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Abstract

Recent studies demonstrate that effective healthcare can benefit from using the human genomic 

information. Consequently, many institutions are using statistical analysis of genomic data, which 

are mostly based on genome-wide association studies (GWAS). GWAS analyze genome sequence 

variations in order to identify genetic risk factors for diseases. These studies often require pooling 

data from different sources together in order to unravel statistical patterns, relationships between 

genetic variants and diseases. Here, the primary challenge is to fulfill one major objective: 

accessing multiple genomic data repositories for collaborative research in a privacy-preserving 

manner. Due to the privacy concerns regarding the genomic data, multi-jurisdictional laws and 

policies of cross-border genomic data sharing are enforced among different countries. In this 

article, we present SAFETY, a hybrid framework, which can securely perform GWAS on federated 

genomic datasets using homomorphic encryption and recently introduced secure hardware 

component of Intel Software Guard Extensions to ensure high efficiency and privacy at the same 

time. Different experimental settings show the efficacy and applicability of such hybrid framework 

in secure conduction of GWAS. To the best of our knowledge, this hybrid use of homomorphic 

encryption along with Intel SGX is not proposed to this date. SAFETY is up to 4.82 times faster 

than the best existing secure computation technique.
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1 INTRODUCTION

Rapid advancement in human genome sequencing has led us to a genomic era where human 

genomic data play an ever-important role in clinical research [1]. As cost-effective and 

efficient genome sequencing technologies are readily available, the research community can 

conduct experiments on different genomic data repositories for scientific discovery [2]. As a 

result of this massive data availability, Genome-Wide Association Studies (GWAS) are 

gaining popularity as they answer critical questions like susceptibility towards a disease or a 

physical trait by analyzing genome sequence variations in different individuals. GWAS 

examine genetic architecture of a disease to identify genetic risk factors associated with it. In 

other words, GWAS aims at finding if there is any correlation between a certain gene and a 

specific disease. Another fundamental goal of GWAS is to identify biological factors 

responsible for disease susceptibility in order to develop more effective diagnosis, treatment, 

and prevention techniques.

A larger genomic dataset is quintessential to perform any analytical study such as GWAS. 

Different research organizations or healthcare facilities often sequence genomes of different 

patients or participants for this reason. Researchers are interested in executing queries over 

these massive genomic datasets for unraveling new pieces of information about diseases 

under study. Oftentimes, the accuracy of this evaluation relies on the quantity and quality of 

the data used in the analysis– but a single organization often does not possess adequate 

genomic data (collection, processing, and storing of large-scale data is non-trivial) to 

perform a comprehensive or meaningful experiment. Because more data can reduce the 

sampling errors and improve the power of the analysis (for instance, statistical strength of 

GWAS increases with the quantity of data [3]), organizations tend to collect as much data as 

possible to meet data analysis needs.

Because sharing genomic data in plaintext possesses serious privacy implications for the 

participants [11], [12], in addition to the approval from an institutional review board (IRB), 

collaborative research on shared genomic data often needs to satisfy two criteria at the same 

time — a) authorizing access to genomic data for research and b) preserving participants’ 

privacy and protecting the confidentiality of their genomic information [13]. That is why 

strict policies regarding genomic data sharing have been enforced, and generally, these 

policies are different in different regions of the world. This difference in the regulations of 

cross-border genomic data sharing greatly impedes international research projects [14]. It is 

imperative to address the reality challenge with practical solutions to promote health science 

discoveries.

1.1 Existing Techniques.

To ensure the security and privacy of shared genomic data, different privacy-preserving 

techniques (for instance, homomorphic encryption [15], garbled circuit [16], secure 

hardware [10], secret sharing [17], differential privacy [18] etc.) have been proposed. Some 

applications of these techniques in secure GWAS, are demonstrated in Table 1. Each of these 

techniques has some advantages as they allow some functions to be computed on the data 

without compromising confidentiality and integrity of it [19]. For instance, homomorphic 

encryption allows to perform some computation (i.e. addition and multiplication) on 
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encrypted data. Hence, encrypting the data before sharing and then executing the required 

computation on encrypted data is an intuitive solution. However, homomorphic encryption 

based solutions have significant computational and storage overhead, which makes them 

often impractical for real life applications [20].

