
1Scientific Reports |          (2019) 9:4105  | https://doi.org/10.1038/s41598-019-40798-x

www.nature.com/scientificreports

Improving the performance of 
computational ghost imaging by 
using a quadrant detector and 
digital micro-scanning
Ming-Jie Sun, Hao-Yu Wang & Ji-Yu Huang

Computational ghost imaging systems reconstruct images using a single element detector, which 
measures the level of correlation between the scene and a set of projected patterns. The sequential 
nature of these measurements means that increasing the system frame-rate reduces the signal-to-noise 
ratio (SNR) of the captured images. Furthermore, a higher spatial resolution requires the projection 
of more patterns, and so both frame-rate and SNR suffer from the increase of the spatial resolution. 
In this work, we combat these limitations by developing a hybrid few-pixel imaging system that 
combines structured illumination with a quadrant photodiode detector. To further boost the SNR of our 
system, we employ digital micro-scanning of the projected patterns. Experimental results show that 
our proposed imaging system is capable of reconstructing images 4 times faster and with ~33% higher 
SNR than a conventional single-element computational ghost imaging system utilizing orthogonal 
Hadamard pattern projection. Our work demonstrates a computational imaging system in which 
there is a flexible trade-off between frame-rate, SNR and spatial resolution, and this trade-off can be 
optimized to match the requirements of different applications.

Ghost imaging1–5, a technique closely related to single-pixel imaging6,7, is an alternative to conventional digital 
cameras based on a focal plane detector array. Ghost imaging systems use a single element detector to reconstruct 
images by sequentially recording the levels of correlation between the scene and a set of patterns. Digital cameras 
based on detector arrays perform much better in conventional visible applications, and therefore are more widely 
used. However, ghost imaging offers advantages in a growing range of non-conventional applications such as wide 
spectrum imaging8,9, depth mapping10,11 and imaging with spatially variant and reconfigurable resolution12–14. 
Yet despite these niche applications, the relatively low frame-rate and signal-to-noise ratio (SNR) of computa-
tional ghost imaging compared to imaging based on detector arrays has prevented its use from becoming more 
widespread.

In computational ghost imaging systems, the number of patterns required to reconstruct a fully sampled 
image is proportional to the total number of pixels in the reconstructed image. The sequential nature of these 
measurements means that increasing the system frame-rate reduces the SNR of the captured images15. Schemes 
such as differential detection16–18 and balanced detection19 have been developed to suppress system noise, and 
micro-scanning techniques15,20 have been explored to further enhance SNR. Attempts to increase the frame-rate 
of computational ghost imaging systems have generally focused on two strategies: (i) shortening the signal acqui-
sition time by using fast spatial light modulators, such as digital micro-mirror devices (DMD)8, LED arrays21 or 
optical phase array22 or (ii) reducing the total number of correlation measurements required to reconstruct an 
image by utilizing orthogonal sampling strategies23,24 or compressive sensing6,25, i.e. under-sampling a scene and 
using prior knowledge of the scene such as sparsity constraints to guide the image reconstruction. Recent works 
have also exploited the flexibility of loading image information onto both the spatial and temporal dimensions, 
with the development of hybrid few-pixel computational ghost imaging systems26,27, for example by employing a 
quadrant photo-detector to increase the frame-rate by a factor of 4.
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In this work, we further improve the performance of such a system by combining a hybrid few-pixel compu-
tational ghost imaging system with digital micro-scanning. Experimental results show that the proposed imaging 
system reconstructed images 4 times faster and with an ~33% higher SNR than a conventional single-pixel com-
putational ghost imaging system relying on orthogonal Hadamard patterns.

Results
In standard single-element computational ghost imaging (henceforth referred as CGI), as shown in Fig. 1(a), 
to reconstruct an image of 64 pixel × 64 pixel resolution, a set of binary patterns, each of the same resolution 
as the final image (i.e. 64 × 64 pixels) is generated to sample a scene. In this case the scene consists of a binary 
transmissive object O. The patterns may be either randomly generated and therefore partially correlated3,22,28 or 
form an orthonormal basis8,9, the latter is convenient to efficiently fully sample the scene11–15,19–21,23,24. One such 
orthonormal basis is derived from the Hadamard matrix, a square matrix with elements ±1 whose rows (or 
columns) are orthogonal to one another29,30. A set of 4096 patterns can be generated by reshaping the ith row (or 
column) of a 4096 × 4096 Hadamard matrix (hereafter donated as H4096) into a square 64 × 64 pixel pattern Pi. 
The ith measurement is performed by projecting pattern Pi onto the scene, and measuring the intensity of the total 
reflected signal, Si, with a single element detector. Si is directly proportional to the overlap integral between the 
pixelated object O and the pattern Pi. Because these Hadmard patterns are orthogonal, an image I of 64 × 64 pixel 
resolution can be obtained after 4096 measurements as:
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We note that as the required patterns contain negative elements, each measurement is performed by projecting 
binary patterns (consisting of elements 1 and 0), followed by the inverse (consisting of swapped elements 0 and 1). 
Si is then found from the difference between these two measurements.

