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Abstract

Objective and Background: The expression of periodontitis, including age of onset, extent, 

and severity is considered to represent an interaction of the individual’s oral microbiome and host 

response to the microbial challenge that is modified by both genetics and environmental factors. 

The aim of this study was to determine the distribution of periodontitis in a population of 

nonhuman primates, to document features of familial distribution that could reflect heritability and 

transmission of microbes with enhanced virulence.

Methods: This report presents our findings from evaluation of periodontal disease bone defects 

in skulls from 569 animals (5–31 years of age) derived from the skeletons of the rhesus monkeys 

(Macaca mulatta) of Cayo Santiago derived from 8 matrilines over 6–9 generations. The distance 

from the base of alveolar bone to the cemento-enamel junction on 1st/2nd premolars and 1st/2nd 

molars from all 4 quadrants was evaluated as a measure of periodontal disease. Additionally, we 

documented the presence of periodontitis in 79 living descendants within these matrilines.

Results: The results demonstrated an increased extent and severity of periodontitis with aging 

across all matrilines. Extensive heterogeneity in disease expression was observed among the 

animals and this was linked to specific periodontitis susceptible matrilines. Moreover, we 

identified some matrilines in which the members appeared to show some resistance to more severe 

disease, even with aging.

Conclusions: Linking these disease variations to multi-generational matriarchal family units 

supported familial susceptibility of periodontitis. This familial disease relationship was reinforced 

by the distribution of naturally-occurring periodontitis in the living descendants.
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INTRODUCTION

Studies in humans have continued to provide some evidence regarding the contribution of 

genetics to the expression of periodontal disease(s). These include an array of genome wide 

association studies (GWAS) and more recently studies suggesting epigenetic changes that 

associate with periodontitis (1, 2). These modern approaches to genetic markers of disease 

risk are built on historical data indicating an increased prevalence of early onset disease in 

families (3, 4) and findings of various single nucleotide polymorphisms (SNPs) occurring in 

various populations of chronic adult periodontitis (5). However in chronic complex diseases, 

such as periodontitis, these types of cross-sectional associational studies generally require 

very large populations, with challenges existing in the studies related to a range of 

confounders in the population and a recognition that many individual genes likely each 

demonstrating a small contribution to the variance in the population (6).

Existing evidence supports a familial tendency for this disease, particularly with members 

exhibiting more generalized severe disease (6–11). Data derived from international 

populations also demonstrates the familial distribution of periodontitis in younger subjects 

that has been shown to have a genetic predisposition based upon specific immune 

abnormalities (10–14). This genomic impact is also linked to the virtually universal 

occurrence of a particular periodontal pathogen, Aggregatibacter actinomycetemcomitans 
within the affected individuals in these families (15–19).

Substantial research in chronic adult periodontitis, which represents the vast majority of the 

global disease, has been less definitive on a genetic contribution. Various studies have 

examined immune response gene polymorphisms (5, 20), genome-wide association studies 

(GWAS) have provided some potential gene contributors (21–23), and more recently studies 

describing epigenetic changes that could present as a risk factor for this disease (2). 

However, beyond early twin studies of periodontitis (24, 25) the fundamental concept of the 

magnitude of heritability of this disease remains to be determined. As importantly, in the 

human model of this disease, familial genetic studies are usually limited to one or 2 

generations (vertical) and few family members in the same generation (horizontal) in 

attempting to define heritability.