Secure multiparty computation (garbled circuit and secret sharing) is also a prospective 

solution because of their lower computational overhead. However, garbled circuit based 

solutions need complex circuit design and optimization, which limit its flexibility and 

usability greatly. Another technique of this genre, secret sharing involves huge 

communication overhead. Besides, it is not suitable for client server architecture [21].

Differential privacy based techniques add noise to the data in order to protect individual 

privacy. But, this noise reduces data utility, and makes accurate statistical analysis much 

harder. In addition, differential privacy requires one trusted party who has access to the 

integrated dataset. This requirement is not applicable to our scenario.

Intel SGX [22], [23] is an extension to the Intel architecture which allows an application to 

run inside protected execution areas of CPU. Although, SGX is efficient from computation 

and storage perspective, the security of SGX is yet to be fully established due to the recent 

discovery of side-channel attacks against SGX [24].

1.2 Contributions.

In this paper, we propose a hybrid framework, SAFETY, for secure execution of some 

popular statistical tests used in GWAS in a federated environment. Our proposed hybrid 

model incorporates security and efficiency of two different cryptographic schemes in a 

single system. More precisely, it is the first attempt to infuse homomorphic encryption with 

SGX to develop a secure and scalable genomic data computation model. The experimental 

results clearly demonstrate that it performs consistently irrespective of the number of data 
owners making it highly scalable (see Section 5 for details). This hybrid model captures the 

essence of both techniques: ability of computing some functions on encrypted data 

(homomorphic encryption) and performing sophisticated mathematical operation in the 

secure execution area of an SGX enabled CPU. Our primary goal behind proposing a hybrid 

model relies on better security guarantee from existing secure computation schemes, and 

faster and scalable execution for any number of data owners. From our experimental results, 

it is evident that the proposed hybrid model provides better efficiency and security than pure 

secure hardware or homomorphic encryption based solutions.

SAFETY utilizes an architecture [25] to execute secure count query on federated genomic 

datasets. Similar federated architectures are available in literature [4], [26]. In our adopted 

architecture [7], [25], genomic data resides in the local premises of individual data owners in 

plaintext (see Figure 1). Data owners have their own database systems which are 

geographically distributed and have different policy compliance for the data usage. An 

overview of data representation for each data owner is shown in Table 2. Proper 

authentication allows any researcher to execute queries on their data.

Sadat et al. Page 3

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Among the existing secure computation techniques, SGX is the most efficient. For instance, 

an implementation of SGX-based MapReduce framework [27] shows a very modest 

overhead of 8% to achieve read/write integrity. This is a great advantage of SGX in 

comparison to other secure computation schemes like garbled circuit and homomorphic 

encryption, which generally increase the computational overhead to a great extent. However, 

our proposed hybrid model is 1.7 to 4.82 times faster than SGX (see Section 5). This 

comparative efficiency increases with the number of data owners. The contributions of this 

article are summarized as follows:

1. We propose a hybrid cryptographic framework, SAFETY, which uses 

homomorphic encryption along with secure hardware features of the Intel SGX. 

SAFETY is not only secure and efficient, but also overcomes the limitations of 

solely homomorphic encryption based solutions which often come with higher 

computational overhead for processing higher order polynomials. In addition, 

SAFETY also simplifies solely SGX based solutions, which require pairwise 

attestation and secure key distributions between server and data owners.

2. Using SAFETY, we securely execute and evaluate some of the major functions of 

GWAS in federated architecture where genomic data are distributed and owned 

by different parties. We performed four statistical tests: Linkage Disequilibrium 

(LD), Hardy-Weinberg Equilibrium (HWE), Cochran-Armitage Test for Trend 

(CATT), Fisher’s Exact Test (FET) to evaluate SAFETY over a variety of 

settings. However, our framework SAFETY can incorporate any GWAS 

functions (i.e., transmission disequilibrium test [10], EigenSTRAT [28], linear 

mixed model [8], etc.) and not limited to the GWAS functions mentioned 

previously. The methodology to perform these statistical tests securely is 

discussed in Section 4.

