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A B S T R A C T

Background: Magnetic resonance imaging (MRI) is used to follow-up multiple sclerosis (MS) and evaluate disease
progression and therapy response via lesion quantification. However, there is a lack of automated post-pro-
cessing techniques to quantify individual MS lesion change.
Objective: The present study developed a secondary post-processing algorithm for MS lesion segmentation
routine to quantify individual changes in volume over time.
Methods: An Automatic Follow-up of Individual Lesions (AFIL) algorithm was developed to process time series of
pre-segmented binary lesion masks. The resulting consistently labelled lesion masks allowed for the evaluation of
individual lesion volumes. Algorithm performance testing was executed in seven early MS patients with four MRI
visits, and MS experienced readers verified the accuracy.
Results: AFIL distinguished 328 individual MS lesions with a 0.9% error rate to track persistent or new lesions
based on expert assessment. A total of 121 new lesions evolved within the observed time period. The propor-
tional courses of 69.1% lesions in the persistent lesion population exhibited varying volume, 16.9% exhibited
stable volume, 3.4% exhibiting continuously increasing, and 0.5% exhibited continuously decreasing volume.
Conclusion: This algorithm tracked individual lesions to automatically create an individual lesion growth profile
of MS patients. This approach may allow for characterization of patients based on their individual lesion pro-
gression.

1. Introduction

Multiple sclerosis (MS) is an inflammatory demyelinating neuro-
degenerative disease of the human central nervous system that is
characterized by the accumulation of multifocal demyelinating lesions
(plaques) in white matter (WM) and grey matter (GM) of the brain and
spine. These histological changes are reflected as quantifiable volumes
of deviant magnetic properties in conventional magnetic resonance
imaging (MRI), e.g., in T2-weighted imaging data (T2 lesions). The
quantification of brain lesion load gained further importance in MS
monitoring under disease-modifying therapies (DMTs). Since further
(1) newly appearing or enlarging T2 lesions under DMT are accepted
indicators of sub-clinical disease progression and inflammatory activity
the modern concept of No Evidence of Disease Activity (NEDA) therapy
monitoring has incorporated these lesion features as one of four pro-
gression markers besides (2) the brain tissue volume change as a

surrogate for neurodegeneration, (3) the occurrence of clinical relapses,
and, (4) the measurable clinical disability progression (Rudick et al.,
2010; Stangel et al., 2015).

Several tools are available to measure lesion load change via com-
parison of two MRI examinations as required in NEDA, but no ap-
proaches allow for multiple time-point analyses to quantify individual
lesion development and obtain a more precise perception of disease
activity. Conventional MRI data post-processing analysis research re-
cently focused on reliable, precise and reproducible automated MS le-
sion segmentation to quantify lesion changes and measure total brain
lesion volumes. Llado et al. provided a comprehensive review on these
developments (Llado et al., 2012).

Commercially available segmentation tools, such as LesionQuant™
(www.cortechslabs.com/lesionquant) and publicly available open-source
software, such as the Lesion Segmentation Tool (LST; www.statistical-
modelling.de/lst) detect new T2 lesions and enlarging volume lesions
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between two time points. However, the underlying approaches used
measure the volume change in brain lesions in its entirety but do not
allow for the evaluation of individual lesion development or separate
analyses between multiple time points.

Further, alternative binary map-based approaches do not allow for
the transfer of individual lesions to volumes-of-interest to quantify
more specific MRI measures longitudinally. Newer quantitative MRI
techniques that are sensitive to myelination and axon integrity revealed
a distinct variability in magnetization transfer ratio (MTR) imaging
(Rocca et al., 2003; Siemonsen et al., 2016), fractional anisotropy (FA)
derived from diffusion tensor imaging (DTI) (Filippi et al., 2001) and
myelin water fraction (MWF) (Faizy et al., 2016) within lesions. These
novel in vivo insights reveal a heterogeneous MS lesion pathology
(Filippi and Rocca, 2011), and the individual quantification of these
changes remains a scientifically important but technically unmet need.