Nearly all species of nonhuman primates (e.g. M. fascicularis, M. mulatta, M. nemestrina, S. 
scuireus, P. anubis) have been shown to express naturally-occurring periodontitis that 

increases with aging, as observed in humans (26–28). We have collaborated with the 

Caribbean Primate Research Center in Sabana Seca, Puerto Rico (CPRC) to examine aging 

effects on the immune system in gingival tissues and the relationship to the oral microbiome 

with initiation and progression of periodontitis (29–31). As we have reported previously 

(32), these animals were derived from a large, free-ranging colony of rhesus monkeys that 

was created in 1938 on “Cayo Santiago” off the coast of Puerto Rico (33).
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The creation and description of this colony over 80 years allowed the definition of extensive 

pedigrees for the colony over 8–9 generations (34, 35). The natural death of the animals has 

enabled establishment of a “library” of full skeletons from over 2000 animals with defined 

matrilines (34, 36–38). Using this skeleton collection we hypothesized that periodontitis will 

be increased in members of selected matriline families that could be defined as a heritable 

feature of disease susceptibility or resistance. This report provides documentation of the 

distribution of periodontitis in this large nonhuman primate colony and the relationship of 

this distribution to the matrilineage of the cohort.

METHODS

Skull collection and matrilines

The CPRC Skeletal collection contains 569 specimens that were evaluated derived from 8 

founding mothers, 065, 22, 116, 022, 073, 076, DM, and 004. Skeletons from these 

matrilines were assessed through 6–9 generations. The skulls were selected among animals 

ranging from 5–31 years of age. An extensive pedigree history of the nonhuman primates 

enabled determination of the approximate age of each animal at the time of death. Thus, the 

“population” could be stratified based upon age of the sample. Detailed analysis of the 

alveolar bone characteristics were acquired throughout the maxillary and mandibular 

quadrants (32). These periodontal characteristics were related to age and matriline of each 

animal.

No animals were sacrificed for this study. Rather, material from a pre-existing skeletal 

collection served as the database. Institutional Animal Care and Use Committee (IACUC) 

review as not required for analysis of the skeletons, as this is defined as an exempt protocol. 

Living rhesus monkeys (n=79; 42 females and 37 males) housed at the Caribbean Primate 

Research Center (CPRC) at Sabana Seca, Puerto Rico, who were members of the 8 

matrilines were also used in this study. A protocol approved by the IACUC of the University 

of Puerto Rico, enabled anesthetized animals to be examined for clinical measures of 

periodontal health including probing pocket depth (PPD), and bleeding on probing (BOP), 

as we have described previously (31). Periodontitis was defined as mean mouth values of 

PPD≥3mm and BOP≥1. The nonhuman primates were typically fed a 20% protein, 5% fat, 

and 10% fiber commercial monkey diet (diet 8773, Teklad NIB primate diet modified: 

Harlan Teklad). The diet was supplemented with fruits and vegetables, and water was 

provided ad libitum in an enclosed corral setting. This research adhered to the American 

Society of Primatologists Principles for the Ethical Treatment of Nonhuman primates.

Periodontal bone defect measures in skulls

Periodontal disease was evaluated using a standard UNC-15 periodontal probe by 

determining the distance from the deepest extent of the vertical bone to the cemento-enamel 

junction (CEJ) on 1stand 2nd premolars and 1st and 2nd molars from all 4 quadrants (32). The 

alveolar bone levels were measured on both mesiobuccal and distobuccal sites for each tooth 

since periodontitis is frequently developed in these sites by non-human primates. Data was 

assessed for total bone loss defects (mm; BD), as well as frequency of sites with loss that 

was greater than 4 mm and 5 mm. Missing teeth that demonstrated alveolar bone loss were 
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assigned a value of 10 based upon the maximal magnitude of bone loss that was detected 

across the population for existing diseased teeth.

Statistical analyses

Differences among the matrilines in bone defect levels and frequency of sites with bone 

defects were evaluated using an ANOVA with post hoc testing of groups using Tukey’s HSD 

method (SigmaStat, Systat Software, Inc., Richmond, CA). Differences in frequency of 

affected animals used a X2 test for 2x2 contingency analysis with Yates correction. Data 

with an alpha <0.05 (after being adjusted for the multiple comparisons) were accepted as 

statistically significant using a two-tailed analysis. Correlation analyses were conducted 

using a Pearson correlation coefficient for linear relationships between the age and bone 

defects.