3. SAFETY ensures that each data owner is completely unaware of the 

contributions from the other data owners, who are participating in the same 

analysis. Moreover, the final result is revealed only to the researchers without 

disclosing individual contribution of data owners. This allows us to preserve the 

privacy of the output of each data owner.

4. We conduct multiple experiments in different realistic setting in a federated 

environment varying the data size and the geographic locations of data owners 

(see Section 5 for details).

2 SYSTEM OVERVIEW

In this section, we discuss the system architecture and the threat model.

2.1 System Architecture

There are four entities in the proposed system architecture as shown in Figure 1:

• Researchers (authorized): Individuals or organizations who want to execute 

queries over genomic databases. This party sends queries to the central server 

and expects encrypted results of different GWAS functions.
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• Data Owners: These parties are geographically distributed and possess databases 

upon which queries are performed. These data owners might be hospitals or 

government organizations who want to share their genomic data and have 

different policies regarding the data sharing. The proposed model supports any 

number of data owners where they can execute any aggregate query locally.

• Crypto Service Provider (CSP): CSP manages the cryptographic keys that will be 

used for data encryption and decryption in various steps of the system protocol. 

Each data owner receives a public key from the CSP and encrypts its output 

using that public key. CSP also issues the private key to an authorized researcher 

who can decrypt the final result.

• Central Server: The central server maintains communications with all other 

entities of the system architecture. It receives queries from the researcher, sends 

them to the data owners, and collects individual encrypted results from each data 

owner. Individual encrypted results from data owners are securely combined by 

the central server to compute the final result of the query with the help of 

homomorphic encryption and SGX.

2.2 Threat Model

In this paper, our goal is to ensure the confidentiality of individual contributions or data from 

different geographically distributed data owners. Researchers can decrypt only the final 

result provided by the central server. We assume the CSP to be a trusted entity while the 

central server is a semi-honest entity (also known as honest-but-curious) where it follows the 

protocol but may attempt to derive additional information from the server logs or received 

defined protocols [29].

We assume that the computations (required for statistical tests of GWAS) run in an SGX 

enabled central server. SGX architecture facilitates the central server to perform any 

computation securely on data provided by multiple data owners. We assume that the 

processor works properly, and is not compromised. We trust the design and implementation 

of SGX including all cryptographic operations performed by it.

It should be mentioned that there are some recently proposed side-channel attacks against 

SGX [24], [30], [31]. All of these attacks are software attack. To the best of our knowledge, 

there is no known physical attack against SGX. The attack proposed in [24], is a limited or 

controlled side-channel attack against a particular SGX based framework [32]. This is 

basically a page-fault attack. Another software attack proposed in [30] (known as 

synchronization bugs), is applicable only for multi-threaded applications.

Existing defense mechanisms are proposed targeting only the page-fault side-channel attacks 

[33]–[35]. However, these defense mechanisms may not prevent the future attacks. Further 

research is required to better understand the potential vulnerability of SGX, consequence of 

different side-channel attacks, and possible defense mechanisms.
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Addressing these side-channel attacks against SGX, SAFETY protects the institutional 

privacy of the participating data owners by aggregating their local statistics without 

decrypting them. This approach provides a higher layer of data security.

3 BACKGROUND

In this section, we will introduce some of the concepts, which are required to understand the 

proposed methods in Section 4.

3.1 Intel SGX

Intel SGX is a set of extensions to the Intel architecture which mainly focuses on the 

problem of running applications on a remote machine administered by an untrusted party. 

SGX allows parts of an application to be executed inside secure segments of the CPU called 

enclaves. Untrusted entities including privileged software (kernel, hypervisor, etc.) cannot 

access enclave. SGX ensures that the code and data within an enclave cannot be read or 

modified from outside the enclave.

