
EBioMedicine 40 (2019) 471–487

Contents lists available at ScienceDirect

EBioMedicine

j ourna l homepage: www.eb iomed ic ine.com
Characterization of heterogeneous redox responses in hepatocellular
carcinoma patients using network analysis
Rui Benfeitas a,1, Gholamreza Bidkhori a,1,2, Bani Mukhopadhyay b,1, Martina Klevstig c, Muhammad Arif a,
Cheng Zhang a, Sunjae Lee a,2, Resat Cinar b, Jens Nielsen d, Mathias Uhlen a, Jan Boren c,
George Kunos b, Adil Mardinoglu a,d,e,⁎,3
a Science for Life Laboratory, KTH - Royal Institute of Technology, SE-171 21 Stockholm, Sweden
b Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
c Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
d Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
e Centre for Host–Microbiome Interactions, Dental Institute, King's College London, London, UK
⁎ Corresponding author.
E-mail addresses: rui.benfeitas@scilifelab.se (R. Benfei

gholamreza.bidkhori@scilifelab.se (G. Bidkhori), mukhopa
(B. Mukhopadhyay), martina.klevstig@wlab.gu.se (M. Kle
muhammad.arif@scilifelab.se (M. Arif), cheng.zhang@scili
sunjae.lee@scilifelab.se (S. Lee), resat.cinar@nih.gov (R. Ci
(J. Nielsen), mathias.uhlen@scilifelab.se (M. Uhlen), jan.bo
george.kunos@nih.gov (G. Kunos), adilm@scilifelab.se (A.

1 These authors contributed equally.
2 Current address: Centre for Host–Microbiome Intera

College London, London, UK
3 Lead contact.

https://doi.org/10.1016/j.ebiom.2018.12.057
2352-3964/© 2018 Published by Elsevier B.V. This is an op
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 22 September 2018
Received in revised form 20 December 2018
Accepted 26 December 2018
Available online 31 December 2018
Background: Redox metabolism is often considered a potential target for cancer treatment, but a systematic ex-
amination of redox responses in hepatocellular carcinoma (HCC) is missing.
Methods: Here, we employed systems biology and biological network analyses to reveal key roles of genes asso-
ciated with redox metabolism in HCC by integrating multi-omics data.
Findings: We found that several redox genes, including 25 novel potential prognostic genes, are significantly
co-expressed with liver-specific genes and genes associatedwith immunity and inflammation. Based on an inte-
grative analysis, we found that HCC tumors display antagonistic behaviors in redox responses. The two HCC
groups are associated with altered fatty acid, amino acid, drug and hormone metabolism, differentiation, prolif-
eration, andNADPH-independent vs -dependent antioxidant defenses. Redox behavior varies with known tumor
subtypes and progression, affecting patient survival. These antagonistic responses are also displayed at the pro-
tein and metabolite level and were validated in several independent cohorts. We finally showed the differential
redox behavior using mice transcriptomics in HCC and noncancerous tissues and associated with hypoxic fea-
tures of the two redox gene groups.
Interpretation: Our integrative approaches highlighted mechanistic differences among tumors and allowed the
identification of a survival signature and several potential therapeutic targets for the treatment of HCC.

© 2018 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Hepatocellular carcinoma (HCC) is a prevalent form of primary liver
cancer and represents the second leading cause of worldwide cancer
mortality [1,2]. Its prevalence is predicted to increase in the next two
decades, and the prognosis is usually poor, with most diagnosed cases
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resulting in death [3]. Due to the high inter- and intra-tumor heteroge-
neity, it is challenging to establish a robust HCC classification and de-
velop targeted therapies [4]. Hence, there is an urgent need to stratify
patients to reveal the underlying molecular mechanisms of the disease
that may be used in the development of targeted and effective treat-
ment strategies.

Reactive oxygen species (ROS) such as hydrogen peroxide and su-
peroxide are central players in redox metabolism and have important
cellular functions in which they control signaling, cell cycle progression,
proliferation, inflammation and immune responses [5]. However, the
deregulation of redox and ROS metabolism may be toxic for cells,
disrupting pathways and promoting mutagenesis and apoptosis [6,7],
which are important features in cancer [8]. Due to their pivotal cellular
functions, recent efforts have sought to devise ROS-based cancer treat-
ments [9]. However, effective redox-based HCC therapeutics are cur-
rently lacking due to our incomplete understanding of the underlying
redox mechanisms of the disease in different patient groups, and the
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study

Imbalances in redox metabolism are prevalent features in cancer,
influencing tumorigenesis and proliferation. Because of this, sev-
eral recent efforts have sought to target redox and antioxidantme-
tabolism in cancer. However, a systematic examination and
characterization of redox metabolism has never been performed
in hepatocellular carcinoma, hindering our understanding of
redox behavior and its relationship with metabolism, signaling, or
patient clinical data.

Added value of this study

We performed a systems level multi-omics analysis of redox me-
tabolism and identified two major opposing clusters of genes
and their associations with central metabolism, differential meta-
bolic responses, immunity and inflammation. Tumors stratified ac-
cording to redox gene clusters display substantial progression and
survival differences and subtype-specific potential therapeutic tar-
gets. Experiments with mouse models validated the antagonistic
behavior and highlighted differential hypoxic associations for
redox genes. We finally identified and validated a survival signa-
ture derived based on genes associated with redox metabolism.

Implications of all the available evidence

Our observations highlighted, for the first time, the antagonistic
relationships between key genes in redox metabolism. Further-
more, while redox genes are heterogeneously expressed, HCC tu-
mors may be stratified into two groups with distinct phenotypes,
potential therapeutic targets, and associated patient survival.
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extensive crosstalk between redox and central metabolism [5]. Systems
level analyses have previously been employed to unravel cancer hetero-
geneity, to identify novel prognostic genes, therapeutic targets, and
drug candidates and to enable patient stratification [10–14], including
for HCC [15–17].

Here we used systems biology approaches (Fig. S1A) to reveal the
heterogeneous redox responses in HCC combining transcriptomics
(RNA-seq and an independent set of microarray data), proteomics and
metabolomics data. We first identified several patterns of co-
expression among genes involved in redox metabolism, liver-specific
genes, and genes associated with immunity and inflammation that
have prognostic properties based on integrative network analyses. Sec-
ond, we identified several associations between the genes involved in
redox and central metabolism. Next, we identified specific functional
patterns between important ROS scavengers and how they are coupled
to the central metabolism of the tumors. Tumor stratification based on
the expression of redox genes and analysis of clinical data allowed the
discovery of potential markers for effective treatment strategies of
HCC patients and novel survival signatures based on the expression of
key redox genes. Finally, we validated our results by performing exper-
iments using HCC mouse models and analyzing independent human
HCC tumors.
2. Materials & methods

2.1. Identification of redox genes

We identified 132 genes directly involved in redox metabolism
(Dataset 1). This list included genes encoding for proteins 1. with
antioxidant and/or ROS-dependent signaling activities
(e.g., superoxide dismutases, catalase, peroxidases, peroxiredoxins,
thioredoxins); 2. involved in reactions coupled with antioxidant
defense or ROS-mediated signaling transduction (e.g., thioredoxin and
glutathione reductases); 3. involved in producing compounds with rel-
evant redox roles (e.g., glutathione synthetase, glutamate-cysteine li-
gase); 4. enzymes involved in reducing equivalent biosynthesis from
pentose phosphate pathway (e.g., glucose- and hexose-6-phosphate
dehydrogenases), folatemetabolism (e.g., tetrahydrofolate synthase, bi-
functional methylenetetrahydrofolate dehydrogenase), malate
metabolism (malic enzymes), and other processes (e.g., NAD(P)Hdehy-
drogenase, NAD(P) transhydrogenase, aldehyde and glutamate
dehydrogenases); 5. transcription factors (e.g., hypoxia-inducible factor
1-alpha, nuclear factor erythroid 2-related factor 2) that coordinate re-
sponses to oxidative stress. This list was used to perform the initial hier-
archical clustering, and co-expression analysis with all the genes in the
genome. Due to the high co-expression between redox genes and those
involved in central metabolic pathways, we expanded the list to 174
redox genes (Dataset 1), including those indirectly involved in redox
metabolism with known importance for cancer and/or that control or
are regulated by the above pathways (e.g., glycolytic enzymes).

2.2. Data selection and gene expression analysis

RNA-seq gene expression data for primary liver hepatocellular carci-
noma in 360 subjects and 50 noncancerous samples were retrieved
from NCI's Genome Data Commons [18] as raw counts or Fragments
Per Kilobase of transcript per Million mapped reads (FPKM). Only one
sample was considered per patient, and samples belonging to control
or normal types were excluded. Patient survival, expressed in Living
Days, was identified by considering age at diagnosis for deceased pa-
tients, or days to last follow up for those alive. Unless otherwise stated,
all analyses were performed based on FPKM data, and genes displaying
a median (FPKM) b 1 across patients were considered as not detected.