A hybrid few-pixel computational ghost imaging system has been proposed by replacing the single element 
detector with a quadrant detector27. By simultaneously acquiring information from each quadrant of the scene 
independently, this increased the frame rate of the system by a factor of 4. In the case of this few-pixel imaging 
system, shown as Fig. 1(b), the sampling patterns QPi within each quadrant were drawn from a 1024 × 1024 
element Hadamard matrix, H1024. With a collecting lens, four segments were imaged to the corresponding quad-
rants of the quadrant detector, and four correlation measurements Sxi (x = 1, 2, 3 and 4) are recorded simulta-
neously but independently. Therefore, four 32 × 32 pixel images Ix were obtained respectively using Eq. (1) and 

Figure 1.  A comparison of image reconstruction schemes. (a) A standard computational ghost imaging system 
uses a single-pixel detector and takes 4096 acquisitions to yield a 64 × 64 image with a low SNR. (b) A few-pixel 
imaging system uses a quadrant detector and takes 1024 acquisitions to yield a 64 × 64 image with a low SNR. 
(c) The proposed imaging system uses a quadrant detector and takes 256 acquisitions to yield a 32 × 32 image 
with a high SNR, then with four sequentially obtained 32 × 32 images, a 64 × 64 image can be reconstructed.
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a 64 × 64 pixel image I of object O was yielded by stitching these four 32 × 32 quadrant images together. In this 
case, the number of sequential measurements recorded to create one 64 × 64 pixel image was 1024, i.e. 4 times 
lower than the number required using standard CGI. Frame-rate increases have also been demonstrated using 
higher numbers of detector elements in combination with structured illumination. For example, Herman et al.26 
employed a 32 element multi-diode design, although crosstalk and non-uniformity among different segments 
must be accounted for.

In this work, we aim to enhance the system SNR at a given resolution by implementing digital micro-scanning 
in combination with the hybrid few-pixel imaging system as illustrated in Fig. 1(c). Digital micro-scanning 
uses a set of patterns with a lower resolution that are scanned across the scene. In the absence of noise, digital 
micro-scanning yields equivalent results to CGI. However, in the presence of noise caused by fluctuations in illu-
mination levels and photo-detector response, the lower resolution of digitally micro-scanned patterns results in 
an improvement in SNR of the reconstructed image at the expense of a suppression in the contrast of high spatial 
frequencies15, i.e. the decreasing in resolving capability.

In our digital micro-scanning experiments, the sampling patterns MQPi were drawn from a 256 element 
Hadamard matrix, H256. These patterns are then scanned across four locations, each with a half-Hadamard-pixel 
shift in x and/or y (axes parallel to the borders of the image), capturing four low resolution images which are then 
combined to generate a single higher resolution image15. In summary, considering just the measurements made 
by the upper left quadrant (x = 1) of the quadrant photodiode, we first obtained a 16 × 16 pixel image I11 by tak-
ing 256 measurements. We then obtain a second image of 16 × 16 resolution, I12, using the same set of patterns, 
each now shifted in x by a half-Hadamard pixel, taking another 256 measurements. Images I13 of a vertical shift 
and I14 of a diagonal shift are then obtained in the same manner. A 32 × 32 pixel image of one quadrant, I1, can 
then be reconstructed using two different methods: (i) co-registered averaging: by averaging the 16 × 16 pixel 
images I1–4, each co-registered in their laterally shifted locations on a 32 × 32 grid, or (ii) performing a constrained 
matrix inversion. The relative merits of these of these methods are discussed in more detail below. This process 
described above is simultaneously performed to reconstruct the other three 32 × 32 images I2, I3, and I4 from sig-
nals recorded by the other three photodiode quadrants, using the same procedures. Finally, a 64 × 64 pixel image 
I of object O is obtained by stitching together these four 32 × 32 images.