There are two SGX features that play a vital role in provisioning of sensitive data to an 

enclave. These are called attestation and sealing.

• Attestation: SGX enclaves are created without privacy-sensitive data. Privacy-

sensitive data are delivered after the enclave has been properly instantiated on the 

platform. The process of demonstrating that a piece of software has been 

properly instantiated within an enclave on an enabled platform is called 

attestation [36].

Attestation demonstrates to a user that he is communicating with an application 

running inside an enclave. This demonstration is accomplished via a 

cryptographic signature that certifies the hash of the enclave’s contents. The 

remote computer’s administrator is able to load any program in an enclave. 

However, the user (who uses the remote computation service) will deny to load 

his data into an enclave if the hash of the contents does not match the desired 

value [37].

• Sealing: When an enclave is instantiated, SGX provides protections to its data 

until it is maintained inside the enclave. However, when the enclave process 

exits, the enclave will be destroyed and all associated data will be lost. If the data 

is required later, it needs to be stored outside the enclave. Sealing is the process 

of encrypting and storing data in a way such that only the same enclave would be 

able un-seal them back to their original form. In our framework, data sealing is 

not required since the data owners do not necessarily outsource their data to the 

central server. Instead, they send certain local counts in response to researcher’s 

query.

Memory partition in Intel SGX is described in Appendix B.
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3.2 Homomorphic Encryption

Homomorphic encryption allows performing computation on encrypted data without 

decrypting the data. Homomorphic encryption in a nutshell is: if c1 = ξ(m1) and c2 = ξ(m2) 

(where m1 and m2 are the plaintexts, c1 and c2 are the ciphertexts, and ξ is any randomized 

encryption function), we can perform computation on c1, c2 and get the same output as if we 

were performing computation on m1 and m2.

In SAFETY, we have used a partial homomorphic system named Paillier cryptosystem [38]. 

Paillier cryptosystem has two important properties that we utilized in SAFETY.

• Probabilistic encryption: If we encrypt the same message several times using 

Paillier cryptosystem, it generates different ciphertexts for the same plaintext.

• Addition homomorphism: For any public key n and arbitrary messages m1, m2,

ξ m1 + m2 = ξ m1 * ξ m2 modn2

which denotes that we can do an addition operation over ciphertexts.

4 METHODOLOGY

In this section, we discuss how to perform the statistical tests (LD, HWE, CATT, and FET) 

securely. Please see Appendix B for a brief introduction of the corresponding GWAS 

functions. To explain our proposed methods we use the data from Table 2.

As mentioned earlier, we consider the use of Intel SGX in two ways — 1) Hybrid approach: 

using Intel SGX along with homomorphic encryption 2) Secure hardware approach: using 

only Intel SGX. SAFETY is based on the hybrid approach.

4.1 Hybrid Approach (SAFETY)

Suppose, there are total n number of data owners (D1, D2, … , Dn) connected in the 

federated environment where a researcher wants to execute a statistical query. The query 

result should follow or represent as if the query is being executed on the combined dataset. 

Here, each data owner will have their own individual outputs. For example, data owners D1, 

D2, … , Dn will have outputs x1, x2,…, xn respectively. These outputs can be haplotype or 

genotype counts (encrypted) for a specific SNP locus based on the query from a researcher.

These outputs are encrypted by the public keys provided beforehand by the CSP. Data 

owners get the public keys from the CSP before any computation. The data owners generate 

their encrypted outputs c1, c2, … , cn (from x1, x2, … , xn) using the public keys provided by 

the CSP and send them to the central server for further computation.

The central server then performs homomorphic addition on the individual encrypted outputs 

c1, c2, … , cn with the Paillier cryptosystem [38]. After homomorphic addition, it hands over 

the total encrypted counts to Intel SGX for further computation required to perform different 

statistical tests like LD, HWE, CATT, and FET. Then, the total counts are decrypted inside 

enclave, and further computation is also performed inside enclave where no untrusted 
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application can access these data. The sequence diagram of this protocol is shown in Figure 

2.