In the cancer progression analyses, we considered grade and not
stage classification of tumors because the former is a histological classi-
ficationof the tumor and the latter takes into account other features that
are not related to the primary tumor. In total, 55 Grade 1, 175 Grade 2,
118 Grade 3 and 12 Grade 4 patients were considered and divided ac-
cording to early (G1), intermediate (G2) and late (G3 + G4) cancer.

For a smaller subset of the tumor samples (186), more detailed clin-
ical informationwas available [13] and used to assess relationshipswith
redox behavior.

Liver-specific and enriched genes, and group-enriched genes, were
attained from ref. 25. Genes involved in the immune system (adaptive
and innate immunity, and cytokine signaling in immune system) and
inflammation (CLEC7A/inflammasome pathway, DEx/H-box helicases
activate type I IFN and inflammatory cytokines production,
inflammasomes) were identified using REACTOME [64].

2.3. Hierarchical clustering, differential expression and co-expression
analysis

Hierarchical clustering was performed in R considering Ward.D2
and the Euclidean distance. Whenever clustering was performed
based on gene expression matrices, genes were Z-normalized before
clustering. Differential expression analyses were performed based on
raw counts through R using the DESeq2 package [65] using default
methods and considering genes with absolute log fold changes higher
than 1 by setting the results function with arguments altHypothesis =
“greaterAbs” and lfcThreshold = 1 and the DEseq function with argu-
ment betaPrior = FALSE. An FDR of 5% was set during the differential
expression. Although the filtering based on the log fold change and
FDR may be performed a posteriori, specifying these arguments upon
performing the differential expression analysis is recommended for in-
dependent gene filtering and significance of the Wald testing [65].
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Differential expression analysis was performed by partitioning subjects
according to survival (in days), or between tumors displaying high vs
low expression levels of redox genes. Because gene expression
expressed in raw counts could not be compared across different sam-
ples, we sorted subjects according to the FPKM expression of the target
gene and then identified the two groups that displayed highest and low-
est gene expression, eachwith 50 individuals. Genes displayingmedian
FPKM b 1 across individuals were ignored.

Spearman rank correlations were computed for gene vs gene ex-
pression across tumors, and Q values were used to find co-expressed
genes. Genes with expression that was not statistically correlated (Q N

0.01) with at least one gene in the genome were disregarded.

2.4. Gene set enrichment analysis and reporter metabolite analysis

GSEA was performed through PIANO [66] using the whole-genome
log2-fold changes and adjusted P values attained from DESeq2 as
gene-level statistics, with geneSetStat = reporter, and nPerm = 1000.
Gene Ontology biological processes were downloaded from MSigDB
[67]. Gene Ontology processes were considered as enriched with an
FDR of 5% andwith clear direction (i.e., non-mixed). Additionally, we ig-
nored Gene Ontology processes related to tissues/organs of different
embryonic origin (e.g., brain, bone, hair). Reporter metabolites [28]
were identified through PIANO using the same input as above through
the function runGSAwith default arguments and based on fold changes.
Gene set collectionswere determined by assigning ensemble ids to each
reaction's metabolites using the iHCC model [15]. Only those metabo-
lites with clear direction were considered. The concept of reporter me-
tabolites and their application in the determination of gene-set
statistics and associated P values was detailed by Refs. [28,66].

After selection of liver-specific genes, aswell as genes involved in the
immune system and inflammation co-expressed with redox genes,
gene set enrichment analysis was performed with BINGO in Cytoscape
[68], and the significantly enriched biological processes (Q b 0.05)
were reported.

2.5. Tumor stratification and comparison

Tumor stratification was carried out through Consensus Clustering
[29,31] for those genes displaying amedian FPKM N 1 across all samples
after row-normalization of gene expression. This unsupervised method
permits the determination of an optimum (i.e., stable) number of non-
overlapping clusters. Briefly, the data were resampled 1000 times by
considering 80% sample (i.e., tumor) and feature (genes) resampling
to achieve robust clustering. Resampled data were then transformed
into a similarity matrix, the consensus matrix. Agglomerative hierarchi-
cal clusteringwas performed to stratify tumors using the consensusma-
trix based on Pearson correlation distances through the R package
ConsensusClusterPlus [31]. The optimum cluster number was deter-
mined by testing 2 to 10 clusters, and based on CDF and Δ(K), the
area that increased in the cumulative distribution function increased
as the number of clusters.

2.6. Genome-scale metabolic modeling and essentiality analysis

RNA expression datawere integrated into the iHCCmodels to gener-
ate personalized genome-scale metabolic models using tINIT [15] and
RAVEN [69]. The following thresholds for gene levels were considered:
no expression (FPKM b 1), low expression (1 ≤ FPKM b 10),medium ex-
pression (10 ≤ FPKM b 50), and high expression (FPKM ≥ 50). Upper and
lower bounds of the exchange reactions considered were based on Ref.
[70].

To model HCC progression or the differences between tumor clus-
ters, we used MADE [34] and TIGER [35] and used as input the gene-
specific fold changes and Q values. MADE integrates expression data
and a metabolic model without the prior definition of activity
thresholds. MADE utilizes an optimization-based approach to generate
a sequence of expression states reflecting the most significant changes
in the series of gene expression measurements, simultaneously solving
the Flux Balance Analysis problem for each condition, leading to a se-
quence of functioning models. To implement MADE, we used TIGER,
which uses a custom MATLAB class CMPI to solve mathematical pro-
gramming problems. The Common Mathematical Programming Inter-
face defines a consistent structure for mixed-integer linear
programming and mixed-integer quadratic programming problems,
providing independence from the underlyingmixed-integer linear pro-
gramming solver software, and MADE is formulated as a single mixed-
integer linear programming problem. CPLEX solver was also employed.
In this study, genes were considered multilevel instead of in a binary
state during the implementation of MADE. Using MADE and TIGER, we
reconstructed grade-specific genome-scale metabolic models on the
basis of their corresponding gene expression data. We integrated the
expression data achieved from DESeq2 [65] and considered the upper
and lower bounds for exchange reactions in GEMs based on experimen-
tal liver data [70].

Here we considered three processes as important cellular objectives
by considering the following fake reactions as objective functions for
maximization: biomass production, NADPH production and H2O2 scav-
enging (see below). These objective functions maximize the fluxes of
NADPH oxidation and H2O2 production, such that the optimization
method redirects the cell's resources towards reducing NADP+ and
decomposing H2O2.

=N Biomass
NADPH[c] + NADPH[m] + NADPH[p] + NADPH[r] =N

=N NADP+[c] + NADP+[m] + NADP+[p] + NADP+[r] +
H+[c] + H+[m] + H+[p] + H+[r]
2 H2O[c] + 2 H2O[m] + 2 H2O[p] + O2[c] + O2[m] + O2[p] =N

=N 2 H2O2[c] + 2 H2O2[m] + 2 H2O2[p]

2.7. Survival analysis and signature identification

Kaplan-Meier survival analysis was performed to compare two
groups of stratified tumors and based on the 10-year survival data for
all 360 patients in R through the package survival [71].

To determine the best survival signatures, we generated all possible
signatures consisting of 3 or 4 genes by taking the average expression of
the selected genes in tumors from the hALDH2 cluster. Then, all 360 pa-
tients were stratified based on the correlation between their expression
of selected genes and the signature using a cutoff that was maximally
selected similarly to our previous work [27]. The minimum group size
considered was 20% of the total sample size. The signature that pre-
sented the lowest log-rank P value after multiple hypothesis correction
among all the investigated gene combinations was then selected as the
best one. KM analysis had been performed for single gene predictions
[27], and was corrected for multiple hypothesis testing considering all
redox genes.
2.8. Microarray and metabolomic analyses

Three separate microarray cohorts were used to validate the co-
expression and gene expression patterns observed using transcripto-
mics. The microarray for 61 HCC samples was downloaded from GEO
with accession number GSE76297 (Ref. [14]) for the Affymetrix
Human Transcriptome Array 2.0 platform. Row data were normalized
using the Robust Multi-array Average followed by quantile normaliza-
tion. Log2-transformed data was then analyzed in R, with probes anno-
tated through the hta20sttranscriptcluster.db package. Normalization of
the second cohort of 91 HCC samples with accession GSE1898 was car-
ried out as previously indicated [32,33]. The final microarray cohort of

ncbi-geo:GSE76297
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221 hepatocellular carcinoma patients was retrieved from GSE14520
and tumor normalized data was used for all analyses [42,43].