RESULTS

Table 1 summarizes the demographics of the population that was examined with 569 skulls 

from the 8 matrilines over 6–9 generations being evaluated. Fig. 1A shows that only the age 

range between matriline 065 and 022 were significantly different among all the groups. 

Figure 1B provides additional information on the proportions of animals from each matriline 

across the age range. No differences were noted in the distribution of ages among any of the 

matrilines.

Figure 2A-D provide summaries of the relationship of the bone loss data depicting mean 

bone defect (mm) for individual animals across the entire age range in each of the 8 

matrilines. There was a clear increase in disease with aging in each of the family units, 

although most of the matrilines demonstrated rather similar levels of bone defects early in 

life (i.e. 5 years; comparable to approximately 20 human years). Fig. 2E summarizes these 

differences and shows significantly increased rate of bone defect formation with aging in 

matrilines 065, 073, and 076 compared to all other groups. Additionally, matriline 116 

animals showed a significantly increased rate of bone defects compared to the other 4 

matrilines (22, 022, DM, 004).

Figure 3A demonstrates the mean bone defect for the entire mouth (BD Tot), for the 

maxillary quadrants (BD Max) and mandibular quadrants (BD Mand). These data show, as 

was suggested by the age progression data, that the 065, 073 and 076 matriline animals 

exhibited significantly greater disease than the other groups, generally in both the maxilla 

and mandible. Extending this information, Figure 3B shows the severity of disease in the 

animals as a percentage of sites with greater levels of alveolar bone loss. The 065, 073, and 

076 animals demonstrated a greater frequency of sites with bone defects >4mm and >5mm 

compared to the other groups. Figure 3C summarizes the frequency of more severe disease 

identified at the animal level across all animals in each of the 8 matrilines and demonstrates 

a heightened level of disease severity in a greater number of animals in the 065, 073, and 

076 matrilines.

Based upon the correlation of aging and bone defect expression across all of the matrilines, 

Figure 4A depicts the data describing the expression of disease stratified by age category 
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and analyzed within the 8 matrilines. In younger animals, no differences were observed in 

mean bone defect across all sites evaluated. However, increases in disease appeared in the 

10–17 year old animals from the 065, 073, and 076 matrilines compared to each of the other 

groups. Within the population greater than17 years of age, elevated disease levels were seen 

in the 065, 073 and 076 matrilines. Figure 4B&C summarize the severity data stratified with 

age across the matrilines. Members of 065, 073, and 076 families demonstrate more severe 

disease in the subset >10 years of age compared to the other groups for bone defects ≥4 mm 

and ≥5 mm. Of interest was that older members of families 116 and DM demonstrated 

increased disease, the early onset of more severe disease in the 073 matriline, and matrilines 

22 and 004 members that appeared to be relatively resistant to severe disease even in older 

animals.

Table 2 provides a summary that links the multi-generational data derived from the skulls 

within the matrilines to the presentation of naturally-occurring periodontitis in living 

descendants of these families. The findings represent results from animals who were 

randomly selected and periodontal disease evaluated for participation in ongoing studies of 

aging effects on periodontitis and mucosal immune responses (39–46). Within the 3 

matrilines demonstrating the least periodontal disease in the skulls, few living animals 

showed any naturally-occurring disease, with <30% presenting with any disease even >10 

years of age (~35 human years). In contrast, the susceptible matrilines demonstrated 

increases in expression of periodontitis in both younger and older animals (p<0.06) that 

were 2–5-fold elevated in frequency.

DISCUSSION

Periodontitis affects primarily adults on a global scale that negatively impacts quality of life, 

workplace productivity, and social interactions (47, 48). The disease represents a 

polymicrobial infection that results in a chronic inflammatory response resulting in soft and 

hard tissue damage and is the primary reason for tooth loss in adults (7, 49).

