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Abstract

Background.—Left atrial (LA) remodeling is associated with structural, electric, and metabolic 

LA changes. Integrated evaluation of these features in vivo is lacking.

Methods.—Patients undergoing 18F-fluorodeoxyglucose (FDG) PET-CT during a 

hyperinsulinemic-euglycemic clamp were classified into sinus rhythm (SR), paroxysmal AF 

(PAF), and persistent AF (PerAF). The LA was semiautomatically segmented, and global FDG 

uptake was quantified using standardized uptake values (SUVmax and SUVmean) in gated, 

attenuation-corrected images and normalized to LA blood pool activity. Regression was used to 

relate FDG data to AF burden and critical patient factors. Continuous variables were compared 

using t-tests or Mann-Whitney tests.

Results.—117 patients were included (76% men, age 66.4 ± 11.0, ejection fraction (EF) 25[22–

35]%) including those with SR (n = 48), PAF (n = 55), and PerAF (n = 14). Patients with any AF 

had increased SUVmean (2.3[1.5–2.4] vs 2.0[1.5–2.5], P = 0.006), SUVmax (4.4[2.8–6.7] vs 

3.2[2.3–4.3], P < 0.001), uptake coefficient of variation (CoV) 0.28[0.22–0.40] vs 0.25[0.2–0.33], 

P < 0.001), and hypometabolic scar (32%[14%−53%] vs 16.5%[0%−38.5%], P = 0.01). AF 

burden correlated with increased SUVmean, SUVmax, CoV, and scar independent of age, gender, 

EF, or LA size (P < 0.03 for all).
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Conclusions.—LA structure and metabolism can be assessed using FDG PET/CT. Greater AF 

burden correlates with the increased LA metabolism and scar. (J Nucl Cardiol 2018)
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INTRODUCTION

Left atrial (LA) remodeling is a complex and poorly understood process that occurs in a 

variety of disease states and is an important driver of atrial fibrillation (AF). Remodeling 

manifests as electrical, structural, and functional LA changes which are interrelated.1–3 For 

example, untreated AF has been postulated to promote LA dilation and fibrosis, which may 

be reversible with restoration of sinus rhythm (SR).4 Remodeling is believed to be driven by 

altered atrial metabolism though both cellular and extracellular pathways.5,6 Altered 

metabolism is a known component of ventricular remodeling7–10 and similar mechanisms 

are likely involved in atrial tissue as well. Understanding the interplay of atrial metabolism, 

fibrosis, remodeling and the clinical AF syndrome could have important mechanistic and 

clinical implications. Parsing out these complex relationships remains challenging, in part 

due to a limited means for joint quantification of LA remodeling and metabolism in humans.

To date, nearly all imaging studies of the LA have used anatomic imaging methods such as 

cardiac magnetic resonance imaging (cMRI), computed tomography (CT), and 

echocardiography to assess volumes, function, and, in emerging data, fibrosis. Nuclear 

techniques enable quantitative, noninvasive assessments of tissue and organ physiology, 

though historically this has not been feasible in the LA due to limited spatial resolution. 

With improving imaging technology using positron emission tomography (PET) imaging 

and advanced image reconstruction methods, visualization of the LA on 18F-

fluorodeoxyglucose (FDG)PET/CT is becoming feasible and has been the subject of case 

reports and small case series.11–13 This technique, imaging cellular uptake of a glucose 

analog, is a gold standard technique for identification of left ventricular scar/fibrosis and can 

be used to measure left ventricular metabolism and to assess volumetric and functional 

parameters. Importantly, demonstration of feasibility of PET/CT of the LA could form a 

basis for application of emerging radiotracers to interrogate many other aspects of AF 

pathophysiology.