The metabolomics data of the 127 most variable metabolites be-
tweenHCC and intrahepatic cholangiocarcinoma, after ignoringuniden-
tified metabolites, were analyzed for the 54 HCC samples with both
gene expression and metabolomics data [14]. Correlations between
gene vs gene, and gene vs metabolite were computed across the 61
and 54 HCC samples, respectively.

2.9. mRNA expression of redox genes in murine HCC samples

Total RNA was isolated from tumor and noncancerous liver tissues
from six sets of DEN-treated (HCC) CB1R+/+ mice and CB1R−/− mice
[46]. Next, 100 ng/sample of rRNA-depleted RNA was treated with
RNase III to generate 100- to 200-nt fragments, which were pooled
and processed for RNA sequencing. All data were normalized based on
housekeeping genes through the Program CLC Genomics Workbench
(version 5.1, CLC Bio). Absolute numbers were extracted from the
reads, and the data were adjusted to non-HCC biopsies for each gene.

2.10. Statistical analyses

Statistical approaches were chosen according to the diverse data
types in this study and indicated throughout. Hypothesis testing was
performed by considering the null hypothesis of the absence of an asso-
ciation between the compared variables. The association with clinical
features was tested according to the nature of the data: continuous vs
continuous (Spearman rank correlation test); continuous vs categorical
(Kruskal-Wallis test); categorical vs categorical (Fisher's exact test for 2
× 2 tables, or Chi-squared test). Q values were computed from the P
values (false discovery rate with Benjamini–Hochberg procedure,
family-wise error rate 0.05).

2.11. Data availability

The GEMs used in this work are found in SBML format (Computer
Code 1). The authors declare that data supporting the findings of this
study are available within the paper and its supplementary information
files, or otherwise clearly point to the online resourceswhere theywere
obtained.

3. Results

3.1. Redox genes are co-expressedwith liver-enriched, immune and inflam-
mation genes, and differentiation markers

To clarify the role of genes involved in redoxmetabolism, we identi-
fied a panel of 132 protein-coding genes directly involved in this process
through a literature search (Methods, Dataset 1). Specifically, we se-
lected genes involved in i) ROS production, scavenging, and metabo-
lism; ii) the metabolism of reducing equivalents and iii) genes that are
essential for the response to oxidative stress using a generic human
Genome-scaleMetabolicModel (GEM) [15] and other publicly available
biochemical reaction databases. We retrieved the gene expression data
of 360 HCC tumors together with patient metadata from NIH's TCGA
[18] and found that HCC tumors display highly heterogeneous expres-
sion of genes that are directly involved in redox metabolism (Fig. 1A).

Gene co-expression analysis is a useful approach to reveal functional
relationships [19,20]. We calculated pairwise Spearman rank correla-
tions between these 132 genes and all other genes expressed in HCC tu-
mors [21]. This unsupervised clustering approach identified genes
showing coordinated co-expression and are likely co-regulated or func-
tionally associated. The 132 genes were co-expressed with each other
and with many other genes in the genome (Dataset 2), including
genes involved in carbohydrate, lipid, nucleotide and amino acidmetab-
olism. For instance, aldolases (ALDOA and ALDOB), pyruvate kinases
(PKM, PKLR) and phosphofructokinases (PFKP) were highly co-
expressed with these 132 genes (highest Spearman's ρ 0.71, Q
b 10−50). Importantly, some enzymes involved in central metabolism
(e.g., pyruvate kinases, isocitrate dehydrogenases, glutaminases) are
not only important players in cancer but are also indirectly involved in
redox metabolism [22]. Aiming to explore the relationships between
genes directly or indirectly involved in redoxmetabolism,we expanded
the list to 174 genes by considering those involved in themetabolism of
carbohydrates, lipids or other compounds that are closely associated
with redox metabolism (Dataset 1). This 174 highly heterogeneous
gene set (Fig. 1A, Dataset 1) is hereafter referred to as “redox genes”.

Among the significantly correlated redox genes, we identified two
major clusters with positively co-expressed genes in the same cluster
but negatively co-expressed with those of the opposite cluster (Q b

0.01, Fig. 1B, Dataset 3). The first cluster of the top 10 correlated genes
(Fig. 1B inset) comprised genes involved in the pentose phosphate
pathway (PPP) (G6PD, RPIA), glycolysis (PKM, ALDOA), differentiation
(TXNDC9), response to hypoxia (HIF1A), and metabolism of folate
(MTHFD1L), glutathione (GLRX3), purines (ATIC), and amino acids
(GLS) and is hereafter referred as the G6PD cluster. The second cluster
also comprised genes involved in glycolysis and the PPP (ALDOB), me-
tabolism of folate (MTHFD1, MTHFS, SHMT1), amino acids (ALDH5A1,
ALDH6A1, ALDH7A1) or other compounds (ALDH2, ALDH8A1), and re-
sponses to oxidative stress (CAT) and is hereafter referred to as the
ALDH2 cluster. Glucose 6 phosphate dehydrogenase (G6PD) controls
the flux into the PPP and provides reducing power and ribose phos-
phates to maintain the redox balance and biosynthesis of nucleotides
and lipids. These reducing equivalents may be used towards
peroxidase-catalyzed antioxidant defense, which is linked to apoptosis,
angiogenesis, and the efficacy of anti-cancer therapy and is identified as
a promising target in cancer therapy [23]. ALDH2 is involved in alcohol
metabolism and redox homeostasis, and it has recently been associated
with HCC progression and a poor prognosis in mice [24].

Interestingly, genes in the ALDH2 and G6PD clusters were co-
expressed (absolute Spearman ρ N 0.5, Q b 10−20) with 1) 14 genes in-
volved in inflammation; 2) 696 genes involved in immunemechanisms,
including innate and adaptive immunity; and 3) 60 liver-enhanced and
89 liver-enriched genes [25]. Many of these were co-expressed with N5
genes in the ALDH2 and G6PD clusters but negatively and positively
with respect to each cluster (Fig. 1C inset). For instance, IL1, TNFα and
NFκB, key genes involved in inflammation, were negatively co-
expressed with the ALDH2 cluster (Q b 10−4) but positively co-
expressed with the G6PD cluster (Q b 0.001). In turn, liver-specific
genes were negatively co-expressed with genes in the G6PD cluster
but positively co-expressed with the ALDH2 cluster, in which we iden-
tified the liver-specific gene ALDOB [25]. This finding suggests that the
G6PD cluster is associated with a poorly differentiated tumor pheno-
type, as opposed to the ALDH2 cluster. For instance, the G6PD cluster
geneMTHFD2 has been previously identified as a marker of poor differ-
entiation in other cancers [26]. Indeed, vimentin, a marker of poor dif-
ferentiation and mesenchymal transition, was positively co-expressed
with 9 genes in the G6PD cluster and negatively co-expressed with 7
genes in the ALDH2 cluster (absolute Spearman's ρ N 0.2, Q b 10−5,
Dataset 4). Alpha-fetoprotein, also a marker of undifferentiated tumor
cells, was positively co-expressed with 7 genes in the G6PD cluster
and negatively co-expressed with 9 genes in the ALDH2 cluster (abso-
lute Spearman's ρ N 0.2, Q b 10−4). Similar observations were obtained
with respect to other markers of differentiation such as cytokeratins
(e.g., KRT8, KRT19).

Gene set enrichment analysis (GSEA) for liver-specific or immune
genes (Fig. 1D,Dataset 5) indicated that the liver-specific geneswere in-
volved in lipid, steroid, small molecule and amino acid metabolism;
small molecule metabolism, including hormones, cofactors and ke-
tones; and oxidation/reduction processes. In turn, the immune system
genes were involved in cell cycle and division; regulation of transport,
metabolism and cell death; ubiquitination, regulation of protein
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Table 1
Favorable and unfavorable survival and prognostic genes inHCC involved in redoxmetab-
olism. Significantly altered redox genes between 50 high vs 50 bottom survival subjects
are displayed, where fold changes N 1 indicate an upregulated gene among the poor sur-
vival group, and prognostic genes in liver cancer [27] are shown. Favorable and unfavor-
able prognostic genes are those respectively up- and downregulated in the high survival
group. CAT was identified as a prognostic gene in liver cancer in agreement with its ex-
pression variation between survival groups, despite being marginally not statistically dif-
ferentially expressed.