Mathematically, the 64 × 64 pixel image yielded by the co-registered averaging method is equivalent to the 
convolution of the 64 × 64 pixel image obtained by the standard (non-digitally micro-scanned) CGI system with 
a smoothing kernel:
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This convolution causes a modest reduction in contrast of the highest spatial frequencies in the image. 
However, as previous work has demonstrated15, the high resolution image reconstructed by the micro-scanned 
method has a higher SNR than that of the standard high resolution convolved with the smoothing kernel. It is 
worth mentioning that this SNR improvement will be more significant in the case of a severe noise or a low light 
level, that is, the micro-scanned method can deliver a recognizable image while the image obtained by a standard 
CGI system is too noisy to be recovered by post process algorithms.

More importantly, because the smoothing kernel k is known, this blur can be deconvolved recovering contrast 
in these high spatial frequencies. However, direct matrix inversion of the micro-scanned sampling matrix patterns 
is highly unstable and introduces high levels of noise into the reconstruction. Algorithms such as Weiner decon-
volution31 could be used to address the problem – under the assumption of prior knowledge about the frequency 
content of the noise in the image. In this work, we use the constrained matrix inversion method13 to flexibly trade 
the recovery of high-resolution detail with reduced SNR. This method uses the smoothed image obtained using 
co-registered averaging itself as a constraint to suppress noise (see supplementary of ref.13 for a thorough discus-
sion of this). The method incorporates a weighting factor w that weights how strongly the smoothed constraint is 
applied: high values of w result in a reconstruction that tends towards the co-registered averaging reconstruction. 
Low values of w result in a reconstruction that tends towards the noisy reconstruction obtained by direct matrix 
inversion. Therefore w can be tuned in post-processing to optimally recover high spatial frequencies while mini-
mizing noise – the value of w will depend upon the levels of noise in the measurements. An additional benefit of 
the digitally micro-scanned approach is that it also delivers a sequence of low-resolution ‘preview’ images during 
the image acquisition, which would offer advantages for dynamic applications13,15.

Figure 2 illustrates our CGI system utilizing digital micro-scanning and a quadrant detector. The test object 
was a printed United States Air Force (USAF) resolution chart, which was located ~0.5 m from the imaging 
system. The devices specification and their operating configurations of the experimental system are detailed in 
Methods. In the experiment, we sequentially displayed a set of 64 × 64 digitally micro-scanned patterns on DMD. 
As described above, the pattern within each quadrant was drawn from one row of the H1024 matrix. Each pat-
tern was immediately followed by its inverse in order to maintain orthogonality, and to reduce fluctuation noise 
in ambient light by differential imaging11. Therefore, with the first 2048 measurements (including pattern and 
inverse), a 64 × 64 pixel image was reconstructed. Following the digital micro-scanning method, three more sets 
of 64 × 64 pixel images were reconstructed, each comprising of a further 2048 measurements, and each shifted by 
a half pixel displacement in x and/or y. By performing constrained matrix inversion, a 128 × 128 image of the test 
object, shown in Fig. 3(a), was reconstructed. The total number of measurements was 8192, and it took 0.42 s for 
data acquisition when DMD was operating at 20 kHz. The SNR of Fig. 3(a) was 17.94, which was calculated using:
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where If  and Ib  are the average intensities of the image feature and background (here calculated from the data 
within the solid and dash blue square in Fig. 3a). σf  and σb, representing the noise level, are the standard devia-
tions of the intensities in the feature and the background respectively.

For comparison, we then used the same device set-up to perform conventional (i.e. non-digitally 
micro-scanned) four-pixel imaging with 8192 patterns generated from the H4096 matrix to reconstruct a 128 × 128 
image, shown in Fig. 3(b). The acquisition time was 0.42s. The SNR, calculated in the same manner, was 13.06. 
Finally, standard CGI was performed with 32768 reshaped Hadamard patterns from H16384 matrix. Four outputs 
of the quadrant PIN detector were summed, functioning as a single-pixel detector, to record the total light inten-
sity of the corresponding pattern. The data acquisition took 1.67s to reconstruct a 128 × 128 image, as shown in 
Fig. 3(c), of which the SNR was 13.55.

Figure 2.  Experimental set-up. A diode pump laser (DPL) source illuminates a high-speed DMD, on which 
rapidly changing binary patterns are displayed. These patterns are projected by a 50 mm camera lens to 
illuminate a printed United States Air Force (USAF) resolution chart, which was located at a distance of ~0.5 m 
from the camera lens. A lens collects the reflected light, and the intensity is measured by a quadrant PIN 
detector. An analogue-to-digital converter (ADC), synchronized with the DMD, acquires and transfers the 
measured data to a computer for image reconstruction.