We performed a retrospective, pilot study that sought to understand the feasibility of FDG 

PET/CT to relate scar and metabolic parameters identified by this method with structural 

remodeling across patients with varying degrees of AF burden. We hypothesize that patients 

with AF will have significant perturbations in global and regional atrial metabolisms that are 

quantifiable and correlative with AF burden.
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METHODS

Study Population

Patients referred for FDG PET/CT rest and stress cardiac viability study at the University of 

Michigan (Ann Arbor, MI) between 01/01/2013 and 04/30/2016 were identified using 

relevant CPT codes. Patients whose images were missing or uninterpretable owing to poor 

image quality were excluded. A diagnosis of AF was confirmed by review of 12-lead EKG 

and classified according to multisociety guidelines; paroxysmal AF was defined as AF that 

terminates spontaneously or with intervention within 7 days of onset, persistent AF is 

continuous AF that is sustained for>7 days.14 The effect of AF burden on imaging 

parameters was assessed by comparing patients with histories of no AF, paroxysmal AF, and 

persistent AF. A small number of FDG-uptake images were available from healthy 

volunteers who had undergone an identical imaging protocol and were analyzed for 

reference FDG-uptake values. This study was approved by the University of Michigan 

Institutional Review Board and conducted in accordance with institutional guidelines.

Patient Preparation and Imaging

Patients were instructed to fast overnight for at least 8 hours and to abstain from caffeine and 

methylxanthines. Patients being treated with short acting insulin or oral hypoglycemic 

agents were asked to hold their morning doses. Nighttime long-acting insulin doses the prior 

evening were halved. All patients underwent rest and, where indicated, regadenoson stress 

perfusion imaging (n = 26) with weight adjusted Rb-82 (13–45mCi), as previously 

described15 using a Siemens mCT PET/CT system (Siemens Medical Imaging, Knoxville, 

TN). In patients undergoing stress testing, the effects of regadenoson were reversed with 

aminophylline 150mg IV prior to FDG imaging. Following perfusion imaging, patients 

underwent a hyperinsulinemic-euglycemic clamp protocol, which is clinical routine practice 

at our institution and which typically occurs 30–60 minutes after stress testing. Briefly, 

insulin was infused intravenously at 0.2 units/kg/hr. 20% dextrose was infused at a starting 

rate of 1.5 ml/kg/hr and titrated to achieve a steady state of stable fingerstick glucose 

between 100 and 140 mg/dl. Patients were then injected with 8–10 mCi of FDG based on 

body weight followed by PET/CT imaging performed approximately 50 minutes later and at 

least three hours post stress testing.

Imaging Protocols and Reconstruction

All imaging was performed in the supine position and, wherever possible, with the patient’s 

arms raised above the head. Following a low-dose CT scan for attenuation correction, 

imaging was performed in list mode for 7 minutes for Rb-82 perfusion imaging and for 15 

minutes for FDG imaging. Images were reconstructed using 3-dimensional ordered subsets 

expectation maximization reconstruction, an advanced iterative image reconstruction method 

with modeling of system response to maximize resolution recovery, incorporating photon 

time-of-flight data. Images were reconstructed using an 128×128 matrix size with Gauss 

7mm filtering.

After reconstruction, images were analyzed using Corridor 4DM software (INVIA Medical 

Imaging Solutions, Ann Arbor, MI). All FDG PET/CT studies were reviewed by 
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experienced observers, who were blinded to the diagnosis of atrial fibrillation. Rest and 

stress left ventricular (LV) ejection fractions (EFs) and volumes were calculated from gated 

myocardial perfusion images. Semiquantitative 17-segment visual interpretation of the gated 

myocardial perfusion images was using a standard 5-point scoring system.16 Summed rest 

(SRS) and stress scores (SSS) were calculated as the sum of individual segmental scores on 

the respective images, and their difference was recorded as summed difference score. For 

each of these variables, higher scores reflect larger areas of myocardial ischemia and/or scar. 

Summed rest, stress, and difference scores were converted into percentages of total 

myocardium by division of the maximum possible score.

LA Segmentation and Assessment

LA FDG uptake was assessed by semiautomatically tracing a region of interest (ROI) along 

the left atrium using fused PET/CT images (Figure 1). Manual adjustment of contours was 

required in all cases and required approximately 5 minutes per subject. The entire interatrial 

septum was considered to be part of the left atrial tissue. ECG gated images were used to 

adjust for cardiac movement and define valve planes, low-dose CT images were used to 

confirm our contours and exclude extra-cardiac structures. FDG-uptake counts were 

summed across all gated images for quantification. Quantitative measurements of FDG 

uptake were made using standardized uptake values (SUVmax and SUVmean) in the 

attenuation-corrected images. FDG uptake coefficient of variation (CoV) was also 

calculated. To correct for blood pool FDG activity, target to background ratios (TBR) were 

calculated for all patients by normalizing the left atrial SUV for blood pool activity in the 