Module Gene Fold
Change

P value Q value Prognostic
genes

General ROS
response

SQSTM1 1.74 0.00032 0.0065 Unfavorable
HIF1A 1.49 0.0026 0.026 Unfavorable
FOXO1 0.56 9.8 ×

10−7
0.00012 Favorable

Catalase CAT 0.72 0.0074 0.052 Favorable
Glutathione GSR 1.44 0.0006 0.01 Unfavorable

GCLM 1.52 0.0022 0.024 Unfavorable
GGT5 0.5 0.0002 0.0048 Favorable
GSTK1 0.75 0.0051 0.041 Favorable
GSTO1 0.71 0.0055 0.043 Favorable

Thioredoxin TXNRD1 1.94 8.1 ×
10−6

0.00049 Unfavorable

TXNDC11 0.77 0.00099 0.014 Favorable
NAD(P)H ALDH2 0.62 0.00064 0.01 Favorable

ME1 1.27 0.0059 0.045 Unfavorable
G6PD 2.68 4.9 ×

10−9
2.6 ×
10−6

Unfavorable

NNT 0.62 0.00027 0.0059 Favorable
ALDH5A1 0.68 0.0043 0.036 Favorable

PPP RPIA 1.26 0.0023 0.024 Unfavorable
GPI 0.72 0.0037 0.033 Favorable
PGM1 0.74 0.0045 0.038 Favorable

Folate FPGS 0.73 0.00182 0.021 Favorable
MTHFS 0.62 0.00013 0.0037 Favorable
GART 1.19 0.005 0.04 Unfavorable

Amino acid
metabolism

SHMT1 0.63 0.0034 0.032 Favorable
XCT 2.05 0.00075 0.012 Unfavorable

Glycolysis ALDOB 0.45 0.0001 0.003 Favorable
PFKP 1.96 0.00028 0.006 Unfavorable
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metabolism and phosphorylation; proteasomal-mediated protein ca-
tabolism, cytoskeleton and organelle organization. Finally, we observed
that several genes were co-expressed with 10 or more genes in both
clusters: liver-specific genes, including ABAT, CDO1, CYP4F3, F11,
SEC14L2, SPDYC, and TTC36, were positively and negatively
co-expressed with genes in the ALDH2 and G6PD clusters, respectively.
Genes associated with the adaptive immune system, including
PPP2R1A, UBE2L3, VASP, and YWHAZ, and innate immune system, in-
cluding ARPC2 – 4, CFL1, GYG1, IKBKE, LIMK1, RHOG, and STK11IP,
were negatively co-expressed with genes in the ALDH2 cluster but pos-
itively co-expressed with those in the G6PD cluster.

3.2. Several redox genes are associated with survival outcome in HCC
patients

To reveal the association between the expression of redox genes and
patient survival, we selected 50 subjects with the lowest and highest
survival based on patientmetadata and performed a differential expres-
sion analysis between the two groups (Methods, Dataset 6). We
Fig. 1.Highly heterogeneously expressed redox genes comprise twomajor clusters of co-express
system or inflammation. A. Hierarchical clustering of 174 genes involved in redoxmetabolism a
FPKMN 1)were Z-normalized and clustered. B. Two redox gene clusterswere highly positively c
the opposing cluster (blue). Only statistically significant (Q b 0.01) correlations are presented, o
ter with the highest correlation coefficients. C. Genes in G6PD and ALDH2 clusters were strong
absolute Spearman ρ N 0.5). Inset: genes that were simultaneously co-expressed positively and
Red edges indicate positive co-expression, blue edges indicate negative co-expression. Inflam
helicases that activate type I IFN and inflammatory cytokine production. D. Gene set enrichme
genes in the ALDH2 and G6PD clusters (C inset). All colored nodes are statistically enriched fun
observed that 11 and 14 redox genes (Table 1) were significantly (Q b

0.05) up- and downregulated between patients in the low vs high sur-
vival groups, respectively. For instance, TXNRD1 and GSR were
upregulated in the low-survival group and found to encode NADP-
dependent reductases involved in peroxidase-dependent H2O2 defense.
G6PD, which was upregulated in the low-survival group, encodes
glucose-6-phosphate dehydrogenase, one of the main NADPH sources
in cancer cells. In addition, many redox genes have been identified as
potential prognostic genes (Table 1) [27]. Here, ALDH2 was identified
as a potential prognostic gene since its downregulation in the low
survival group is in agreement with its identification as a favorable
prognostic gene in liver cancer [27]. These observations indicated that
several genes involved in redox metabolism were significantly corre-
lated with survival outcome in HCC patients.

GSEA between low- and high-survival patients (Q b 0.05, Dataset
6) indicated that subjects with low survival tended to over represent
genes involved in cell cycle regulation and related processes
(e.g., chromatid/chromosome segregation and regulation, DNA replica-
tion, initiation and integrity checkpoint, spindle organization and
recombination, regulation of cell division). In turn, these patients
underrepresented processes such as metabolic and energy regulation
(e.g., electron transport chain, aerobic respiration, oxidative phosphory-
lation, metabolism of amino acids, fatty acid β oxidation and
catabolism, lipid oxidation). Only two upregulated redox genes (GART
and HIF1A) were associated with overrepresented processes (Fig. 2,
Dataset 7). However, several downregulated genes were associated
with underrepresented processes, including energy and reducing equiv-
alent metabolism (ALDH5A1, NNT), folate and amino acid metabolism
(MTHFS, SHMT1), and detoxification (GSTO1, GSTK1), among other
metabolic processes (Dataset 7). These observations suggested that
the biological differences displayed between subjects with low vs high
survival involved several redox genes associated with metabolic pro-
cesses that are important in the occurrence of HCC.

3.3. Genes in ALDH2 and G6PD clusters are associated with opposing func-
tional responses, prognostic genes, isoform-encoding genes, and hypoxia
behavior

Based on our integrative analysis, we observed that HCC tumors
displayed different gene expression patterns of redox genes in each
cluster, which might translate into functional metabolic differences. To
understand the key role of each redox gene in cancer, we classified
HCC tumors based on expression and compared the global gene expres-
sion profiling of the 50 tumors with the highest and lowest expression
of individual genes in each cluster (see Methods). Differential expres-
sion with respect to majority of the genes in the ALDH2 and G6PD
clusters indicated similar expression patterns between redox genes
that were distinct from those in the opposing cluster (Appendix
Fig. S1B), in agreement with the above-described positive intra-cluster
and negative inter-cluster correlations (Fig. 1B).

GSEA revealed underlying metabolic changes between tumors with
high expression of genes in each cluster (Fig. 3). We found that tumors
displaying high expression levels of genes in the ALDH2 cluster, or low
expression of those in G6PD cluster, were enriched in several processes
related to drugmetabolism, lipid oxidation andmetabolism, amino acid
metabolism and biosynthesis, and carbohydrate metabolism. In turn,
ed redox genes, highly co-expressedwith genes that are liver-specific, involved in immune
cross 360 HCC subjects showed highly heterogeneous redox responses. Genes (rows, mean
o-expressedwith geneswithin the clusters (red) but negatively co-expressedwith genes of
rdered according to first principal component. The inset displays the 10 genes in each clus-
ly co-expressed with liver-specific genes and genes involved in inflammation (Q b 10−20,
negatively with N5 genes in ALDH2 and G6PD clusters and at least one gene in each cluster.
masome categories: 1. Inflammasome; 2. CLEC7A/Inflammasome pathway; 3. DEx/H-box
nt analysis performed for liver-specific and immune system genes co-expressed with N5
ctional terms (Q b 0.05).



Fig. 2. Differentially expressed genes (left) and their associated biological processes (right) are significantly different between tumors of patients with low vs high survival (Q b 0.05).
Differential expression analysis and GSEA were performed by comparing the 50 patients with the highest vs lowest survival. Differentially expressed redox genes and their respective
biological processes were selected if genes and processes were simultaneously up- or downregulated. The full GSEA is indicated in Dataset 7.
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tumorswith lowexpression levels of genes in theALDH2 cluster, or high
expression of those in the G6PD cluster, were enriched in several pro-
cesses related to development, differentiation, and morphogenesis
and, to a smaller extent, fatty acid biosynthesis (Dataset 8). No func-
tional terms related to NADPH biosynthesis were downregulated with
ALDH2 expression and upregulatedwith GPX and PRDX expression. Tu-
mors enriched in genes co-expressed with those in the ALDH2 and
G6PD clusters (Fig. 4) tended to display similarly antagonistic responses
(Appendix Fig. S2). Similar observationswere also identified in terms of
CAT and G6PD, two important genes for defense against H2O2 (Doc S1,
Appendix Fig. S3).