The aim of this work was to develop a secondary algorithm for time-
series analysis for application in conjunction with map-based lesion
segmentation procedures. We developed an algorithm to (1) analyse
individual lesion volume development and (2) provide a read-out basis
to examine individual MS lesion MRI measures and quantitative MRI
properties in a multiple time-point imaging series.

2. Material and methods

The expected heterogeneous lesion longitudinal behaviour and vo-
lume development necessitated preconditions to identify different le-
sion courses. The algorithm considered stable, growing, or shrinking
lesion volumes, as well as resolving, new, reappearing, confluent and
separating lesion behavior. All algorithm developments were im-
plemented in MATLAB® 2014b using the Image Processing Toolbox®.
Required input data were pre-segmented lesions of an entire imaging
time series represented as binary masks in the NIfTI format
(Neuroimaging Informatics Technology Initiative). The ITK-SNAP
(Yushkevich et al., 2006) (www.itksnap.org) software was used to ex-
amine MRI data and evaluate the algorithm results. The AFIL algorithm
and a sample dataset is provided in the git repository (https://teahub.
io/carolinekoehler/AFIL).

2.1. Algorithm development

The algorithm traverses through six steps in which labels are ad-
dressed in the lesion masks of time series as illustrated in Fig. 1.

2.1.1. Assigning interim labels in longitudinal lesion masks
Binary lesion masks of each time point within the series were au-

tomatically assigned an interim label using the bwlabeln function of the
Image Processing Toolbox® to define connected voxel sets in a neigh-
borhood of six connections. The local interim label of the same lesion
may eventually change between time points because of new lesions.

2.1.2. Identification of lesion label intersections in consecutive lesion masks
The algorithm determined the intersections of every subsequent

interim labelled lesion of the follow-up time point using locally labelled
lesions of the labelled baseline time point. Two lesion volumes were
considered to intersect if they overlapped by at least one voxel in
baseline and follow-up.

2.1.3. Determining new lesions in the time series
The algorithm distinguished new lesions that exhibited no inter-

section with lesions of a previous time point in every follow-up time
point (see Fig. 1, column 3a top down). The newly identified lesions
were subsequently checked for intersections with lesions in follow-up
time points (see Fig. 1, column 3b).

2.1.4. Assigning a global label to corresponding lesions in a time series
A Label Lesion Tracking Matrix (LLTM) was generated for the time

series to preserve the local labels of intersecting lesions. An additional
global label was assigned to track any individual lesion using the same
label over time. New lesions were added to the LLTM for each time
point, and these lesions were also assigned a consecutive global label.
Therefore, the LLTM tracked each lesion in the dataset from onset to
theoretically possible resolution within the time series.

2.1.5. Determining confluent and separating lesions for corrected LLTM
Confluent lesions exhibited multiple intersections with baseline le-

sions, and separating lesions possessed the same “mother” lesion origin.
Separating lesions inherited the same global label of the “mother” lesion
to facilitate the traceability, and confluent lesions were assigned the
same global label in previous time points retrospectively. The LLTM
was subsequently corrected with multiple rows of confluent lesions
deleted from the matrix (see Fig. 1).

2.1.6. Determining confluent and separating lesions for corrected LLTM
Local labels were replaced by the appropriate persistent global label

of the corrected LLTM in the final step and saved as a relabelled NIfTI
lesion mask. Therefore, the output data were persistently labelled lesion
masks because the global labels remained during the entire tracking
period.

2.2. Accuracy evaluation

Expert MS readers verified the algorithm accuracy to track lesions
using visual assessment. Relabeled lesion masks were evaluated as
translucent overlays on FLAIR images of each time point. This accuracy
was controlled in each individual lesion course if the global label was
correctly assigned for the different cases of lesion development. An
error rate was calculated as the number of lesion courses that received
falsely assigned global labels within the time series divided by the total
number of corrected lesion courses.