LA. In order to compute the proportion of scar within the atria, we compared the normalized 

atrial FDG uptake in polar map format with a uniform distribution and computed the 

percentage of atrium below 50% of peak metabolic activity. As with left ventricular defect 

quantification, Corridor 4DM software utilizes a contiguous region of 10 sampled points to 

define the peak intensity for normalization of LA-uptake intensity. The cut-off of \50% peak 

uptake used to define atrial scar is the same used to define nonviable left ventricular tissue.17 

Composite distributions across rhythm categories were constructed by averaging the left 

atrium FDG-uptake distributions across all patients in the sinus, paroxysmal AF and 

persistent AF groups.

Echocardiography Imaging

All patients had transthoracic echocardiography (TTE) images available for review. Images 

were reviewed by a single expert (HY) using commercially available software. LV size was 

measured in the parasternal long axis view using internal cavity dimensions at peak systole 

and diastole, LV EF was measured using the biplane method of disks, and LA volume was 

calculated using the ellipsoid model.18,19 Mitral regurgitation was defined as none, mild, 

moderate or severe, per national guideline definitions.20

EKG Analysis

Standard 12 lead EKGs were retrospectively reviewed by a single expert (MG). Only 

patients with sinus P-waves on an EKG within one month of imaging were included, others 

were excluded due to persistent atrial or ventricular pacing, EKGs only demonstrating atrial 

fibrillation, or uninterpretable or missing EKGs. P-wave indices were defined using 
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previously published methods21]; the PR interval (in milliseconds) was defined by 

measurement from the onset of the P-wave to the initiation of the QRS segment. The mean 

value across all 12-leads was used. P-wave duration (in milliseconds) was measured from 

the P-wave onset (conclusion of the T-P segment) to its offset (return to baseline for the 

remaining PR interval) and was measured as the mean over all leads. P-wave terminal force 

(μVms), specific to right precordial lead V1, was determined as the product of the negative 

P-wave deflection in lead V1 (in μV) and the duration (in milliseconds) from the onset of the 

negative deflection to its nadir.

Statistical Analysis

All continuous variables were assessed for normality with the Shapiro-Wilk test. Where 

appropriate, deviations from normality were mitigated by natural log transformation. 

Continuous variables are presented as medians and intraquartile ranges or means and 

standard deviations, as appropriate based on normality. Categorical data are summarized as 

frequencies and percentages. Student’s t-test and Mann-Whitney testing were used to 

compare continuous variables, Chi-square testing was used to compare categorical variables. 

Pearson and Spearman correlations were used, as appropriate, to quantify correlation 

between continuous variables. Unadjusted and adjusted regression was performed to assess 

the influence of clinical parameters (age, gender, ejection fraction, degree of mitral 

regurgitation (categorized as none/mild, moderate, severe), or LA volume on LA FDG-

uptake values. Rhythm status (sinus rhythm, paroxysmal, and persistent atrial fibrillation) 

was incorporated into regression models as continuous variable as test of trend. ANOVA was 

used to compare the LA FDG-uptake parameters based on rhythm status. All statistical 

analyses were performed using R version 3.4.1 (The R Foundation for Statistical 

Computing, Vienna, Austria).

RESULTS

Study Population and Reference SUV-Uptake Values

We identified 118 patients who had undergone clinically indicated cardiac FDG PET/CT for 

assessment of myocardial viability. One patient was excluded due to missing imaging data 

for a final study population of 117, Table 1. The average glucose level prior to tracer 

injection was 106 ± 9.9 mg/dL with no significant differences between subgroups of AF 

(P>0.05). The average time from FDG injection to image acquisition was 55.6 ± 12.5 

minutes, with no significant differences between subgroups of AF (P>0.05). The LA was 

successfully contoured and analyzed in all remaining subjects (117/117, 100%). The 

population was predominantly male (76%, n = 89) with a mean age of 66.4 ± 11.0. 59% had 

a history of AF including 12% with a history of persistent AF. Mean ejection fraction on 

FDG PET/CT was 25.0[18.4–22.2], mean SRS was 20.5 ± 7.95. Among patients with atrial 

fibrillation, 4% (n = 5 patients with paroxysmal AF) had prior left atrial ablation procedures.