To reveal the detailed metabolic differences between tumors with
high expression of genes in each cluster, we performed reporter metab-
olite analysis [28] using a generic human HCC GEM [15]. We found sig-
nificant differences between reporter metabolites, with the most
significant transcriptional changes observed in their associated
enzymes, considering the full cellularmetabolic network [28].We iden-
tified 1999 reporter metabolites (out of 5134) that displayed the
opposite behavior with respect to genes in ALDH2 and G6PD clusters
(Q b 0.05, Dataset 9). Reporter metabolites identified in our study in-
volved in redox metabolism included H2O2, NAD(P)H, NAD(P)+, gluta-
thione, CoA, and O2•− (Dataset 9), as well as several metabolites
involved in lipid metabolism (e.g., hydroperoxyeicosatetraenoic acids).
These trends were consistently observed across cellular compartments,
where 1566 reporter metabolites displayed similar antagonistic behav-
iors to those described above. For instance (Fig. 3B), genes involved in
reactions involving NAD(P)H and NAD(P)+ were consistently upregu-
lated in all compartments, with the exception of the nucleus, in subjects
displaying high expression of genes in the ALDH2 cluster, or low expres-
sion of those in the G6PD cluster. Likewise, genes involved in H2O2-
associated reactions were upregulated and downregulated in subjects
displaying high ALDH2- and G6PD-co-expressed genes, respectively.

The above-described antagonistic behavior (Fig. 1) extended to the
genes co-expressed with those in the two clusters, which tended to be
negatively co-expressed with those of the opposing cluster (Fig. 4A,
Appendix Fig. S4). Importantly, the ALDH2 and G6PD clusters were
co-expressed with the genes encoding for enzyme isoforms or en-
zymes that catalyze alternative reactions in the same pathway
(Fig. 4B, Q b 10−3). For instance, among the genes in the G6PD cluster
or their co-expressed genes (Fig. 4 right), we found that PKM,
MTHFD2, MTHFD1L, and ALDOA, as opposed to genes in the ALDH2
cluster or their first neighbors PKLR, MTHFD1, and ALDOB (Fig. 4
left). This opposite behavior was not observed for GLRX3 vs GLRX5,
IDH3ABG vs IDH1, or ACSS1 vs ACSS2, as previously observed [16].
Transcription factors and genes involved in the response to oxidative
stress, TP53, HIF1A, and MTH1, were co-expressed with genes in the
G6PD cluster, whereas FOXO1 was co-expressed with genes in the
ALDH2 cluster.

The observation that HIF1A was part of the G6PD cluster suggested
that HCC tumors and their redox behavior responded to hypoxia. We
observed that PKM and HIF1A were co-expressed, consistent with the
response of PKM to hypoxia [16]. Interestingly, we found that HIF1A ex-
pression reflected the antagonistic responses of ALDH2 and G6PD clus-
ters observed herein (Fig. 4C, Q b 0.02), in which the only genes that
showed no significant difference with respect to HIF1A expression
were MTHFD1, MTHFS and CAT (Q N 0.05).

Additionally, we identified 7 unfavorable prognostic genes and fa-
vorable prognostic genes among the G6PD cluster and its co-
expressed genes, and 9 favorable prognostic genes among the ALDH2
cluster and its co-expressed genes. Functional enrichment analysis
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with respect to tumors with high expression of each gene showed sim-
ilar observations to those described above (Appendix Fig. S2).

3.4. Tumors stratified based on redox genes display substantial metabolic
differences

The above observations indicated potentially important and oppo-
site responses in HCC subjects differentially expressing redox genes.
We then questioned whether HCC tumors could be stratified based on
genes in ALDH2 and G6PD clusters. Hierarchical clustering of tumors
has some pitfalls that have been overcome by recent methods that
achieve robust stratification even considering small gene subsets
[29,30], and does not permit a clear separation of tumors (Fig. 1A). Un-
supervised clustering methods permit the identification of unknown
groups in a sample based on intrinsic features without external infor-
mation [31]. Here, we employed consensus clustering for partitioning
patients into stable groups through repeated subsampling and cluster-
ing [29,31]. Briefly, considering genes in the ALDH2 and G6PD clusters
(Fig. 1B inset), we determined an optimum number of clusters of 2
(Fig. 5A) by determining thehighest area increase in the cumulative dis-
tribution function as the number of clusters increased.

We repeated these analyses using gene expression data in indepen-
dent humanHCC cohorts [14,32,33] and identified 2 tumor clusters (Ap-
pendix Fig. S5). The two clusters (Fig. 5A) comprised 190 and 170
patients with high-expression of ALDH2- and G6PD-co-expressed
genes, respectively, and hereafter are referred to as the hALDH2 and
hG6PD groups. Consensus clustering based on the full set of redox
genes yielded similar clusters. Importantly, among the top differentially
expressed genes between the two clusters, we identified ALDOB, PKM,
G6PD and MTHFS (Appendix Fig. S6, Dataset 10).

3.5. Simulation of the metabolic differences between HCC tumor types

To reveal the metabolic differences between HCC subpopulations,
we generated two HCC GEMs, one per patient cluster, using the MADE
[34] and TIGER [35] algorithms by incorporating gene-specific fold
changes and Q values. Considering tumor growth as an objective func-
tion, we observed that models for hG6PD and hALDH2 tumors (Fig. 5B
top andbottom)displayedmajor differences in termsofH2O2 consump-
tion. NADPH-independent and –dependent systems, i.e., reactions cata-
lyzed by catalase but not by peroxidases, displayed fluxes in hALDH2
but not in hG6PD tumors (compare NADPH-independent reaction 4
with NADPH-dependent reaction 6). NADPH-production by glucose-6-
phosphate dehydrogenase mirrored this trend, displaying low flux in
hALDH2 but high flux in hG6PD (Dataset 11, Appendix Fig. S7). Addi-
tionally, mitochondrial superoxide dismutase-catalyzed H2O2 produc-
tion (Fig. 5B, reaction 7) displayed flux and promoted H2O2

permeation to the cytoplasm (reaction 8) in hALDH2. This was not ob-
served in hG6PD, where cytoplasmic superoxide dismutase produces
H2O2 that enters mitochondria and is therein consumed by peroxidases
(reaction 6). Finally, reactions involved in fatty acid β-oxidation (reac-
tions 1–3), and purine metabolism (reactions 13 and 19) and that pro-
duce H2O2 displayed fluxes in hALDH2 but not in hG6PD. NADPH
metabolism through the folate pathway displayed fluxes in hALDH2
but not in hG6PD (reactions 15, 25, 28 and 33, Appendix Fig. S7). In
turn, reactions involved inmitochondrial but not cytoplasmic reduction
of oxidized glutathione (reaction 27) displayed fluxes in hALDH2 but
not in hG6PD, reflecting the increased peroxidase activity in the latter
group of tumors. Similar observations were observed through patient-
Fig. 3. Opposite functional responses are observed in HCC tumors differentially expressing re
metabolites with abundances that positively (red) or negatively (blue) correlated with the e
0.4). Genes with expression that was not quantified by Ref. 14 are not indicated. B. GSEA for
clusters. Only processes that were significant (Q b 0.05) in N4 columns are displayed (see Met
are upregulated, negative are downregulated, null are not statistically significant). C. Repo
associated genes that were consistently up- or downregulated across compartments (Q b 0.05
Q), respectively, for up- or downregulated changes.
specific GEMs, reflecting the major redox patterns of the two stratified
groups (Dataset 12). Reporter metabolite analysis performed between
hALDH2 vs hG6PD qualitatively reproduces (Dataset 12) the observa-
tions found for gene-specific reporter metabolites (Fig. 3C).

To validate these observations, we repeated these analyses using
gene expression data from an independent cohort [32,33]. Overall,
these cohorts displayed metabolic features that were qualitatively sim-
ilar to those observed above, including fluxes in glutathione-reductase
driven H2O2 scavenging and glucose-6-phosphate dehydrogenase, and
fatty acid biosynthesis but not β-oxidation in hG6PD, and not in
hALDH2 (Dataset 13).

Essentiality analysis performed on each of the genes in the ALDH2
and G6PD clusters indicated that they were essential for hALDH2 and
hG6PD tumors, respectively, but not the converse (with the only excep-
tion being GLRX3, which is not in the model).