Numerous disease phenotypes, including periodontitis, are quantitative under natural 

conditions, with a complex etiology, encompassing multiple environmental and genetic 

triggers. Since we have been documenting the clinical, microbiological, and immunologic 

aspects of periodontitis in nonhuman primates for many decades, this investigation tested the 

hypothesis that periodontitis will be increased in specific nonhuman primate pedigrees in 

which the multigenerational families demonstrate variations in susceptibility to the 

expression of this disease. The results demonstrated a clear familial relationship of the onset 

and severity of disease expression in the matrilines of nonhuman primates comprising the 

population of animals at Cayo Santiago.

We evaluated a large population of rhesus monkeys spanning 6–9 generations via an historic 

skeleton collection across 8 matrilines in animals aged 5–31 years. The results demonstrated 

that within this population, animals derived from the 3 matrilines (065, 073, 076) appeared 

to show an increased susceptibility to periodontitis with 29–45% of the family members 

demonstrating bone defects of ≥5 mm and mean mouth bone defects significantly greater 

than the other 5 matrilines. This susceptibility was also reflected by the rates of disease 
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expression with the amount of bone loss was similar to the other matrilines at a youngest 

age, but each showed a significantly more rapid increase in disease extent and severity with 

aging. Distinctive features within the matrilines was that 073 members showed more severe 

disease sites at a younger age, and both 065 and 073 matrilines demonstrated more severe 

disease presentation even within the 10-<17 year old grouping equivalent to approximately 

35–60 year old humans). Additionally, we identified that matrilines 22, 022, 004 and DM 

showed less bone loss in extent and severity at all ages. Both matriline 22 and 004 members 

actually showed minimal severe disease, even in the oldest age group ≥17 years. Finally, 

matriline 116, 073, 076 and DM members ≥17 years demonstrated a substantial increase in 

more severe disease (3–3.5-fold), compared to the data from the 10-<17 year subset, which 

suggests that there could be differences in the age-related onset of disease between 

matrilines.

Based upon the resources of the Caribbean Primate Research Center and the colony of 

animals derived from Cayo Santiago, we had the ability to evaluate periodontitis in living 

descendants of these various matrilines. Our hypothesis was that living members of the 

susceptible matrilines would demonstrate an elevated prevalence of naturally-occurring 

periodontitis. The results showed that, in fact, this was true, as well as the matrilines that 

appeared to show some resistance to disease even with aging had less periodontal disease at 

the individual monkey level.

While substantial information is available on tooth wear and aging and diet effects on 

dentition, only a single report (50) described the dentition from about 180 wild-shot great 

apes related to potential periodontitis. These researcher’s findings suggested no change in 

alveolar bone height from young adulthood to old age. They interpreted their findings that 

with increasing tooth wear there is a compensatory eruption to maintain a constant height of 

tooth tissue, and that chronic pulpo/periodontal infections were the basis of alveolar bone 

and tooth loss in these great apes. Although, our measurement approach for the skulls could 

have been impacted somewhat due to compensatory eruption, the frequency and severity of 

bone defects that were detected suggested potential differences in aging effects on macaques 

versus great apes, as well as differences in a more controlled environment (eg. Cayo 

Santiago) compared to free-ranging wild animals.

This retrospective study allowed us to track the expression of periodontitis over 9 

generations with a family, as well as having numerous members of each family in any given 

generation (data not shown); however, the underlying etiology for these differences across 

the matrilines cannot be discerned at this point. The current paradigm of human periodontitis 

extent and severity focuses on the interaction of an altered (dysbiotic) oral microbial ecology 

and a dysregulated host response attempting to control this chronic infection that appears to 

reflect both genetic predisposition and environmental modulation of these responses (51–

54). While the decedents in this matrilines provided us some novel insights of a human 

model of periodontitis, the expanded opportunities to use this nonhuman primate model are 

based upon the descendants of each of these matrilines that still exist within the population. 