A small number of FDG-uptake images were available from healthy volunteers (n = 5 

female, n = 1 male, age = 58[51.25–59] years) who had undergone an identical imaging 

protocol and were analyzed for reference FDG-uptake values.
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Maximum and Mean LA Metabolisms

Patients with any AF had higher mean metabolic activity (SUVmean 2.3[1.5–2.4] vs 

2.0[1.5–2.5], P = 0.006), and peak metabolic activity (SUVmax 4.4[2.8–6.7] vs 3.2[2.3–4.3], 

P<0.001), compared to those without AF, Table 1. Reference values from healthy volunteers 

were SUVmean of 0.65[0.6–1.1] and SUVmax 1.15[1.0–1.5]. Mean and maximum atrial 

metabolism values were increased in patients with a higher AF burden (Figure 2A and 2B) 

(F = 4.61, P<0.02 and F = 7.08, P<0.001, respectively). Adjusted regression analysis 

demonstrated that AF burden was associated with the increased SUVmax and SUV mean 

values independent of critical covariates (P<0.01 for both).

LA Metabolic Heterogeneity

Metabolic activity was more heterogeneous across the LA in patients with any AF than those 

without (CoV 0.28[0.22–0.40] vs 0.25[0.2–0.33], P<0.001). Reference values from healthy 

volunteers was CoV 0.20[0.14–0.33]. Adjusted regression analysis demonstrated that, 

rhythm status (sinus rhythm, paroxysmal AF, persistent AF) was associated with an increase 

in FDG CoV independent of critical covariates (P = 0.005).

Composite polar maps of metabolic distribution normalized to peak uptake are displayed in 

Figure 3. There was greater heterogeneity of LA metabolic activity in patients in persistent 

AF (LA FDG uptake relative to peak uptake, sinus rhythm 67.0 ± 7.6%, paroxysmal AF 62.3 

± 9.3%, persistent AF 59.3 ± 10.4%).

Hypometabolic LA Scarring

Patients with AF were found to have a greater percentage of hypometabolic scar (32%[14%

−53%] vs 16.5%[0%−38.5%], P = 0.01), Figure 4. Reference values from healthy volunteers 

were hypometabolic scar were. 2.5[0.50–8.25]%. Blackout maps were compared in patients 

with SR, paroxysmal AF, and persistent AF and there was an increase in LA scar related to 

AF burden (F = 3.34, P = 0.03), Figure 2C. Adjusted regression analysis demonstrated that 

increased AF burden was associated with increased LA scar independent of critical 

covariates (P = 0.02).

Patients with increased atrial metabolism were found to have increased areas of 

hypometabolic scar; SUVmean and SUVmax were moderately correlated with the 

percentage of hypometabolic LA scar (rho 0.56, P<0.01 and rho 0.75, P<0.01 respectively) 

(Figure 5A and 5B).

LA Volume Assessment by PET and Echocardiography

The mean duration between imaging acquisition and TTE studies analyzed was 28 ± 46 

days. The mean TTE-derived LA diameter was 4.8 ± 0.7cm and median LA volume was 

94.0[73.0–118.0] cm3. There was strong correlation between LA volume derived by surface 

echocardiography and PET-derived LA linear measurements (Pearson R = 0.88+/−0.04, 

P<0.001). PET-derived LA volumes were increased in patients with AF (90.6[72.5–103.1] vs 

104.9[82.5–131.7], P = 0.005). AF burden was associated with larger LA volumes 

independent of age, gender, or ejection fraction (P<0.001).
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LA FDG Uptake and Atrial and Ventricular Structures

Atrial metabolism showed weak, to no correlation with measures of LV size, function, and 

scar, Table 2. LA scar was weakly correlated with LA volumes (rho 0.18, P = 0.04) but no 

other structural parameters. LA volumes were weakly correlated with maximum LA 

metabolism (rho 0.18, P = 0.04) but not mean LA metabolism.