2.3. Recruitment and MRI test data acquisition

A subset of a longitudinal MRI dataset of a previously published
study in clinically isolated syndrome (Kitzler et al., 2018) (CIS) was
used as a test dataset (mean age 30 years (range 22–39); gender (M/F)
3/4). Within the study an age and gender adapted healthy control
group of 21 subjects was scanned and seven individuals with a high
number of baseline existing lesions were selected. CIS patients were
recruited immediately after diagnosis and all cases used in this study
converted to clinically definite MS during the study. For all patients the
extended disability status scale (EDSS) was available at baseline and
after 12month. Written informed consent was obtained from all pa-
tients and healthy controls prior to data acquisition. Table 1

A clinical MRI test data set was acquired using a 1.5 T MRI scanner
(Siemens Magnetom Sonata, Siemens Healthineers, Erlangen, Germany)
equipped with an 8-channel radiofrequency head coil within another
clinical trial that was approved by the local Dresden University Hospital
ethics committee. 3D-FLAIR data were acquired for each patient
(FOV=22 cm, matrix= 256×210, slice thickness= 3mm,
TE=353ms, TR=6000ms, TI= 2200ms) at baseline (immediately
after onset of initial disease-related symptoms) and after 3, 6 and
12months. A T1-weighted anatomical reference scan (2D-T1 spin echo:
TE =12ms, TR=500ms, FOV=22 cm, matrix= 256×256, slice
thickness= 3mm) and a fast low-angle shot image (FLASH:
TE= 2.0ms, TR=5.7ms, flip angle= 18°, FOV=22 cm, ma-
trix= 128×128, slice thickness= 1.7mm) were acquired.

2.4. Data-processing

The FMRIB Software Library (FSL 5.0) (Jenkinson et al., 2012) in-
volving brain extraction (BET) and affine intra-subject co-registration
with the Linear Image Registration Tool (FLIRT) (Jenkinson and Smith,
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2001) was used for image pre-processing. The FLASH image was used as
registration target because it had a smaller slice thickness than the T1-
weighted image. Registering every subsequent time point of T1 and
FLAIR data to the baseline FLASH image enabled efficient longitudinal
analysis. T2 lesions were identified as focal areas of elevated MRI signal
intensity in the FLAIR data. A semi-automatic segmentation was applied
by using z-score thresholding of z > 4 against normalized FLAIR in-
tensity with preceding normalization by a robust maximum (98%)
(Kitzler et al., 2012; 2018). The resulting binary lesion maps were

manually edited. Lesions> 3 voxels (8.25 mm3) were accepted in the
final lesion masks. Two experienced raters manually performed lesion
mask re-evaluation and editing.

3. Results

3.1. Algorithm accuracy evaluation

A total of 352 individual lesion courses (baseline existing and newly
appearing) were tracked in all seven patients over four standardized
time points. Correction for separating and confluent lesions (see Fig. 1;
4 LLTM) ultimately provided estimates of 328 lesion development
courses. Within this set stable, growing, shrinking, but also reappearing
and resolving, confluent and separating lesions were reliably labelled
(see Table 2).

AFIL algorithm tracking errors evolved due to unexpected lesion
development. Simultaneous coalescence and separation occurred in two
cases, and lesions were falsely relabelled (case 7, Table 2). Another
lesion revealed a centripetal extension and resolution of the primary

Fig. 1. Illustrated algorithm workflow: (0) Binary lesion masks of four time points; (1) Automatic assignment of labels in longitudinal lesion masks; (2) Identification
of lesion label intersections in consecutive lesion masks: Overlaid baseline mask and appropriate follow-up mask; (3) Determining new lesions in the time series: a)
Note that the third labelled lesion in follow-up 1 and first and second labels in follow-up 2 do not intersect with lesions of the previous time point; b) new lesions
continue in step 2 and were tested for intersection; (4) Assigning a global label to corresponding lesions in a time series: Corresponding local labels and newly
identified lesions of the time series were tracked in rows of the LLTM. Note that a consecutive global label was assigned for a new lesion; (5) Determining confluent
and separating lesions in the corrected LLTM. Two entries were found for global label 2, which indicates a separated lesion, and two intersections were found for local
label 1 in follow-up 3 with previous time points, which indicates a confluent lesion; (6) Relabelled lesion masks: Local labels of the time series of corresponding
lesions were overwritten by an appropriate global label.

Table 1
Clinically isolated syndrome and early MS patient characteristics. During the
study course 5/7 patients received a treatment initiation (Copaxone).