3.6. Redox responses vary with tumor progression and subtype and identify
survival signatures across HCC patients

The above observations indicated that HCC tumors display substan-
tial metabolic differences, leading us to question how these differences
relate to clinical properties of the patients. For instance, survival analysis
indicated that hALDH2 patients displayed significantly higher survival
than hG6PD patients (median 5-year survival of 0.57 and 0.39 respec-
tively, log-rank test P = .0017, Fig. 5C). We also identified significantly
altered redox gene expression between patients with different tumor
grades. Cancer grades identify the dedifferentiation stage of HCC with
respect to normal cells, and they include well (Grade 1), moderately
(Grade 2), poorly (Grade 3) differentiated and undifferentiated (Grade
4) tumors. Herewe identified differentially expressed genes throughout
cancer progression between early (G1), intermediate (G2) and late (G3
+ G4) HCC. We observed that few redox genes were significantly (Q b

0.05) different between early and intermediate cancer, but many of
them were significantly differentially expressed between intermediate
and late cancer (Fig. 5D, Dataset 14). Notably, the differences followed
the shifts in gene expression observed between the opposing G6PD
and ALDH2 clusters. Namely, expression of genes in the G6PD cluster
was upregulated throughout cancer progression, whereas expression
of genes in the ALDH2 cluster decreased with cancer progression. Met-
abolicmodeling and accounting grade-specific gene expression for early
and late HCC showed trends similar to those observed in hALDH2 and
hG6PD tumors above (Fig. 5B). These observations indicated that
through HCC progression, and particularly in more advanced cancer,
there was a switch from NADPH-independent to NADPH-dependent
H2O2 defense supported by glucose-6-phosphate dehydrogenase
activity.

Detailed clinical information, including the tumor subtype, viral in-
fection and inflammation status, is available for 186 patients [13]. Anal-
ysis of clinical data (Fig. 5E) indicated that the proportions of tumors in
hALDH2 and hG6PD groups were not independent of clinical traits
(Dataset 15) such as TP53 mutation incidence, histological grade and
stage (Q b 0.05), tumor growth pattern (Q b 0.005), and molecular
data including mRNA and microRNA expression and protein levels (Q
b 0.01). The proportion of tumors in the two clusters also varied with
the tumor subtype: NCI proliferation (NCIP) [32], cholangiocarcinoma-
like (CCL) [36] and hepatoblastoma 16 gene (HB16) [37] signatures (Q
b 10−5); Hoshida [38] and 65-gene recurrence risk score (RS65) [39]
signatures (Q b 10−4); Seoul National University recurrence (SNUR)
[40], and Hippo pathway [41] signatures (Q b 0.05). In contrast, the pro-
portion of tumors in hALDH2 and hG6PD did not vary (Q N 0.2) with
dox genes. A. Using metabolomics and gene expression data [14], we identified several
xpression of genes in the ALDH2 and G6PD clusters (Q b 0.05, absolute Spearman's ρ N

subjects expressing high and low redox genes in the ALDH2 (blue) and G6PD (orange)
hods). Log2-normalized test statistics indicate the directionality of the processes (positive
rter metabolites were determined, and the minimum Q was computed for those with
). Q values were normalized by computing −1 × log10(minimum Q), or log10(minimum



Fig. 4. HCC tumors antagonistically co-express genes in ALDH2 and G6PD clusters, associated with opposite hypoxic environments. A. Genes in the two clusters (yellow) and their first
neighbors (gray) are indicated. Redox genes that were positively co-expressed with genes in each cluster are displayed (absolute Spearman's ρ N 0.3, Q b 10−7). Green- and purple-
circled nodes respectively indicate favorable and unfavorable prognostic genes (Table 1). Genes that were positively co-expressed with those in both clusters are not presented
(e.g., NFE2L2, NNT, XCT, TXNRD1). Refer to Dataset 3 for the full list of correlations. B. Genes encoding enzyme isoforms or enzymes that catalyze alternative reactions in the same pathway
were alternatively expressed. Boxplots display the expression of genes (FPKM) as a function of HCC samples displaying high (H) and low (L) expression of each gene (50 samples per
group), and the respective Q values (Mann-Whitney U test). No significant difference (Q N 0.05) was observed for the other isoforms, with the exception of IDH1 as a function of
IDH3A (Q b 0.005), for which high expression of the latter gene was associated with high expression of Idh1. Similar observations were obtained through differential expression analysis.
C. Gene expression as a function of HIF1A expression. Note that among all genes in theALDH2 andG6PD clusters, only the expression ofMTHFD1,MTHFS and CAT did not significantly (Q b

0.05) differ between samples with high vs low HIF1A expression. For all boxplots, whiskers extended up to 1.5 times the interquartile range.
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race, gender, alcohol liver disease or consumption, viral infection (hep-
atitis B and/or C), inflammation (including intra-tumoral), cirrhosis, fi-
brosis, tumor ploidy, purity, or DNA methylation. At the gene
expression level (Fig. 5E, Dataset 15), we observed that expression of
most genes in the ALDH2 and G6PD clusters (≥17 genes, Q b 10−4) var-
ied with the tumor subtype (CCL, HB16, Hoshida, NCIP, SNUR, Hippo),
RS65, and mRNA expression. The expression of many genes (≥11) also
varied with miRNA expression and protein levels.

Negative correlationswere identified between RS65 index score and
the expression of genes in the ALDH2 cluster (ALDH2 and MTHFD1, ρ b

−0.3, Q b 0.0005), but positive correlation were observed with those in
theG6PD cluster (PKM,MTHFD1L, G6PD, ATIC, GLRX3, ALDOA, RPIA and
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TXNDC9, ρ N 0.3, Q b 0.0006). Only the expression of genes in the G6PD
cluster (G6PD, RPIA, PKM, ALDOA, ATIC, and MTHFD1L) strongly varied
with the TP53mutation incidence (Q b 10−4), which was also observed
to a lower extent for genes in the ALDH2 cluster (ALDH2 and ALDH5A1,
Q b 0.01).

The above observations indicated that HCC tumorswere successfully
stratified into different groupswith distinct redox behavior and survival
(Fig. 5) and that several redox genes were potentially favorable and un-
favorable prognostic genes (Table 1). We sought to determine a signa-
ture that would permit a more efficient prediction of patient survival
by using a subset of genes in the redox clusters. We examined all 3 by
3 and 4 by 4 combinations of genes in the redox clusters and, through
Kaplan-Meier analysis, identified PKM, G6PD, MTHFS, and HIF1A as
achieving the best survival signature where the group size comprised
made up at least 20% of the total sample (Fig. 6A, log-rank P b 10−16,
Q b 10−16, Dataset 16). PKM, MTHFS and G6PD also presented the
most significant 3 by 3 combination (log-rank P b 10−15, Q b 10−12)
and were substantially better than any single gene prediction (log-
rank P b 10−12, Q b 10−9, Appendix Fig. S8, Dataset 16, analysis based
on ref. [27]). This 4-gene signature included genes from pentose phos-
phate pathway and folate metabolism, suggesting that the survival of
HCC patients was associated with these pathways.

We performed Kaplan-Meier analysis in independent cohorts
[42,43] and validated the prognostic value of this gene signature
(Fig. 6A, log-rank P b .01, Q≈ 0.023). Taken together, these observations
indicated that tumors displayed substantial differences in redox behav-
ior that were related to the clinical and survival differences of their re-
spective patients.

3.7. Validation of the redox response in independent human HCC cohorts
The above relationships were validated using several independent

cohorts at gene expression protein and metabolite levels. First, the an-
tagonistic behavior observed among co-expressed redox genes (Fig. 1)
was also displayed at the gene expression level in 61 HCC tumors (Ap-
pendix Fig. S9A, Ref. [14]) and 91 HCC tumors [42,43] (Appendix
Fig. S2A), and at the proteomic level in 19HCC tumors [44] (Dataset 17).