LA FDG Uptake and P-Wave Parameters

EKGs were analyzed in patients with sinus rhythm (n = 43) and paroxysmal AF (n = 28), the 

remaining patients had either persistent AF (n = 14), no recent EKGs in sinus rhythm (n = 

10), paced atrial rhythm (n = 20), or had EKGs unsuitable for interpretation (n = 2). The 

average time between image acquisition and EKG analyzed was 8 ± 14 days. P-wave 

terminal force was modestly correlated with both maximum and mean atrial metabolisms (ρ 
= 0.27, P = 0.02 and ρ = 0.29, P = 0.01, respectively). No other correlation between p-wave 

indices and LA FDG-uptake values were found (Table 3).

DISCUSSION

We performed multiparametric LA measurements simultaneously using a single FDG 

PET/CT imaging protocol, employing advanced image reconstruction techniques to 

maximize image resolution. Our results were consistent with existing models of LA 

remodeling while adding information on atrial metabolism measured in vivo. We 

demonstrate that patients with AF have greater LA volumes, increases in the amount and 

heterogeneity of LA metabolism, and greater amounts of LA scar. These results demonstrate 

the feasibility of FDG imaging of the atrial substrate using existing techniques.

Atrial Fibrillation and Metabolism

Patients with higher AF burdens and those with increased p-wave terminal forces (associated 

with atrial hypertrophy and pressure overload states22,23) had increased atrial metabolism.. 

Rapid and continuous activity of the atria during AF leads to an oxygen imbalance resulting 

in atrial hyperemia, altered oxygen reactive speciation processing, and abnormal calcium 

homeostasis among other derangements.24,25 A transient supply-demand mismatch may 

progress to a chronic hypoxic state in patients with persistent AF leading to progressive 

cellular and vascular changes. During periods of hypoxia, ventricular myocytes shift from 

preferential utilization of fatty acids towards glucose.26 The energy preferences of atrial 

myocytes during baseline and stressed states are unknown27; however, our findings of 

increased FDG uptake associated with states of atrial stress may suggest a similar process.

Atrial Fibrillation and Scar Burden

Quantification of atrial scar as a measure of structural remodeling is an emerging tool and 

has implications for AF treatment and prognosis.28 Using FDG imaging we found increased 

areas of hypometabolic scar in patients with AF that were dependent on AF burden (Figure 

2C). Similar results have been shown in studies using late gadolinium enhancement (LGE) 

cMRI to detect LA fibrosis.29 Unfortunately correlative MRI data were not available in this 

study though demonstration of spatial coregistration of areas of LGE with areas of 

hypometabolic scar is an important next step for future prospective studies.
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Histologic and imaging data have demonstrated the close relationship between AF burden 

LA fibrosis.30,31 LA fibrosis can occur in both homogeneous/dense patterns as well as 

nonconfluent patterns. Correlation with intracardiac electrograms has shown that these 

nonconfluent or patchy areas of fibrosis are more likely to harbor areas of atrial substrate 

supportive of AF than are areas of homogenous/dense fibrosis.32 This may explain our 

observation of increased atrial metabolism heterogeneity with more long-standing AF; 

however, given the spatial resolution limitations of FDG-uptake assessment, we cannot 

delineate the fibrotic phenotype (dense vs patchy). A recent feasibility study using PET/MRI 

overlay demonstrated that localization of scar formation post-catheter ablation is possible.33 

Multimodality imaging using PET-derived metabolic information could yield additional 

insights into LA remodeling.

Atrial Metabolism and Structural Remodeling

Increased atrial volume and scar burden were correlated with increased atrial metabolism. 

Abnormal metabolism may be early steps in a cascade of changes that result in gross atrial 

remodeling though evidence for this is largely circumstantial.27 One proposed mechanism 

describes chronic energy starvation activating pathways linked to cell death and 

cardiomyopathy.34

Our findings suggest that patients with advanced AF have progressively scarred atria with 

relative increased metabolism in viable atrial regions. A compensatory increase in energy 

utilization could be expected to maintain atrial contractility in the setting of progressive 

dilation, scaring, and atrial stiffness. Animal models have demonstrated that AF induces 

reactive hyperemia35 and changes in mitochondrial ATP synthase expression36 to support 

increased energy demands. The extent to which atrial myocytes can compensate to these 

metabolic demands are unknown. Future studies incorporating metabolomic and proteomic 

profiles may add to the biological plausibility of these findings.