Figure 3.  Experimental images of 128 × 128 pixel resolution obtained using (a) digital micro-scanning based 
four-pixel imaging, (b) Non-micro-scanning four-pixel imaging and (c) standard computational ghost imaging 
(CGI). The exposure time to capture the data for (a–c) were 0.42s, 0.42s, and 1.67s, respectively. The SNRs were 
calculated using data in solid and dash blue squares as features and backgrounds of the images. (d) Greyscale 
distributions highlighted by three solid lines (blue, red and yellow). (e) Greyscale distributions highlighted by 
three dash lines (green, pink and golden).
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The resulting images and their calculated SNRs demonstrate that our proposed method yields an image 4 
times faster than the standard single-element CGI did, and that the SNR of the image was ~33% higher than those 
of the images reconstructed by both 4-pixels imaging and standard CGI. Line scans along the highlighted lines 
in Fig. 3(a–c) are illustrated in Fig. 3(d,e), demonstrating that among the three images, the one yielded by the 
proposed scheme was the least noisy. However, because the proposed scheme fundamentally reconstructed image 
from a lower sampling resolution, the contrasts of the higher spatial frequencies are reduced in comparison with 
the other two methods. As described above, by tuning the weighting factor w of the constrained matrix inversion 
method (i.e. how strongly the reconstruction applies the smoothed image as a constraint), in post-processing we 
can trade between SNR and the contrast of the highest spatial frequencies in the reconstructed image. To illustrate 
this, Fig. 4(a) showed the calculated SNRs and contrasts of the images reconstructed using different weighting 
factors. The contrast of an image is calculated using

= − +I I I IContrast ( )/( ), (4)max min max min

where Imax is the averaged value of three largest points along the green line in Fig. 4(b), and the Imin is the averaged 
value of four smallest points along the green line. The SNR increases as the weighting factor increases while the 
contrast decreases, which is in a good agreement with our theoretical analysis. Figure 4(b) showed four example 
images with zoomed high frequency details, where the contrast of the high frequency feature decreases as the 
weighting factor w and the SNR increases.

Discussion
In this work, the SNRs are calculated from the reconstructed images, to which no noise reduction filter is applied, 
i.e., there is no image post process other than constrained matrix inversion. In the general sense of image pro-
cessing, noise reduction filters of different sophistications are very powerful, especially with the help of the rapid 
developing of deep learning and other artificial intelligence algorithms. However, one problem posed by using 
post processing filter is that different algorithms are suitable for different type of images, while the system we 
proposed here increases the image SNR indiscriminately during the image acquisition stage, rather than levels all 
the problems for the post process algorithms to deal with.

In conclusion, we have demonstrated that by utilizing digital micro-scanning and a quadrant detec-
tor, the frame-rate and the SNR of a computational ghost imaging system can be improved simultaneously. 
Experimentally, the proposed system yielded images 4 times faster and with ~33% higher SNR than a standard 
computational ghost imaging system does, at the expense of a small reduction in resolution. Because the smooth-
ing kernel responsible for reducing the resolution is known, it is possible to recover the highest spatial frequen-
cies in the image, but this comes at the expense of reducing the SNR. Although here we have demonstrated the 
concept with a structured-illumination imaging scheme, this work is applicable to computational imaging sys-
tems based on either structured illumination or structured detection (i.e. passive modulation of the image with 
uniform illumination – otherwise known as single-pixel cameras). Our work demonstrates a flexible trade-off 
between frame-rate, SNR and spatial resolution in a computational ghost imaging system, providing the oppor-
tunity for optimization to suit the requirements of different applications.

Methods
The experimental system (Fig. 2) used in this work is described as follow. A green laser beam emitted from 
a diode pump laser source (wavelength: 532 ± 0.1 nm; 200 mW) was expanded and reflected to illuminate the 
DMD (Texas Instruments Discovery™ 4100, 1024 × 768 pixels, with ViALUX Hi-Speed V-7000 module capable 
of storing all required patterns) operating at 20 kHz. The DMD displayed a preloaded sequence of binary patterns, 

Figure 4.  (a) Calculated SNRs of the images reconstructed using different weighting factors. (b) Examples of 
the reconstructed images with constraining weights at 0.01, 0.1, 1.0 and 10.
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which were projected through a camera lens (f = 50 mm; F = 1.4D) onto the test object to provide structured 
illumination. The reflected light was collected by a singlet lens (f = 25 mm, F/1), and the intensity measured by 
four segments of a quadrant PIN detector (400–1100 nm, active area: 12 mm2/segment). A high dynamic range 
analogue-to-digital converter sampling with four analog input channels at 500 kSs-1/channel, and synchronized 
with the DMD, acquired and transferred the intensity data to a computer to reconstruct the image. The recon-
struction protocol is described in Results.
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