Second, the above antagonistic behavior was observed in an inde-
pendent microarray and metabolomics tumor dataset [14] (Fig. 3A).
The authors used multi-omics data, including gene expression and
metabolomic data that quantified 718 metabolites using LC/MS and
GC/MS, to identify and identified molecular subtypes and driver genes
shared by HCC and intrahepatic cholangiocarcinoma. The integrative
approach employed by the authors permitted identifying allowed the
identification of potential biomarkers and shared metabolic features in
common in the two liver diseases despite their intrinsic heterogeneity.
Using gene expression and metabolomics data from this cohort, we ob-
served that the abundance of glycolytic/gluconeogenic compounds (e.g.
glucose and oxaloacetate), pyrimidines (e.g. thymine) and other com-
pounds was directly or inversely proportional to the expression of
genes in the ALDH2 and G6PD clusters. Notably, we observed that the
reporter metabolite analysis between the clusters was consistent with
the observed gene-metabolite associations. For instance, we observed
that 75% of the metabolites simultaneously found by the reporter
Fig. 5.HCC tumors stratified based on redox genes display substantial differences in the surviva
expression of genes in the ALDH2 andG6PD clusters through consensus clustering into two clus
and blue horizontal bars, respectively, hALDH2 and hG6PD). Clustering displayed the likelihood
genes were considered, reinforcing the robustness of the clustering. Note that N94% of the s
differences displayed by the two groups of tumors as determined through metabolic modelin
expression data. Cell compartments are indicated by colored boxes. Numbers indicate enzy
indicate reactionswith low or nullfluxes (B: 6, 10, 11; C: 1–5, 7, 13, 19). Bidirectional reactions (
metabolites (e.g., H2O andH+) are not displayed. C. Kaplan-Meier survival plot for hALDH2 (cya
cluster (respective median 5-year survival of 0.57 and 0.39, P≈ 0.0018). D. Differential express
expressed genes. Cumulative log2(fold changes)were computed for the significantly differential
vs early (G1) HCC and noncancerous samples. Genes in the ALDH2 (cyan) and G6PD (blue) cl
ALDH2 and G6PD clusters and detailed clinical information for 186 tumor samples (Cancer Gen
and clustered. Columns were sorted according to the redox cluster. Clinical information is sho
SNUR, Hoshida, RS65, HB16).
metabolite analysis and gene-metabolite association analysis (Fig. 3)
showed concordant behavior between the two independent analyses
on the two datasets, i.e., positive correlations with ALDH2-cluster
genes and upregulated reporter metabolites in hALDH2 tumors, and
the same with respect to G6PD cluster/hG6PD. Analyses performed
using the additional cohort supported these observations (Dataset 13).
The metabolites identified included glucose, oxaloacetate, and cholate
derivatives (positively correlated with ALDH2 cluster genes), and gua-
nosine, thymidine and deoxyinosine (positively correlated with G6PD
cluster genes).While the reportermetabolite analysis alone did not per-
mit inferences of metabolite abundance, they pointed towards meta-
bolic hotspots with likely increases or decreases in metabolic fluxes
[28]. The observed metabolite-gene associations suggested that aside
from representing these flux-alteration hotspots, the abundances of
those metabolites simultaneously identified in the 2 analyses were as-
sociated with redox genes and thus might represent potential bio-
markers in ALDH2 or G6PD clusters.

Third, we observed that patient stratification according to genes in
ALDH2 and G6PD clusters was associated with differences in survival
(Fig. 5C) and known HCC subtypes (e.g., NCIP, Fig. 5D), which were
reproduced using an independent cohort (Appendix Fig. S9B) [32,33].

In addition to these observations, we have previously shown that
similar antagonistic patterns are observed for other genes associated
with the G6PD cluster (ACSS1, PKM) and ALDH2 cluster (ACSS2)
[16,45]. Finally, we have identified the expression of G6PD, HIF1A,
PFKP, CAT, and MTHFD1 using the antibodies HPA000834,
HPA001275, HPA018257, HPA055838, and HPA050052, respectively
[25,27], in human HCC and noncancerous samples (Fig. 6B). The
G6PD-clustered genes HIF1A, G6PD and PFKP showmoderate/high pro-
tein expression in HCC samples but low expression in noncancerous
samples, whereas the ALDH2-clustered genes CAT and MTHFD1 show
medium protein expression in HCC but high expression in noncancer-
ous tissues.
3.8. Validation of redox responses in independent mouse HCC models
Retrospective analysis of murine and human samples [16,46]

showed agreement between hypoxic behavior and progression for
the 2 redox gene clusters. G6PD-clustered genes were associated
with hypoxic behavior, a less favorable prognosis or accumulated
throughout progression when compared with ALDH2-clustered
genes. Our observations (Fig. 6C, D) indicated that most genes associ-
ated with the G6PD cluster displayed more marked expression in-
creases between HCC vs noncancerous samples (e.g., Hif1a, G6pd,
Pfkp, Gart, Me1) than those in the ALDH2 cluster (e.g., Aldh2, Cat,
Shmt1, Mthfd1) in N-nitrosodiethylamine (DEN)-induced HCC in
wild-type (wt) mice. These changes were more pronounced when
comparing expression levels of HCC tumors in CB1R+/+ vs CB1R−/−

mice since the wild-type mice were associated with hypoxic tumor re-
sponses when compared with the mutant littermates (Fig. 6C, D).
Aldob presented as an exception to this behavior, possibly because
no other aldolase was detected in either HCC or noncancerous sam-
ples. Overall, these observations indicate that the antagonistic redox
l and metabolism of H2O2, purines and fatty acids. A. Tumors were stratified based on the
ters that respectively displayed high expression of genes inALDH2 andG6PD clusters (cyan
that a tumor was found in that cluster. Similar partitioning was achieved if all 174 redox
amples were consistently clustered in the two clusters (likelihood N 0.9). B. Metabolic
g. GEMs for hG6PD (top) and hALDH2 (bottom) tumors were integrated with the gene
me-catalyzed reactions or transport reactions, as indicated in Dataset 11. Thin arrows
e.g., transport reactions) indicate the estimated direction based on theflux value. Common
n) and hG6PD (blue) clusters indicates substantially lower survival for patients in the latter
ion analysis showing the opposing behavior between ALDH2-co-expressed and G6PD-co-
ly expressed redox genes (Q b 0.05, DESeq2) between late (G3+G4) vs intermediate (G2)
usters (Fig. 1B, inset). The full output is displayed in Dataset 15. E. Expression of genes in
ome Atlas Research Network, 2017). Gene expression data (FPKM) were row-normalized
wn for grade, stage, TP53 mutation status, and known tumor subtypes (NCIP, HIPPO, CCL,
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behavior observed in human HCC is also displayed in a mouse model
of HCC.
4. Discussion

Redox metabolism regulates cell proliferation and aberrant redox
metabolism, and it is now recognized as one of the hallmarks of cancer
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[22,47]. Antioxidants scavenge ROS that may otherwise have toxic ef-
fects, such as promoting oxidative DNA damage and tumorigenesis.
This phenomenon has led many researchers to propose the use of anti-
oxidants as therapeutic agents against cancer [48,49], but several clini-
cal trials have failed to demonstrate the beneficial effects of
antioxidants and instead showed that they may increase cancer risk
and promote progression and metastasis [5]. Due to the highly hetero-
geneous responses of HCC, including in terms of global antioxidant
gene expression [5], the commonalities and relationships between
redox metabolism, patient survival, and global metabolism had never
been systematically investigated. Here we extended our previous pan-
cancer analysis [27] to systematically analyze heterogeneous redox be-
havior across HCC tumors and used systems biology approaches to ana-
lyze transcriptomics, proteomics and metabolomics data. We
considered genes directly and indirectly involved in redox metabolism,
i.e., redox genes, and found that they were co-expressed with liver-
specific genes and genes involved in the immune system and inflamma-
tion, all of which are involved in important processes associated with
cancer, such as cell cycle progression, apoptosis, amino acid and lipid
metabolism. The close relationships between redox metabolism, in-
flammation and immune defense are well known in other contexts
[7,50], and the immune system is targeted for the treatment of HCC
[51]. Our observations emphasized the necessity of jointly targeting im-
munity, inflammation and redoxmetabolism for the effective treatment
of HCC.

Importantly, our unsupervised approach highlights opposite behav-
iors among redox genes through two antagonistic and highly co-
expressed groups of genes co-expressed with ALDH2 or G6PD. ALDH2
is a genewith important roles in redox homeostasis associatedwith sur-
vival and lower malignancy [24]. In turn, the role of G6PD in cancer is
widely known [22]. Their co-expressed genes have known relationships
in tumorigenesis. For instance, ALDOA is co-expressed with G6PD and
has been previously associated with the response to hypoxia and with
HIF1A [52,53], similarly to our observations in HCC. Tumors with high
ALDH2-co-expressed genes displayed high fatty acid and lipid oxida-
tion, catabolism, and lower lipid biosynthesis, whereas those with
high G6PD-co-expressed genes (hG6PD) showed the opposite behavior.
Our previous analyses indicated that the metabolic alterations in HCC
promote NADPH biosynthesis through the PPP, lipid biosynthesis and
decreased fatty acid oxidation [16]. Here we observed that HCC tumors
differentially displayed the above metabolic changes and were closely
related to redox behavior (Fig. 7). The correlation between the expres-
sion of genes in the ALDH2 cluster with alterations in lipid, amino acid
and carbohydrate metabolism additionally suggested that tumors with
high expression of those genes might be metabolically more active. In
turn, tumors with high expression of G6PD-clustered genes, including
HIF1A, were associated with several markers of dedifferentiation, poor
prognosis and low survival, consistent with the higher aggressiveness
of those tumors.