It is noteworthy that due to the use of homomorphic addition operation, the number of 

decryptions required to perform statistical tests is greatly reduced (shown in Table 7). Also 

the individual contributions from the data owners are secured since their values are 

encrypted. Figure 3 demonstrates the use of homomorphic encryption and Intel SGX in a 

hybrid architecture.

4.2 Secure Hardware Approach

In secure hardware approach, after receiving individual outputs from different data owners, 

the central server decrypts them inside the enclave and performs further computation on 

plaintext. The fundamental difference between a hybrid approach and a secure hardware 

approach is, not using the homomorphic addition on ciphertext. Since in this approach, all 

the individual homomorphically encrypted outputs need to be decrypted, the computational 

overhead is quite large.

In the following subsections, we discuss the methods for securely performing LD, HWE, 

CATT, and FET according to the hybrid approach. We use the data from Table 2 to explain 

the methods.

4.3 Secure Linkage Disequilibrium (LD)

A sample query from researcher regarding LD may look like: Are rs4305 and rs4630 at 
linkage disequilibrium?

Both SNPs are bi-allelic. So, there are four possible haplotypes: CA, TA, CG, and TG.

Each data owners send their haplotype counts, which are encrypted by Paillier cryptosystem 

[38]. For instance, data owner 1 sends NCA1
= E 1  where the count of haplotype CA is 1 

and E is the encryption function. After receiving the encrypted counts of CA from all the 

data owners, the central server performs homomorphic addition operation on them to obtain 

the total encrypted count for CA. For n data owners,

NCA = NCA1
+ NCA2

+ … + NCAn

Similarly, total count for TA, CG, and TG are computed. Then the central server instantiates 

a secure enclave and provisions these encrypted values as input there. As the decryption key 

(private key) is sealed by the enclave, it can decrypt the counts and calculate the haplotype 

frequencies. The haplotype frequencies are calculated in enclave to avoid division of 

encrypted numbers, which is expensive even in fully homomorphic encryption. Finally, 

coefficient of the LD is computed, and researcher gets the result of her query from this. We 

discuss detailed procedure for computing LD coefficient in Appendix A.2.
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4.4 Secure Hardy-Weinberg Equilibrium (HWE)

A sample query regarding HWE is: Does HWE holds at SNP rs4305?

Possible genotypes at SNP rs4305: CC, CT, and TT. Each data owner will send their 

individual count for CC, CT, and TT genotypes. After receiving these encrypted genotype 

counts from all data owners, the central server performs homomorphic addition operation 

using Paillier cryptosystem [38] to obtain total encrypted counts for corresponding 

genotypes.

Now, all the counts are decrypted inside the enclave to calculate the frequencies PC and PT. 

PC is calculated using, PC =
nCC

n + 1
2 ×

nCT
n . Then, PT = 1 − PC.

Further discussion is available in Appendix A.3.

4.5 Secure Cochran-Armitage Test for Trend (CATT)

A typical query from researcher regarding CATT is: Determine if CATT can be inferred at 
rs4426?

Possible genotypes at SNP rs4426 are: CC, CT, and TT. For cases and controls (Cancer 

positives and negatives respectively), all the data owners send their encrypted genotype 

counts for both categories to the central server. Homomorphic addition operations are 

performed to calculate row total and column total using Paillier cryptosystem [38]. A 

contingency table needs to be constructed, which is described in the Appendix A.4. This 

table is then sent to the enclave where all these row totals and column totals are decrypted 

for further computation.

4.6 Secure Fisher’s Exact Test (FET)

Like CATT, FET also operates on a contingency table. So, for FET, data flow is similar to 

CATT. Here, the p − value is calculated in enclave after securely aggregating the individual 

encrypted inputs from the data owners. Please see Appendix A.5 for further discussion.

4.7 Pre-computation table for GWAS

As we have seen, all the statistical tests mentioned before (LD, HWE, CATT, and FET) 

require processing data in a tabular format. Data owner can keep their data in this format. 