Baseline 12Months

Mean EDSS (range) 1,5 (0–2) 1,3 (0–2)
Median T2 lesion load volume in mm3

(range)
2247 (374–5384) 4053 (1891–7911)

Median number of T2 lesions (range) 21 (6–73) 39 (14–81)
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lesion area, and the overlap between baseline and the final time point
map was missed, which created a false persistent global label (case 2,
Table 2).

3.2. Individual application example

Fig. 2 shows an examplary application of the AFIL algorithm to a
time series of segmented lesion masks to investigate the individual le-
sion growth profile of a MS patient. The same slice of the FLAIR image
and the overlaid re-labelled lesion mask is displayed for each time
point. The colour-coded bar groups illustrate the volume development
of all individual lesion courses of the subject. Most lesions exhibited
dynamic increases and decreases in volume over the tracked time
period (varying). A minor number of lesions were stable or con-
tinuously growing.

3.3. Cohort lesion volume expansion courses

Individual lesion volumes of the cohort were assessed over time.
Therefore, lesions were characterized according to volume develop-
ment into lesion expansion courses. Lesions were defined as growing in
volume if they enlarge more than +8.25mm3 (3 Voxel) and as shrinking
if they decrease −8.25mm3 in subsequent time points. If the volume
varied less± 8.25mm3 the lesion was defined as stable.

Combined analyses of all seven patients within the 207 baseline
existing lesions revealed that 35 (16.9%) lesions were stable in volume,
21 (10.1%) lesions resolved, 1 (0.5%) lesion shrank continuously and 7
(3.4%) lesions exhibited an ongoing volume increase. As many as 143
(69.1%) lesions revealed consecutive volume increase and decrease
(varying) within the tracked period. Notably, only 74 (52%) of the
baseline existing varying lesions exhibited an overall larger volume
after 12months. The amount of resolved and shrinking lesions was
higher in new lesions.

4. Discussion

New and/or enlarging MS lesions are clinically of the utmost im-
portance, which is reflected by their incorporation as progression sur-
rogates in the modern therapy monitoring strategy NEDA (Rudick et al.,
2010; Stangel et al., 2015). However, the individual dynamic char-
acteristics of lesion progression in MS may not be fully recognized and
understood because in vivo visualization techniques are inadequate
with regard to their separate volume development.

High disease activity with many new and enlarging lesions was

identified for all patients of this study using the NEDA criteria. Notably,
the multiple time point analyses performed with AFIL demonstrated
that most lesions did not continuously grow and even subsequently
shrank during the tracked period. Consequently, shrunken lesions that
subsequently enlarged were detected as growing lesions when com-
paring two time points even if the volume comparison to baseline did
not change. Therefore, the conventional comparison of only two time
points may overestimate the interpretation of disease activity. We de-
monstrated the feasibility of a novel algorithm to automatically create
an individual lesion growth profile of MS patients. The main developed
technical feature was a persistent labelling of each lesion object within
a time series of lesion masks that were applied in conjunction with
adapted conventions of presumed lesion development.

The possible annulment of antidromic individual lesion volume
changes in a collective lesion analysis was noted previously as a limit of
existing tools (Llado et al., 2012). These tools are primarily based on
subtraction or deformation field-based approaches (Llado et al., 2012;
Moraal et al., 2009; Rey et al., 2002) in which volume change reflects
the entire lesion compartment. The ordinary cumulative lesion growth
obtained as the intersection of differences of all lesions between two
different lesion maps does not reflect the complete characteristics, as
shown in our application. The presented analysis algorithm AFIL
overcomes this restriction.

Most lesions underwent enlargement and shrinkage within the study
period of the analysed sample data set. The net effect of currently as-
sessable short-term lesion growth may represent a different feature than
that of continuous growing revealed by our approach. The algorithm
also measured shrinking and resolving lesions, which provided a more
general overview of disease progression and possible tissue recovery.
Based on radiological decisions to distinguish adjacent lesion a con-
nectivity of 6 was chosen because otherwise nearby lesions might detect
as one lesion. The chosen connectivity has an impact on the number of
tracked lesions as well as categorization as confluent or separating le-
sions. This matter may provide further exploration and research on
optimal tracking result in future.