HCC tumors displayed antagonistic redox responses at the gene ex-
pression, protein and metabolite level. For instance, hG6PD tumors
displayed lower levels of glycolytic metabolites (including oxaloacetate
and glucose) and higher levels of nucleoside and nucleobases (thymine,
deoxyinosine and orotidine) and amino acid intermediates
(acetylglycine, phenylalanine, γ-glutamyl tryptophan). Although other
important metabolites, such as NADP and ROS, were not available in
the metabolomics data [14], our modeling analyses indicated that
Fig. 6.Predominant expression of G6PD- andALDH2-clustered genes inmouse andhumanHCC
MTHFS) using RNA-seq data for 360 patients from TCGA (left), and from an independent micro
PFKP, CAT, and MTHFD1 through antibodies HPA000834, HPA001275, HPA018257, HPA055
counterstaining in blue. C. Gene expression profile in murine samples revealed substantiall
expression in CB1R+/+ (hypoxia-associated) compared with CB1R−/− samples, compared wit
pooled wild-type HCC tumor and noncancerous samples using RNA-seq in CB1R+/+ and C
interquartile range. D. The distribution of differences for genes in the two clusters in HCC and
genes involved in the metabolism of NAD(P)H, H2O2, and, to a smaller
extent, O2

●-, glutathione, and CoA, were significantly upregulated in
hALDH2 tumors but downregulated in hG6PD tumors. This finding sug-
gested that tumors responded differently to reducing equivalents and
ROS and implied that targeting redox metabolism might lead to differ-
ent outcomes depending on whether the tumors display the hALDH2
or hG6PD subtypes. Using metabolic models and essentiality analysis
for hALDH2 and hG6PD tumors, we observed that the former group
was not sensitive to inhibition of genes in G6PD cluster but displayed
no growth if ALDH2-clustered genes ALDH2 are inhibited, and vice
versa.

It is generally considered that cancer cells rely on high antioxidant
activity, together with promoted NADPH biosynthesis that is used to-
wards peroxidase-catalyzed defense, enabling tumors to proliferate
under sustained oxidative stress [54]. HCC displayed lower glutathione
content, catalase and glutathione peroxidase activities in comparison
with normal cells [55,56]. Our analyses showed that hALDH2 tumors
displayed substantial catalase-mediated H2O2 scavenging, as opposed
to hG6PD tumors that instead rely on glutathione/glutathione-
peroxidase-mediated H2O2 scavenging. Additionally, we observed that
mitochondria were a significant source of H2O2 in hALDH2 tumors,
but not in hG6PD tumors, which displayed high mitochondrial
glutathione-peroxidase activity. These observations highlighted impor-
tant NADPH-independent and –dependent differences in ROS scaveng-
ing in HCC. Furthermore, they indicated that targeting antioxidants and
redox metabolism for HCC treatment is highly dependent on the cell
phenotype, i.e., hALDH2 or hG6PD, and thus requires subgroup-
tailored drug choices.

Majormetabolic and functional alterations that are hallmarks ofma-
lignant transformation andoften linked to different cancer stages are as-
sociated with differential redox metabolism [8]. Expression and
functional switches are associated with genes in the ALDH2 and G6PD
clusters and thus hALDH2 and hG6PD phenotypes. Importantly, a
switch between the two phenotypes was observed from early to late
HCC, associated with two main features. First, genes in the ALDH2 and
G6PD clusters tended to be respectively co-expressed with favorable
and unfavorable prognostic genes. Second, liver-specific genes and
markers of differentiation loss respectively were co-expressed posi-
tively and negatively with genes in the ALDH2 and G6PD clusters.
These two features suggested a malignant association with the expres-
sion of genes in the G6PD cluster. They were consistent with the low
survival of patients with hG6PD tumors and the observed inverse rela-
tionship between the expression of ALDOB, a liver-specific gene in the
ALDH2 cluster [57], and ALDOA, a G6PD cluster gene repressed in
adult liver and expressed in other tissues [25]. Furthermore, a decrease
in serum aldolase B and malignant liver cancer has been previously ob-
served [58], whereas a positive relationship between ALDOA andmalig-
nancy and progression has been observed in other cancers [53,59].

Importantly, genes in ALDH2 and G6PD clusters were co-expressed
with genes encoding alternative enzymes but that catalyze the same
or alternative reactions, sometimes exhibiting the same flux direc-
tions. This suggests a compensatory behavior in the metabolic
switching of the hALDH2 to hG6PD phenotype. This phenomenon
was observed for the expression of MTHFD1, ALDOB and PKLR, as
well as all parts of the ALDH2 cluster or their co-expressed genes,
which were replaced by MTHFD2, MTHFD1L, ALDOA and PKM, and
all parts of the G6PD cluster or co-expressed genes. Such switching
andnoncancerous cells. A. Kaplan-Meier plots for the 4-gene signature (G6PD,HIF1A, PKM,
array cohort with 222 patients [42,43]. B. Immunohistochemistry staining of G6PD, HIF1A,
838, and HPA050052, respectively [25,27]. Protein expression is displayed in blue, with
y higher expression of G6PD cluster genes in HCC than noncancer samples and higher
h the expression of genes in the ALDH2 cluster. mRNA expression profile measured in six
B1R−/− six murine samples. For all boxplots, whiskers extended up to 1.5 times the
noncancerous (NC) murine samples.



Fig. 7. HCC tumors display antagonistic metabolic behavior associated with redox responses. Genes of ALDH2 and G6PD clusters (blue and red nodes) promoted several reactions and
processes, as summarized at the bottom of the figure. Reducing equivalents (NADPH and NADH) are highlighted (black nodes). Dashed lines indicate regulatory processes. Genes in
the G6PD and ALDH2 clusters (black-circled red and blue nodes) and some of their co-expressed genes (Fig. 4). The reaction catalyzed by H6PD occurred in the endoplasmic
reticulum. Note the differences in ROS metabolism in tumors with high expression of ALDH2-clustered genes (blue) vs G6PD-clustered genes (red). Prdx5 was expressed by hALDH2
and hG6PD tumors, but mitochondrial ROS consumption by this gene was only active in hG6PD. Expression profiles of G6PD, HIF1A, PKM and MTHFS, genes in the two redox clusters,
identified a signature that more effectively predicted patient survival than predictions from a single gene.
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has been previously observed in acetate metabolism in HCC [16], and
in glycolysis in rat hepatomas [60].

Tumor stratification based on the expression of genes in the ALDH2
and G6PD clusters, where ALDOB is the best stratifying gene, has shown
not only differences at the functional and genomic levels but also at the
clinical level, including TP53 mutation and known tumor subtypes [36].
Through patient metadata, we also identified several markers of favor-
able and unfavorable survival among genes involved in redox metabo-
lism. The 4-gene signature herein introduced (PKM, G6PD, MTHFS and
HIF1A) improved the commonly used single-gene survival markers
and showed great potential for clinical use to predict the prognosis of
HCC patients. These 4 genes and their individual association with
redox metabolism and tumorigenesis are known in other cancers
[22,61–63]. However, herewe showed for the first time the relationship
of their joint behavior with metabolic and functional responses in HCC
and translation to survival differences.

The current study also revealed gene expression behaviors of ALDH2
and G6PD clusters in a DEN-induced HCCmurinemodel. In humanHCC,
high expression of the hG6PD cluster resulted in low survival and was
dominant in late-stage HCC. In mice, G6pd cluster genes were more ro-
bustly increased in HCC tumors than Aldh2 clusters inwild-typemice. A
similar polarization trend between humans andmicewith a dominance
of the G6PD cluster increased the translational value of DEN-induced
HCC murine models for studying the preclinical efficacy of pharmaco-
logical agents in HCC as metabolism mimicking the low-survival strati-
fied cluster. Furthermore, this study also exemplified an effect of
deletion of a druggable gene, Cnr1, on the regulation of G6PD cluster
genes in DEN-induced HCC in mice. Overactivation of CB1R has been
shown to promote HCC initiation and progression [46]. Deletion of the
Cnr1 gene significantly attenuated the activation of G6PD cluster
genes in HCC. This finding supports previous observations of the poten-
tial involvement of CB1R in the stratification of HCC patients [16] and
also reinstates the therapeutic potential of peripheral CB1R antagonism
in HCC [46].

In conclusion, our systems level analyses of multi-omics data [72]
highlighted substantial differences in redox behavior in HCC tumors, re-
lationships between redox genes, and genes that are liver specific, in-
volved in the immune system, or inflammation. Different redox
responses in subgroups of HCC tumors and their relationshipswith clin-
ical outcome were also identified. We finally identified several novel
markers of survival and prognosis and showed that they may be
targeted for the treatment of HCC in specific patient groups, depending
on the redox response.
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