There was no correlation between atrial metabolism or scar and LV functional parameters 

such as ejection fraction and LV chamber remodeling. Ventricular remodeling and resulting 

diastolic dysfunction are known to be related to LA function and remodeling.37 The lack of 

association likely results from the skewed patient population where most had severe 

cardiomyopathy. We would expect that a more heterogenous population would better 

demonstrate these relationships and should be the focus of future studies.

Prior Studies of Atrial FDG Uptake

This is the largest series to characterize LA FDG uptake in patients and the only study to 

examine the impact of AF burden on these parameters. Lange et al. reported a case-control 

series of 72 patients with sinus rhythm and atrial fibrillation and found only a mild increase 

in LA FDG uptake that did not meet statistical significance.38 The protocol in that study 

used a brief fast for metabolic preparation which may partially suppress myocardial glucose 

metabolism and thus could not readily differentiate between myocardial scar and normal 

areas. In addition, that study utilized five discreet regions of interest (ROI) to assess atrial 

FDG uptake (as opposed to imaging the entire LA) which may have less ability to identify 

regional heterogeneity compared to volumetric methods. Other smaller case series have 
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reported similar findings of increased atrial uptake on FDG39,40 using a single ROI which 

incorporated the entire atrial chamber, but without detailed exploration of regional 

heterogeneity.

LA Wall Thickness and FDG Uptake

There exists both intra- and interpatient variability in LA wall thickness.41 We were unable 

to account for regional LA thickness in this pilot study and it is unknown to what extent 

FDG-uptake differences are due to variations in wall thickness vs a difference in the rate of 

tissue glucose utilization per unit mass of tissue. The relationship between wall thickness 

and atrial metabolism is likely not directly correlative. For example, in our small sample of 

control patients we observed relatively homogenous FDG uptake despite likely heterogenous 

LA wall thickness described in healthy cohorts. High-density electroanatomic mapping 

studies have demonstrated that increased LA wall thickness can harbor greater areas of scar 

tissue and presumably lower metabolic activity.42 Future studies should evaluate the role of 

regional LA wall thickness and FDG uptake.

Clinical Implications

The evaluation of atrial substrate has important clinical applications. In a large prospective 

study, the degree of LA fibrosis assessed by LGE cMRI predicted the risk of AF recurrence 

after catheter ablation and conversion to sinus rhythm.30 Scar assessment may assist in 

selection, risk stratification, and procedural approaches in patients undergoing ablation.43 

However, a recent study utilizing imaging protocols available at the majority of imaging 

centers was unable to detect or quantify atrial scar using LGE-MRI leading the authors to 

question the real-world application of this technique.44 Additional patient level factors 

(implantable cardiac devices, renal dysfunction, claustrophobia, et cetera) may limit the use 

of LGE-MRI. FDG PET-CT may provide complimentary information to LGE-MRI using 

available imaging equipment with minimal post-acquisition processing.

LA remodeling is related to the risk of thromboembolism in patients with AF independent of 

arrhythmia burden alone.45 Better identification of patients at high risk for complications of 

AF would allow for tailored treatment strategies. LA remodeling is related to a variety of 

disease states including hypertension, heart failure with preserved ejection fraction, 

obstructive sleep apnea, and obesity.45–48 Prognostic information, response to therapeutics, 

and new mechanistic insight could be obtained from application of FDG PET-CT imaging in 

these populations.

Limitations

This is an observational study, which carries the potential for selection bias among other 

limitations. PET-CT scans were performed in patients undergoing cardiac viability 

assessments, and accordingly, the population consisted of patients with severe structural 

heart disease, which limits the generalizability of these results. However, we would expect 

that a more heterogenous population could increase the observed range of differences across 

rhythm categories. Clinical outcomes, response to therapies, and evolution of LA 

remodeling were not assessed due to the nature of the patient population and lack of follow-
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up imaging. AF ablation procedures contribute to LA scaring, [49] which may impact FDG 

uptake and heterogeneity patterns, although we were unable to adjust for this variable. We 

did not address the effect of rhythm status during imaging or acute hemodynamics (blood 

pressure, volume status) during FDG imaging. We would expect that increased LV end-

diastolic pressure could impact LA metabolism independent of rhythm status. These 

questions should be examined in larger studies utilizing serial scans in patients with sinus 

rhythm vs AF, pre and post ablation, and with simultaneous hemodynamic measurements. 