The AFIL algorithm operates independently of the lesion segmen-
tation routine used. Thus, individual lesion tracking can be performed if
lesions have previously been segmented using any segmentation tech-
nique that creates binary masks. However, AFIL requires accurate input
data, i.e., it depends on good quality pre-segmentation results. A precise
image registration of longitudinal data was also crucial for the quan-
tification accuracy of lesion volume changes. AFIL does not improve the
prior lesion segmentation, but errors within lesion segmentation may
strongly affect the results of its lesion tracking.

A threshold minimum (> 3 voxel equal to a volume of 8.25mm3)
was used to accept a pre-segmented lesion as an individual object
within lesion masks to limit image registration errors and partial vo-
lume effects at lesion borders. The applied threshold caused a higher
number of resolved and reappearance results in small lesions (see ex-
ample in Fig. 2). In case of registration mismatches and larger single
lesions (at the size of a multitude of the threshold minimum) the al-
gorithm will still detect the longitudinal corresponding lesion, if at least
the labelled lesion masks areas will consistently feature an overlap. In
contrast if two lesions are closely located to each other registration
mismatch might cause misclassification when lesions are composited by
the algorithm due to artificial overlap erroneously as confluent lesions.
The volume change is thereby only affected in the latter case. In sum-
mary, the higher the mismatch the higher the tracking failure will be. In
any case to reduce that sufficient motion correction and registration
should be applied before the AFIL algorithm run to reduce mismatch as
much as possible. However, the observed AFIL error rate for repeatedly
labelled lesions in subsequent maps was minor, with 3 errors in 328
observations (0.9%).

The intended read-out of MR-derived tissue characteristics (e.g.,
MTR, FA, MWF, T1, and T2) using the labelled lesions as volumes of
interest and its relevance for the classification of MS lesions will be

Table 2
Categorized courses of all tracked lesion developments (see section 2.1). Based
on AFIL algorithm results all four time points were checked with regard to their
global label consistency. Performance verification results of expert visual in-
spection of relabelled lesion masks are provided (right/false).

Number of tracked T2 lesions

Correct False

1) Corresponding (growing, shrinking, stable) 162 0
2) New 121 1
3) Resolving 22 0
4) Reappearing 9 0
5) Confluent 24 0
6) Separatinga 5 0
7) Successively confluent and separatingb 9 2
Σ 352 3
Corrected total number of lesion courses 328
Error rate (false/total # of lesion courses) 0.9%

a Result of the segmentation of initially confluent conglomerates and sub-
sequently consolidating multiple lesion centres.

b Rare lesion course complicating lesion assignment.
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examined in further clinical applications. Individual longitudinal vo-
lume quantification may also be an appropriate approach to recognize
slowly growing chronic active lesions in late and secondary progressive
MS.

AFIL uses binary segmentations, and it may be further used to
compare lesions of different imaging modalities to monitor volumetric
or parametric changes in other diseases, such as brain tumors, cerebral
microangiopathies or extracranial lesions.

5. Conclusion

The introduced novel algorithm reliably allowed individual tracking
of MS lesions in sets of pre-segmented binary lesion maps and can be
used in conjunction with any segmentation routine to track individual

objects. The automated individual quantification of MS lesion volume
changes provides a new in vivo insight into the dynamic nature of these
lesions and the possibility to observe meaningful patterns for disease
monitoring. AFIL fully operates in a 3D-resolved manner of the per-
sistently labelled lesions, and it may be further transferred into an in-
dividual lesion region-of-interest. This characteristic prospectively al-
lows for its application to the read-out of single lesion values over time
of any registered quantitative MRI metric in further studies.
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the numeric labelling starts from existing lesions (left) with the volumes of all four time points and subsequently evolving lesions and volumes at their effective
appearance (continuing to right). The displayed sample slice timeline shows a marked variation in lesion extent for baseline existing lesions 7 and 8 and consecutively
appearing lesions 23, 28, and 32 through 34. Lesions 12, 27, 29, and 30 appeared within the study period but were not detectable in follow-up, and lesions 11 and 21
are missing an interval time point. Since this finding primarily affects very small lesions, it may arise due to segmentation failure, variation in the FLAIR signal or
volume reduction below the threshold.
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