Consequently, when central server requests for data, data owner can respond readily. It is 

noteworthy that each data owner has to build the table only once. Thus, pre-computation of 

the table enhances the efficiency of SAFETY.

Table 3 represents pre-computation table of data owner 1 for performing HWE, CATT, and 

FET at rs4426.

Since performing LD involves two SNP loci, a different pre-computation table is required. 

Table 4 represents pre-computation table of data owner 1 for performing LD at rs4305 and 

rs4630.
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5 EXPERIMENTAL RESULTS

In this section, we extensively evaluate aforementioned hybrid approach and secure 

hardware based approach in a federated environment using Amazon cloud and demonstrate 

their applicability in a real world setting. Our proposed framework SAFETY is based on 

hybrid approach where we use SGX along with homomorphic encryption. However, secure 

hardware based approach uses only SGX.

5.1 Experimental Setting

In our experimental setup, the researcher, CSP, and central server were located in Manitoba, 

Canada. Our central server was hosted on a machine with Intel Core i7–6700 (3.40 GHz) 

processor and 8 GB memory. However, we emulate data owners in different locations of the 

world to evaluate the propriety of our proposed framework in a real world environment. We 

used Amazon EC2 cloud servers having the same configuration for all data owners. Table 5 

shows the location, IP address, and the latency of these servers used in our experiment. In 

our experiments, we used 80 bit security (size of the public key is 1024 bits) on the public-

key cryptosystem. The security can be improved by increasing the key length.

We performed four experiments with different settings. The number of data owners was 

different for different experiments which allowed us to evaluate the scalability of both 

methods. Table 6 shows different settings used in the experiments. For instance, in 

experiment 1, two data owners were in USA and Canada while in experiment 4, five data 

owners were residing in all the locations mentioned in Table 5. Experiments were performed 

using synthetic data which were generated according to the allele frequency of CHB, CHS, 

JPT and MXL populations from 1000genomes dataset (August 2010 Release) [39].

5.2 Results and Discussions

Prior to analyzing the running times of our proposed methods, we evaluate the required time 

to compute the four statistical tests on plaintext (i.e. without any security protection). We 

calculate the exact results for the GWAS calculations without loosing any accuracy.

In Figure 4, we show the running time (in milliseconds) for performing the four statistical 

tests on plaintext. We observed that in any single experimental setup, the running time is 

almost the same for all the statistical tests. However, running times for different experiments 

are different because different experiments involve different number of data owners (as 

shown in Table 6). As a result, higher communication overhead is added in these 

experiments. For instance, experiment 2 involves more data owners than experiment 1, 

which yields more communication overhead and results in greater running time.

The running time for computing LD on ciphertexts is shown in Figure 5(a). Here, running 

time is decomposed into communication overhead in the network and time required for 

secure computation of the method. It is noteworthy that,

Communication overhead ∝ Number of data owners
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SAFETY requires 5,770 ms to compute LD coefficient for two data owners, which is 1.7 

times faster than secure hardware approach. Rest of the time is due to the communication 

overhead in the network. Figure 5(b), 6(a), and 6(b) illustrate the experimental results for 

performing HWE, CATT, and FET respectively on ciphertexts. Experimental results 

illustrate that SAFETY is much faster than solely secure hardware based approach. For 

instance, for HWE, SAFETY is 1.93, 2.87, 3.8, and 4.82 times faster than solely secure 

hardware based approach in Experiment 1, 2, 3, and 4 respectively (see Figure 5(b)). It is 

noteworthy that SAFETY and the secure h/w approach both utilize the asymmetric 

encryption and decryption.

The experimental results demonstrate that the performance of the secure hardware approach 

does not scale well with the number of data owners. As the number of data owner increases, 

the running time of secure hardware approach increases rapidly. On the contrary, the hybrid 

approach (SAFETY) performs consistently irrespective of the number of data owners due to 

its hybrid properties (homomorphic addition followed by computation inside enclave). In 

this case, only the communication overhead increases which is very small considering the 

total running time.

