. *P < 0.05, **P < 0.005. C, Primary and secondary colony formation by 

Capan-1 cells cultured with or without CAFs for seven days. Data represent the mean and 

SD of 4 experiments. *P < 0.05.
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FIGURE 2. 
Cancer-associated fibroblasts induce EMT and facilitate PDAC migration. A, In vitro 
migration of Capan-1 cells following culture with CAF-conditioned or control media for 7 

days. Data represent the mean and SD of 4 experiments. *P < 0.05, **P < 0.001, ***P < 

0.0001. B, E-cadherin staining (red) of Capan-1 cells (GFP) following co-culture with CAFs 

for 7 days. Arrows indicate E-cadherin negative Capan-1 cells. C, The frequency of E-

cadherin negative Capan-1 cells following culture with or without CAFs detected by flow 

cytometry. D, Relative mRNA expression of EMT associated genes in sorted Capan-1 cells 

following co-culture with CAFs. Data represent the mean and SD of 3 experiments.
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FIGURE 3. 
Cancer-associated fibroblasts enhance the frequency of ALDH+ PDAC CSCs. A, ALDH 

expression by Capan-1 cells following 7 days of co-culture with CAFs. Cells treated with 

DEAB were used as negative control for ALDH staining. Data represent the mean and SD of 

3 experiments. *P < 0.05, *** P < 0.0001. B, The frequency of ALDH+ cells was analyzed 

in patient-derived low passage PDX (102) following co-culture with CAF35.
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FIGURE 4. 
Cancer-associated fibroblasts express type I collagen and enhance integrin-FAK signaling in 

PDAC. A, αSMA expression of CAFs following co-culture with or without Capan-1 cells 

for 7 days. Left: immunostaining of αSMA (green) and nucleus-Hoechst 33342 (blue). 

Right: αSMA expression by CAF35 cells before and after co-cultured with Capan-1 cells. B, 

Relative mRNA expression of type I collagen by CAF35 cells following co-culture with 

Capan-1 cells. C, The frequency of pY397-FAK+ Capan-1 cells following co-culture with 

CAFs. D, Colony formation by Capan-1 cells expressing a scrambled control (Ctrl) or β1 

integrin (shBeta1) shRNA vectors or treated with PF573228 following co-culture with 

CAFs. Data represent the mean and SD of 3 experiments. **P < 0.001. E, Colony formation 

by Capan-1 cells expressing a scrambled control (Ctrl) or FAK (shFAK) shRNA following 

co-culture with CAFs. Data represent the mean and SD of 3 experiments. *P < 0.05; **P < 

0.001, ***P < 0.0001.
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