Our data describe trends in the LA in its entirety although there are anatomically and 

physiologically distinct structures (left atrial appendage, pulmonary vein ostium, posterior 

wall, et cetera) which will be described in future studies.

Future studies should incorporate FDG PET-CT and cardiac MRI findings. This will allow 

for validation of atrial scar measurement, assessment of regional variations in FDG uptake, 

assess the impact of regional atrial wall thickness on FDG uptake, and incorporate functional 

parameters such as LA EF into our model.

Finally, we employed state-of-the-art reconstruction techniques to improve image resolution 

to allow quantification of the left atrium. Yet imaging of the left atrium is challenging, and 

partial volume effects may impair quantification. However, this should bias results towards 

the null. Future multimodality efforts could more accurately incorporate models for atrial 

wall thickness and partial volume effects.

CONCLUSION

In this pilot study, we demonstrate that multiparametric assessment of the LA can be 

performed with FDG PET/CT imaging using advanced image reconstruction protocols. The 

use of this modality as a novel tool to study electric, structural, and metabolic aspects of the 

LA should be further explored (Figure 6).
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AF Atrial fibrillation

cMRI Cardiac magnetic resonance imaging

CT Computed tomography

FDG PET/ 18F-fluorodeoxyglucose positron

CT emission tomography/computed tomography

SUV Standardized uptake values

CoV Coefficient of variation

EF Ejection fraction

LGE Late gadolinium enhancement
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Figure 1. 
FDG PET/CT and left atrial area of interest. Integrated FDG and CT imaging with contoured 

region of interests excluding ventricular and extra-cardiac structure are shown in panel A. 
Vertical long-axis reconstructions showing nonnormalized left atrial FDG-uptake patterns 

are displayed in panels B and C. Panel B demonstrates relatively homogenous uptake of 

FDG throughout the atria compared to panel C, which demonstrates a defect consistent with 

hypometabolic scar. CT computed tomography. FDG, 18F-fluorodeoxyglucose.
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Figure 2. 
Left atrial FDG-uptake parameters stratified by rhythm status. A SUV mean. B SUV max C 

Blackout 50%, percentage of atrial myocardial tissue uptake below 50% of peak metabolic 

activity. AF, atrial fibrillation; SUV, standard uptake value; FDG, 18F-fluorodeoxyglucose.
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Figure 3. 
Polar Maps of Left Atrial Metabolic Uptake. For each patient, LA FDG-uptake distributions 

were transformed into polar map format and normalized to the peak uptake in the left 

atrium. Composite distributions were constructed by averaging the left atrium FDG uptake 

across all patients in the Sinus, paroxysmal AF, and persistent AF groups. Metabolic 

heterogeneity was increased in patients with a high burden of AF. LA, left atrium; AF, atrial 

fibrillation.
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Figure 4. 
Left atrial hypometabolic scar: three-dimensional blackout map reconstructions of left atrial 

metabolic uptake compared to a database of normalized FDG-uptake values. Darker regions 

represent a greater relative defect in metabolic activity; black regions represent atrial 

myocardium with less than 50% normalized uptake of FDG consistent with hypometabolic 

scar. Left posterior oblique and right posterior oblique projections are shown in orthogonal 

views. Panels A, B, and C represent three different patients with the increasing amounts of 
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left atrial scar taken from representative patients with no history of AF (A), paroxysmal AF 

(B), and persistent AF (C). AF: atrial fibrillation; FDG 18F-fluorodeoxyglucose.
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Figure 5. 
Hypometabolic scar versus SUVmean and SUVmax. Regression lines and 95% confidence 

regions are shown. Percentage of atrial myocardial tissue uptake below 50% of peak 

metabolic activity was compared against A mean SUV and B max SUV uptakes. SUV, 

standard uptake value.
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Figure 6. 
Left atrial remodeling: left atrial remodeling is the result of the interplay of disturbances of 

myocardial structure, contractile function, electric properties, and metabolism.
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