The initial data presented in this report support that these living animals demonstrate some 

conservation of susceptibility or resistance to the individual matrilines. Thus, prospective 

studies can be performed on these animals using a ligature-induced model of disease to 
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assess the interactions of the microbiome and host responses during the initiation and 

progression of periodontitis to better understand these factors as explanatory variables in 

disease extent and severity in the human population. Furthermore, recent studies have 

demonstrated similarities and overlap in SNPs between humans and macaques (55–58), as 

well as clear epigenetic evidence for altered biological functions in these nonhuman 

primates (59, 60). Thus, this model may also provide access to a better understanding of the 

genetic contributors to periodontitis susceptibility.
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Figure 1: 
(A) Age of the members of each matriline whose skulls were evaluated. Bars denote mean 

age ± SD (vertical brackets) (B) Distribution of animals from different age groups in each of 

the matrilines.
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Figure 2: 
Correlation analysis of bone defects (BD) with age for all matrilines. (A-D) demonstrate the 

correlation of mean bone defect measures on maxillary and mandibular premolars and 

molars for each skull in the various matrilines, with linear regression noted. (E) The mean 

rate of bone defect formation for each matriline over the entire age of the members is shown. 

Asterisk (*) denotes significantly different than other groups at least a p<0.05 and the 

hashtag (#) denotes the group that as significantly different from 22, 022, 004 and DM at 

least at p<0.05.
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Figure 3: 
(A) Bars denote the mean bone defect for the matrilines for total mouth (BD Tol), maxillary 

(BD Max) and mandibular (BD Mand) quadrants. Vertical brackets enclose 1 SD. (B) Bars 

denote the mean % of sites with bone measures of < 3, >4, and >5 mm in each skull 

stratified by matriline. Asterisk (*) denotes significantly different than other groups at least a 

p<0.05. (C) Bars signify the frequency of skulls (animals) in each matriline that 

demonstrated bone defects of >5 mm. Asterisk (*) denotes significantly different than other 

groups at least a p<0.05.
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Figure 4: 
(A) demonstrates the mean bone defect for the skulls in each matriline stratified according to 

age of the animal at the time of death. (B) description of frequency of sites in skulls of each 

matriline stratified on age. (C) description of frequency of sites in skulls of each matriline 

stratified on age. Bars denote group mean and vertical brackets enclose 1 SD. Asterisk (*) 

denotes significantly different than other groups at least a p<0.05. Hashtag (#) denotes the 

groups with significantly less disease compared to all other matrilines at least at p<0.05.
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Table 1:

Demographics of the population and matrilines

Matriline N % Male Generations Age range (yrs.)

22 32 46.8 9 5.12–23.50

065 44 43.5 7 5.10–31.44

116 126 34.6 8 5.81–24.92

022 64 24.8 9 5.02–23.87

073 96 37.9 7 5.00–25.19

076 86 42.6 6 5.22–28.95

DM 87 19.4 8 5.04–26.26

004 34 45.8 8 5.08–22.64
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Table 2:

Characteristics of prevalence of periodontitis in living descendants of the matrilines. Data reflect the numbers 

of animals for each matriline and at each age determined to be periodontally healthy or demonstrating 

periodontitis. Asterisks denotes different from high risk matriline members ≥10 years of age group.

Matriline Total Healthy Periodontitis

<10 yr. ≥10 yrs <10 yr. ≥10 yrs <10 yr. ≥10 yrs

004 0 2 0 1 0 1
(50.0%)

022 17 11 16 9 1
(5.9%)

2
(22.2%)

DM 1 4 1 2 0 2
(50.0%)

Total 18 17 17 12 1
(5.6%)

5*
(29.4%)

065 0 7 0 4 0 3
(42.9%)

073 9 10 7 4 2
(22.2%)

6
(60.0%)

076 6 7 4 2 2
(33.3%)

5
(71.4%)

Total 15 24 11 10 4
(26.7%)

14*
(583%)

116 1 4 1 3 0 1
(25.0%)
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