Another important analysis regarding the methods is the number of decryptions needed for 

any statistical tests. It is evident that LD requires more time than HWE while CATT and 

FET require more time than the other two. The reason behind this is, the time required to 

perform a statistical test is proportional to the number of decryptions required. Moreover, for 

secure hardware approach, all the individual contributions of data owners need to be 

decrypted inside the secure enclave. As the number of the data owner increases, the number 

of decryptions also increases which results into higher running time. Table 7 demonstrates 

how the required number of decryptions increases with the number of data owners.

6 DISCUSSIONS

In this section, we discuss some of the other security and privacy concerns regarding the 

secure computation of GWAS in our hybrid model.

6.1 Query Privacy

In the proposed methods, we do not consider the query privacy of the researcher. In other 

words, we consider the queries from researcher to be public and data owners, central servers 

know the targeted position (locus) from the researcher. This issue can be resolved by some 

of the query privacy or private information retrieval techniques [40]–[42].

6.2 Output Privacy

SAFETY does not guarantee the privacy of the final result as that only gets decrypted by 

researcher. We are aware that there are some differential privacy based approaches [8], [43], 

[44], those address this issue and generate differentially private outputs for GWAS. 

However, as we consider this researcher to be semi-honest, this issue is beyond the scope of 

the paper.
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6.3 Assumption Regarding CSP

In our threat model, we assumed that the Crypto Service Provider (CSP) is a trusted entity, 

and does not collude with any other party. In other words, if the CSP leaks the secret keys, 

the proposed framework will not be deemed secure.

To ensure the security and integrity of the CSP, we should employ good security practices 

(software security, OS security etc.). However, if it is not the case, then our proposed system 

will fall apart. Our situation is similar to the public-key system, where there are CAs (they 

are assumed to be trusted).

6.4 Consideration of Symmetric Cryptography

We are not using symmetric cryptography (like AES) for a couple of reasons:

• Achieving randomized encryption (initialization vector management issue): 
One major drawback of using any symmetric cryptography scheme, (i.e., AES) is 

achieving randomized or probabilistic encryption. This randomness can be 

introduced by choosing initialization vectors which needs to be managed by the 

central server or CSP for multiple data owners. However, SAFETY is based on 

homomorphic encryption whose encryption is probabilistic by definition, which 

reduces the burden of managing initialization vectors.

• Risk of individual contribution leakage: One of the major concerns in 

addressing the security of the federated environment is hiding the individual 

contributions from data owners. As we perform the additions over encrypted 

data, these contributions are never revealed. As a result, in our proposed 

framework the possibility of such leakage is highly unlikely.

• Requires n remote attestations for n data owners (key distribution problem): 
Symmetric cryptography schemes like AES require key distribution/setup with 

every data owners which results in many network communications, which might 

be prone to attack. On the contrary, our proposed framework is based on public-

key cryptography where the data owners use a public key to encrypt their data 

published by the CSP. As a result, key distribution is much simpler and our 

framework incurs less communication overhead.

7 CONCLUSION

Homomorphic encryption and Intel SGX have their own strengths to utilize. Homomorphic 

encryption can perform some computational operations without decrypting the ciphertext, 

and Intel SGX can perform any secure computation efficiently after decrypting ciphertext. 

However, a hybrid model where homomorphic encryption and secure hardware are used in 

appropriate use cases provides a good trade-off in terms of efficiency and computational 

support for secure statistical analysis. The outstanding performance of SAFETY attests this 

hypothesis.

Recently, some data analytics and machine learning applications [27], [45], [46] have 

adopted Intel SGX for secure computation. However, little work has been done using Intel 
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SGX for analyzing genomic data. We think, using secure and efficient computation 

capability of Intel SGX to analyze genomic data is very promising for healthcare and 

medical research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
Diagram of the federated architecture where data owners are geographically distributed.
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Fig. 2: 
Sequence diagram for the hybrid approach.
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Fig. 3: 
Usage of homomorphic addition in our framework.
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Fig. 4: 
Experimental results for plaintext.
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Fig. 5: 
Experimental results for LD and HWE. (a) and (b) compare computation time and 

communication costs of conducing Linkage Disequilibrium (LD) and Hardy-Weinberg 

Equilibrium (HWE) test using SAFETY and purely secure hardware approach.
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Fig. 6: 
Experimental results for CATT and FET. (a) and (b) compare computation time and 

communication costs of conducing Cochran-Armitage Test for Trend (CATT) and Fisher’s 

Exact Test (FET) using SAFETY and purely secure hardware approach.
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TABLE 2:

Data representation in each party

Sequence

# Case rs4426 rs4305 rs4630 Cancer

Data Owner 1

1 CC CT GG … Negative

2 CT CT AG … Negative

3 CC CT GG … Negative

Data Owner 2

1 CC CT GG … Negative

2 CT CC GG … Positive

3 CC CT GG … Positive

Data Owner 3

1 CT CC AG … Positive

2 CT CT AG … Negative

3 TT CC GG … Positive

Data Owner 4

1 TT CC AA … Positive

2 CC CC GG … Positive

3 CC CT GG … Positive
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TABLE 3:

Sample pre-computation table for HWE, CATT, and FET

CC CT TT

Case Control Case Control Case Control

2 0 1 0 0 0

2 1 0
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TABLE 4:

Sample pre-computation table for LD

rs4630

rs4305

Allele A G

C CA (1) CG (2)

T TA (0) TG (3)
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TABLE 5:

Server locations and average latency

Server Location IP Address Network Latency (ms)

Canada (Manitoba) 130.179.30.133 <1

USA (Oregon) 52.32.83.223 37

London 52.56.65.221 105

Seoul 52.78.100.194 170

Sydney 54.206.67.251 233
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TABLE 6:

Location of different data owners in different experimental settings

Exp. # Canada USA London Seoul Sydney

Exp. 1 ✓ ✓ ✗ ✗ ✗

Exp. 2 ✓ ✓ ✓ ✗ ✗

Exp. 3 ✓ ✓ ✓ ✓ ✗

Exp. 4 ✓ ✓ ✓ ✓ ✓

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2020 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sadat et al. Page 30

TA
B

L
E

 7
:

N
um

be
r 

of
 d

ec
ry

pt
io

ns
 r

eq
ui

re
d 

to
 p

er
fo

rm
 a

 s
ta

tis
tic

al
 te

st
 f

or
 d

if
fe

re
nt

 n
um

be
r 

of
 d

at
a 

ow
ne

rs

Te
st

N
um

be
r 

of
 d

at
a 

ow
ne

rs

O
ne

T
hr

ee
F

iv
e

H
yb

ri
d

Se
cu

re
 h

/w
H

yb
ri

d
Se

cu
re

 h
/w

H
yb

ri
d

Se
cu

re
 h

/w

L
D

4
4

4
12

4
20

H
W

E
3

3
3

9
3

15

C
A

T
T

6
6

6
18

6
30

FE
T

6
6

6
18

6
30

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2020 January 01.


	Abstract
	Introduction
	Existing Techniques.
	Contributions.

	System Overview
	System Architecture
	Threat Model

	Background
	Intel SGX
	Homomorphic Encryption

	Methodology
	Hybrid Approach (SAFETY)
	Secure Hardware Approach
	Secure Linkage Disequilibrium (LD)
	Secure Hardy-Weinberg Equilibrium (HWE)
	Secure Cochran-Armitage Test for Trend (CATT)
	Secure Fisher’s Exact Test (FET)
	Pre-computation table for GWAS

	Experimental Results
	Experimental Setting
	Results and Discussions

	Discussions
	Query Privacy
	Output Privacy
	Assumption Regarding CSP
	Consideration of Symmetric Cryptography

	Conclusion
	References
	Fig. 1:
	Fig. 2:
	Fig. 3:
	Fig. 4:
	Fig. 5:
	Fig. 6:
	TABLE 1:
	TABLE 2:
	TABLE 3:
	TABLE 4:
	TABLE 5:
	TABLE 6:
	TABLE 7:

