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ABSTRACT

Since the discovery of 5-hydroxymethylcytosine
(5hmC) as a prominent DNA modification found in
mammalian genomes, an emergent question has
been what role this mark plays in gene regula-
tion. 5hmC is hypothesized to function as an in-
termediate in the demethylation of 5-methylcytosine
(5mC) and in the reactivation of silenced promot-
ers and enhancers. Further, weak positive correla-
tions are observed between gene body 5hmC and
gene expression. We previously demonstrated that
ME-Class is an effective tool to understand rela-
tionships between whole-genome bisulfite sequenc-
ing data and expression. In this work, we present
ME-Class2, a machine-learning based tool to per-
form integrative 5mCG, 5hmCG and expression anal-
ysis. Using ME-Class2 we analyze whole-genome
single-base resolution 5mCG and 5hmCG datasets
from 20 primary tissue and cell samples to re-
veal relationships between 5hmCG and expression.
Our analysis indicates that conversion of 5mCG to
5hmCG within 2 kb of the transcription start site as-
sociates with distinct functions depending on the
summed level of 5mCG + 5hmCG. Unchanged levels
of 5mCG + 5hmCG (conversion from 5mCG to sta-
ble 5hmCG) associate with repression. Meanwhile,
decreases in 5mCG + 5hmCG (5hmCG-mediated
demethylation) associate with gene activation. Our
results demonstrate that ME-Class2 will prove in-
valuable to interpret genome-wide 5mC and 5hmC
datasets and guide mechanistic studies into the func-
tion of 5hmCG.

INTRODUCTION

In mammalian genomes, cytosines are frequently covalently
modified at the 5-position with methyl-, hydroxymethyl-,
formyl-, and carboxy- groups (1). The initial modification

occurs by addition of a methyl- group to the 5-position of
the cytosine (5-methylcytosine, 5mC) by a DNA methyl-
transferase (Dnmt) (2). The subsequent modifications are
then formed through successive oxidation of 5mC by the
Ten-eleven translocation (Tet) family of enzymes (Tet1,
Tet2, Tet3, reviewed in (1)). While 5mC occurs at nearly 70%
of all CG dinucleotides (CpG) in the genome in all tissues,
5-hydroxymethylcytosine (5hmC) appears to be primarily
limited to embryonic stem cells, neurons, liver, breast, testis,
and placenta tissues, occurring at 2–17% of CpGs depend-
ing on the tissue type (1–3). Meanwhile 5hmC’s oxidized
derivatives, 5-formylcytosine (5fC) and 5-carboxycytosine
(5caC), are only found at very low levels, 10–1000-fold less
than 5hmC (3). It is still unclear whether 5fC and 5caC are
short-lived intermediates (4) or whether they have an inde-
pendent biological function in vivo (5,6). Of these marks,
5mC has been the most studied and is a well-established
player in maintaining inactivation of the silenced X chro-
mosome, mono-allelic gene expression at imprinted loci,
and silencing retrotransposons (2). Abnormal patterns of
5mC are also linked to transcriptional dysregulation in can-
cer (7).

One limitation to our prior understanding of 5hmC is
that technologies such as whole-genome bisulfite sequenc-
ing (WGBS) which have been used to map 5mC in the
genome, cannot distinguish between 5mC and 5hmC. Re-
cently Tet-assisted bisulfite sequencing (TAB-seq) and ox-
idative bisulfite sequencing (oxBS-seq) have been developed
to complement WGBS analysis to determine the levels of
5mC and 5hmC throughout the genome (8,9). In TAB-seq,
5hmCs are first glucosylated. Subsequently, 5mC and 5fC
bases are converted to 5caC using recombinant Tet proteins.
Bisulfite treatment and sequencing are then performed. In
TAB-seq, 5hmC is sequenced as a C and all other cytosine
forms are measured as a T. In oxBS-seq, 5hmC is first chem-
ically oxidized to 5fC. Bisulfite treatment and sequencing is
then performed. In oxBS-seq, 5hmC, 5fC and 5caC are all
measured as T. By combining WGBS data with either TAB-
seq or oxBS-seq data, levels for 5mC and 5hmC can then be
estimated using programs such as MLML, which provides
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a simultaneous maximum likelihood based on binomial es-
timates of 5hmC and 5mC (10).

At the biochemical level, 5hmC likely plays a role in
demethylation through both passive and active mechanisms
(1). While Dnmt1 is responsible for copying and propa-
gating 5mC during cell division (2), no similar mechanism
has yet been discovered for 5hmC. Notably, 5hmC, 5fC and
5caC are found at their highest levels in post-mitotic cells,
such as neurons, and are passively diluted during cell divi-
sion (1). For example, 5hmC starts at low levels in the devel-
oping brain, but accumulates in the adult brain (11). Active
demethylation occurs through conversion of 5mC to 5caC
via 5hmC and 5fC intermediates. 5caC is then converted to
unmethylated cytosine through base excision repair or de-
carboxylation (12). In support of the role of Tet enzymes
and 5hmC in demethylation (13), Tet2–/– mouse brains ex-
hibit low level gains in methylation (11) and Tet1-, Tet2-,
Tet3-triple KO mice display significant promoter hyperme-
thylation (14).

Genomic analyses show that 5mC and 5hmC have dis-
tinct targets throughout the genome. 5mC marks the ma-
jority of the genome except for CpG islands (CGIs), gene
promoters, and enhancers (15). High levels of 5mC at gene
promoters, CGI shores, and enhancers is associated with
expression repression (2). Like 5mC, 5hmC is depleted
from CGIs in ES cells and neurons, however 5hmC is de-
pleted from intergenic regions in ES cells (4–6). Meanwhile,
5hmC is enriched at enhancers, gene bodies, and CGI shores
(11,16).

Based on these data, 5hmC has been hypothesized to
serve as an intermediate in promoter demethylation (i.e.
removal of 5mCG) that could reactivate gene expression
(16,17), however additional evidence suggests 5hmC can
also play a regulatory role independent of 5mC. For ex-
ample, MeCP2 displays reduced affinity for hmCG com-
pared to mCG, and therefore conversion of mCG to sta-
ble hmCG in the neuronal genome may lead to loss of
functional binding sites for MeCP2 (18). The mechanism
for how 5hmC may play an independent gene regulatory
role has remained elusive as screens for 5hmC interacting
factors have uncovered few 5hmC-specific interactors, al-
though many 5mC binding proteins have reduced affinity
to 5hmC (6). Gene body 5hmC, as both a stable mark (as
in neurons) and as an intermediate for demethylation, is fre-
quently associated with gene expression (11). 5hmC marked
promoters have also been associated with gene repression
(17,19). More recent studies in human liver and lung tis-
sues observed 5hmC as a marker of active transcription as-
sociated with H3K4me1 at CpG island shores (16). 5hmC
may also play a role in enhancer regulation, as Tet2 dele-
tion causes an increase in enhancer 5mC levels and reduced
enhancer activity (20). One limitation has been that current
analysis methods label promoters as either marked or un-
marked by 5hmC, they do not tease apart when 5hmC may
be a result of demethylation versus when it may exist as an
independent regulatory mark. Further, whether and how
5mC and 5hmC signals in promoters and gene bodies act
in concert to affect gene silencing has not been studied.

In addition to the CG context, adult neurons also con-
tain high amounts of non-CpG methylation, which comes
close to or surpasses the total amount of mCG in neu-

rons (11,21,22). 5mCH is deposited by DNMT3A across
the neuronal genome and is associated with gene repres-
sion. Removal of DNMT3A in the mouse brain leads to in-
creased expression of genes that are marked with high lev-
els of 5mCH in the gene body (23,24). Associations have
further been observed between genes with high levels of
gene body mCA and those repressed by MeCP2, suggest-
ing a potential mechanism by which non-CpG methylation
may regulate expression in neurons (21,23,25,26). Further,
while 5hmCG in gene bodies is thought to result in reduced
MeCP2 binding and increased expression, 5hmCA accumu-
lates in regions flanking enhancers without altering MeCP2
binding (27). Together these data demonstrate that both
5mC and 5hmC can have different effects depending on
both the local sequence context (e.g. CG versus CA) and
the local genomic context (promoter, gene body, enhancer).
However, integrated analysis tools that can separate the ef-
fects of mC and 5hmC in both different sequence and ge-
nomic contexts on expression do not exist, and we still have
a poor understanding of how different marks act indepen-
dently and/or in combination to affect gene expression in
different contexts.

Methods for integrated analysis of 5mC and 5hmC gen-
erally consist of the application of meta-gene analysis plots
and their variants (11,17,19,23) or DMR (differentially
methylated region) analysis (11,16). We previously devel-
oped ME-Class to model methylation both at gene promot-
ers and in gene bodies to identify genes with a high proba-
bility of association between 5mC and gene expression (28).
Our model was more effective at predicting differentially
expression changes than models based on DMR analyses
and demonstrated the limitations of considering DMRs re-
moved from their local genomic context. Relative to meta-
gene type analyses, ME-Class moves away from compar-
ing methylation patterns at high and low expressing genes
within a single sample, and instead looks at how changes in
methylation between samples at individual genes associate
with expression.

Here, we extend ME-Class’ functionality to include
multiple epigenetic marks as inputs and add a post-
classification clustering tool to facilitate understanding
the underlying potential regulatory mechanisms. We use
these new functionalities to systematically interrogate how
changes in 5mC and 5hmC associate with gene expression.
Our results indicate that models that include both 5mC and
5hmC out-perform 5mC only models, but only in tissues
or cells (such as neuronal tissues) that have high levels of
5hmC. Further, our results indicate that 5hmC associates
with gene activation when it is involved in demethylation
and with gene repression when it is stably present at and
around the promoter of a gene.

MATERIALS AND METHODS

WGBS, TAB-seq, oxBS-seq and RNA-seq data

Mapped sequence reads for whole genome bisulfite se-
quencing (WGBS), Tet-assisted bisulfite sequencing (TAB-
seq), and RNA-seq in liver and lung tumor and matched
normal samples were obtained from Li et al. (16) and from
dendritic cells from Pacis et al. (29). WGBS, oxidative bisul-
fite sequencing (oxBS-seq), and RNA-seq from fetal and 6-
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week mouse brain samples were obtained from Lister et al.
(11) and granule cells from Mellen et al. (27). WGBS and
TAB-seq for human cortex are from Wen et al. (30). Cor-
responding RNA-seq data are from Brawand et al. (31) as
used by Wen et al. (30).

Estimation of 5mC and 5hmC levels

5mC and 5hmC levels were estimated using maximum like-
lihood methylation levels (MLML) from either TAB-seq or
oxBS-seq (10). We used MLML with a significance level of
� = 0.05 for the binomial test at each CpG (and CpH for
non-CpG analyses) site and an expectation maximization
convergence threshold of 1e–10. Counts of individual CpGs
with estimated 5hmC and 5mC in all samples can be found
in Supplementary Table S1.

Differential expression from RNA-seq

RNA-seq data from human liver, lung, and cortex samples
were mapped to hg19 using HISAT2 (32). We used fea-
tureCounts to estimate feature counts over RefSeq reads
(33). Differentially expressed genes were defined as abs[fold
change] ≥ 2 after applying a floor of cpm = 1. To create
a standardized gene set with high quality methylation data,
we excluded genes with ambiguous or incomplete transcrip-
tion start site (TSS) annotations, genes shorter than 5 kb,
genes with <40 CpGs assayed within ±5 kb of the TSS,
genes where, for all CpGs within ±5 kb of the TSS, the
change in methylation (mCG/CG) was <0.2, and genes
with alternative promoters. These filters were used to ex-
clude non-coding genes, pseudogenes, genes shorter than
the interpolation boundary (see HRPS model description
below), genes with low numbers of CpGs (to reduce bias
caused by error in individual CpG measurements), and
genes with no methylation changes at their respective pro-
moters. We only included RefSeq genes with cdsStartStat
and cdsEndStat flags marked as ‘cmpl’ according to the
UCSC Table Browser. For any RefSeq genes with multi-
ple RefSeq IDs corresponding to the same TSS location, we
used a single RefSeq ID with the lowest accession number
and excluded the remainder. This is a conservative method
to simplify the annotations of genes with alternative pro-
moter annotations. A full summary of differentially ex-
pressed filtered gene counts can be found in Supplementary
Table S2.

5hmC incorporation in ME-Class

MLML produces an estimate of 5mC and 5hmC for each
CpG site. ME-Class high-resolution promoter signature
(HRPS), region of interest (ROI), and whole-scale gene
(WSG) models described in Schlosberg et al. (28) were
extended to add 5hmCG features (Figure 1A and B).
For the HRPS model, 5mCG and 5hmCG data were in-
dependently interpolated using PCHIP interpolation and
Gaussian smoothing (50bp bandwidth) across the window
±5 kb relative to each gene’s TSS. Interpolated curves
for �5hmCG/CG and �5mCG/CG (i.e. the difference in
5hmCG and mCG levels between samples) were discretized
to create feature vectors for classification using the average

methylation in each 20 bp segment. Bins for the ROI model
were inspired by Lou et al. (34). Differential 5mCG and
5hmCG levels were computed for each bin, which was then
used in the resultant feature vector. For the WSG model,
5mCG and 5hmCG data were scaled to a constant length
between the TSS and RefSeq annotated transcription end
site (TES). Feature vectors were created from 125 bins up-
stream of the gene, 125 bins downstream of the gene, and
500 bins from the area between the TSS and TES. Differen-
tial 5mCG and 5hmCG levels were both computed for the
entire set of bins and then combined to form the final feature
vector. �5mCG/CG corresponds to the 5mC feature vector
and �5hmCG/CG corresponds to the 5hmC feature vector.
�5mCG/CG and �5hmCG/CG corresponds to concate-
nating 5mCG and 5hmCG feature vectors together for the
classification. �5mCG/CG + �5hmCG/CG corresponds
to summing 5mCG and 5hmCG values before creating the
feature vector for classification.

Evaluation framework

ME-Class2 uses a random forest classifier (implemented us-
ing scikit learn (35)) which uses feature vectors from 5mCG,
5hmCG or both data to predict the direction of expression
change. Random forests were built using 5001 trees. The
number of trees was optimized on a tuning dataset. For the
fetal to 6-week mouse brain comparison and dendritic cell
analysis we used an intra-sample 10-fold cross validation.
For the normal liver-lung and normal-tumor comparisons
we performed cross-fold validation similar to that in Schlos-
berg et al. (28). In brief, we hold out each sample one by
one for evaluation and then train on the remaining samples.
To further minimize over-fitting, all genes from the valida-
tion sample are excluded from the samples used for training.
For cortex-liver and cortex-lung comparisons, models were
trained using 10-fold cross-validation, and all genes used for
validation are excluded from the samples used for training.

Unsupervised clustering of 5hmCG and 5mCG

Unsupervised hierarchical agglomerative clustering
(complete linkage) was performed on �5mCG/CG and
�5hmCG/CG in the region [0, +2 kb] for the TSS for
correctly predicted genes from ME-Class2 (implemented
using scikit learn (35)). Sub-setting our predictions re-
quired setting a working threshold for the probability
of prediction. Therefore, we set the following range of
probabilities of prediction for each experiment based on
90% accuracy at: [0.68, 1.0] fetal-6-week mouse, [0.8, 1.0]
normal liver-tumor, [0.7, 1.0] normal-tumor liver and lung.
Ranges were set at [0.8–1.0] for cortex-liver and cortex-lung
based on 95% accuracy due to the large number of genes ac-
curately predicted for these samples. In the metagene plots
of unsupervised results, �5mCG/CG + �5hmCG/CG
corresponds to the summation of 5mCG and 5hmCG.

5mCH analysis

Due to the previously observed impact of gene expression
on mCH throughout the gene body in neurons (24), and the
observed effect of MeCP2-based repression acting on genes
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Figure 1. (A) Cartoon example showing different models to encode methylation features for a gene for ME-Class2 analysis. �5mCG/CG and
�5hmCG/CG refer to the differences between two samples. HRPS is high-resolution promoter signature; ROI is region of interest; WSG is whole-scale
gene. TSS is transcription start site. Blue dots show example differential methylation (5hmCG or 5mCG). (B) ME-Class2 workflow. (C, D) Performance
of different gene models using ME-Class2 5mCG and 5hmCG data from fetal and 6-week mouse brain as evaluated using accuracy versus 1 – reject rate
(C) and ROC (receiver operating characteristic) curve analysis (D). 1 – Reject rate is the fraction of genes with predicted associations between methylation
and expression. ROC AUC are HRPS: 0.727, HRPS + ROI: 0.735, WSG: 0.739, ROI: 0.699.

with high amounts of gene-body methylation (21), a whole-
scaled gene (WSG) model was chosen. This model split each
gene into 50 windows. After examination of the feature im-
portance of mCH around genes, the 25 kb window around
the TSS and TES of genes was also assessed with features
defined by 1 kb bins. This approach was chosen based on the
analysis from (21), which showed associations between gene
body mCH and expression that ranged up to 25 kb around
a gene. These windows were used to assess both mCH as a
whole, and mCA, mCC and mCT individually.

Ontology analysis

Ontology analysis was conducted with the functional an-
notation clustering tool from DAVID with the default set
of ontologies and parameters.

RESULTS

Differential 5hmCG at promoter and promoter-proximal re-
gions is more important than gene-body 5hmCG in predicting
expression changes

We extended ME-Class to simultaneously incorporate
5mCG and 5hmCG information from high resolution ge-
nomic data from WGBS, TAB-seq and oxBS-seq. We used
the three best performing models for associating 5mCG and
gene expression (28) to understand which model performed
the best at the new task of using combined 5mCG and
5hmCG data (Figure 1A,B). The first is a high-resolution
promoter signature (HRPS) that interpolates a signature
around the window ±5kb of the TSS for both 5mCG and
5hmCG signals. We previously identified this model as op-
timal for associating 5mCG and expression changes (28).
The second model, which we call ‘regions of interest’ (ROI),
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bins methylation data upstream of the TSS and across gene
features such as first and internal exons and introns (34).
We further compared these methods to a whole-scaled gene
(WSG) approach, which is based on a scaling method to
compare whole gene signals across genes and is commonly
used to capture correlations between gene body methylation
and expression (11).

We initially benchmarked these models using a set of
WGBS and TAB-seq data from fetal and 6-week mouse
brains. To evaluate performance, we plot the accuracy ver-
sus 1- reject rate for each model. This performance metric
allows us to focus on only the genes with the highest qual-
ity predictions given some confidence threshold. The under-
lying premise is that only some genes should have associ-
ated DNA methylation and expression changes, not all. We
demonstrate good performance to predict gene expression
change as measured by both accuracy versus 1 – reject rate
(Figure 1C) and ROC analysis (Figure 1D) for all models.
In the HRPS model we predict differential expression in
216 genes with greater than 90% accuracy, which outper-
forms ROI and WSG models for which we detect a sim-
ilar number of genes, but at only 83% and 88% accuracy
respectively. Both methods that capture the area around
the TSS at high resolution (HRPS and WSG) out-perform
other methods. Interestingly, models that incorporate fea-
tures from the gene body (ROI and WSG) do not perform
better than those that only model the data around the TSS
at high resolution (HRPS). Further, direct addition of gene-
body features to the HRPS model (HRPS + ROI) does not
increase performance. Random forest feature importance
analysis indicates that 5mCG and 5hmCG changes within
2kb and primarily downstream of the TSS into the first in-
tron are the most important regions for successful classifi-
cation (Figure 2).

Addition of 5hmCG data improves ME-Class2 performance

We next sought to determine whether models trained using
both 5hmCG and 5mCG data outperformed those trained
only using 5mCG data. Figure 3A–C shows that including
5mCG and 5hmCG as independent features boosts ME-
Class2 performance in the comparison of mouse fetal and
6-week brains and human cortex versus liver and lung using
the HRPS model (corresponding ROC curves are in Sup-
plementary Figure S1). For mouse brain comparisons, the
model using 5hmCG and 5mCG data predicted 112 genes
at >90% accuracy. Using 5mCG or 5hmCG data alone, the
accuracy for a similar number of genes was only 82% and
75% respectively. Similar increases in performance with the
inclusion of 5hmCG data were observed for other models
including WSG, ROI and HRPS + ROI (Supplementary
Figure S2). Using the HRPS model, �5mCG + �5hmC,
which is effectively what is measured by only WGBS data in
the absence of a 5hmC-specific assay, performed equivalent
to �5mCG alone (Supplementary Figure S3).

We also observe similar performance gains in human cor-
tex versus liver and lung comparisons (Figure 3). For cor-
tex versus liver, differential expression of an average of 480
genes per sample (493, 493 and 453 for each sample respec-
tively) could be predicted at 90% accuracy using 5hmCG
and 5mCG changes, but this accuracy fell to 82% and 77%

Figure 2. Feature importance for the ME-Class2 random forest classifier
for fetal-6wk mouse brain 5mCG and 5hmCG data for (A) HRPS, (B)
WSG and (C) ROI data representations. Binning schemes for each model
are in Figure 1A.

for 5mCG and 5hmCG alone respectively. Meanwhile for
cortex versus lung, differential expression of an average
of 278 genes per sample (359, 266 and 209 for each sam-
ple respectively) could be predicted at 90% accuracy using
5hmCG and 5mCG changes, but this accuracy fell to 81%
and 72% for 5mCG and 5hmCG alone respectively. We also
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Figure 3. (A–F) ME-Class2 performance (accuracy versus 1 – reject rate) for different 5mCG and 5hmCG datasets using the HRPS feature model. The
5mCG and 5mCG & 5hmCG curves directly overlap in panel D. Corresponding detailed ROC (receiver operating characteristic) curves are in Supplemen-
tary Figure S2. (G) Area under the curve (AUC) for the accuracy versus 1 – reject rate curves and (H) ROC AUC for each individual sample comparison
used in A–F.
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observed an increase in performance comparing bacterially
infected and non-infected dendritic cells, although the addi-
tion of 5hmCG data only allowed the prediction of differen-
tial expression for 16 total genes at greater than 93% accu-
racy (Figure 3F, Supplementary Table S3). However, we do
not observe such performance gains for all samples. We did
not observe any substantial difference between 5mCG only
and 5mCG and 5hmCG models in comparisons involving
human lung and liver tissues across three individuals (Fig-
ure 3D, G, H), or in normal-tumor comparisons from three
lung and two liver tumors (Figure 3E, G, H). Feature impor-
tance analysis of cortex vs liver, cortex versus lung, and in-
fected dendritic cells all support the region within 2–3 kb of
the TSS as most important for predicting expression change
(Supplementary Figure S4).

Predictive methylation signatures in non-brain tissues and tu-
mors are solely dependent on changes in 5mCG

Similar unsupervised clustering of highly predictive liver-
lung and cancer-specific genes show why the addition of
5hmCG data did not increase performance in these compar-
isons (Supplementary Figure S5). The differential methy-
lation signatures produced from these clusters in each
case show that there is little difference in 5hmCG, such
that the net �5mCG + �5hmCG levels closely follow the
�5mCG levels. This suggests that the level 5hmCG does
not vary substantially across non-brain tissues for genes
where methylation changes are predictive of expression
changes. The observed 5mCG patterns in each cluster re-
semble those we previously found in other tissues (28) and
cancer cell lines (36). This implies that promoter 5mCG,
rather than 5hmCG, is primarily associated with gene ex-
pression change in cancer.

ME-Class2 identifies 5hmCG and 5mCG signatures in brain
tissues

To better understand why we observed a boost in perfor-
mance by including 5hmCG in brain and cortex compar-
isons, we conducted post-hoc unsupervised clustering anal-
ysis of identified signatures of 5hmCG and 5mCG that as-
sociate with expression change using the mouse fetal and 6-
week brain comparison. We observe three distinct classes of
differential 5hmCG and 5mCG signatures that predict ex-
pression changes (Figure 4A–C). In Figure 4A, we observe
increases in both 5mCG and 5hmCG 3′ proximal to the
TSS, which associate with a decrease in expression (Clus-
ter C1, n = 76). This contrasts to the signature observed in
cluster C2 (n = 29, Figure 4B). These genes also decrease
in expression; however, while the 5mCG signal decreases 3′
proximal to the TSS, the 5hmCG increases over the same
region. There is no substantial change in the net �5mCG +
�5hmCG level, indicating that the primary feature in this
cluster is a conversion from 5mCG to stable 5hmCG rather
than demethylation. While most of the observed patterns
cluster because of changes in 5mC data, observation of the
C2 cluster is entirely dependent on the addition of 5hmC
data. A third cluster (C3, n = 70, Figure 4C) comprises a set
of genes that increase in expression and are again character-
ized by 5mCG decreases and 5hmCG increase 3′ proximal

to the TSS. In this case however, the net amount of 5mCG +
5hmCG decreases indicating 5hmCG plays a role as an in-
termediate toward demethylation. Differential methylation
signatures similar to those found in clusters C1 and C3 were
also observed in human cortex versus liver and lung com-
parisons (Supplementary Figure S6).

To better understand whether stably 5hmCG marked
promoters were associated with gene repression we exam-
ined expression levels of genes in each cluster across mouse
development. Cluster C2 genes which are marked by 5mCG
alone in the fetal cortex have much lower expression as a
whole than genes that gain 5mCG and 5hmCG found in
cluster C1 (P < 0.009, Wilcoxon test, Figure 4D–F). This
agrees with our finding that 5hmCG within 2 kb of the TSS
associates with transcriptional repression. To test whether
this conclusion would hold true in an alternative dataset, we
first used feature importance analysis (Figure 2A) to iden-
tify the region from [–800 bp, 2100 bp] around the TSS for
both 5mCG and 5hmCG signals that contributes the great-
est to classification in the fetal-6-week brain comparison.
Next, we calculated the average 5mC, 5hmC and unmodi-
fied C content across this region for all genes in granule cells.
Agreeing with our hypothesis, genes primarily marked with
high levels of either 5mCG (P < 2e–16, Bonferroni adjusted
Wilcoxon test) or 5hmCG (P < 2e–7, Bonferroni adjusted
Wilcoxon test) are generally not expressed (Figure 4G).

Lastly, to understand whether mCG conversion or
demethylation events are potential causes of transcriptional
change, we examined whether genes from each cluster iden-
tified in the fetal-6-week comparison above were differ-
entially expressed in the Tet1–/– mouse cortex (Figure
4H) (37). Cluster C1 is characterized by predominantly in-
creased 5mCG levels and thus, as expected, there was no
significant difference in the expression of these genes af-
ter removal of Tet1. Genes in cluster C2 that were down-
regulated in 6-week mouse brain, which had undergone a
conversion of 5mCG to 5hmCG (with no net decrease of
5mCG + 5hmCG), were found to generally increase in ex-
pression in Tet1–/– mouse cortex relative to WT (P = 0.037,
Bonferroni adjusted Wilcoxon test). Surprisingly, there was
also no change in expression for genes undergoing Tet-
mediated demethylation (cluster C3). This could be because
5hmC-mediated demethylation occurs as a consequence of
transcription. In agreement, transcription factor complexes
have been implicated to recruit Tet1 leading to 5hmC me-
diated demethylation mediated by PPAR� in differentiated
ES cells (38). However, our analysis has several limitations
that could explain the lack of an observed effect. The pro-
moters of selected genes that are differentially expressed in
Tet1−/− cortex and hippocampus were shown to increase
in 5mCG levels by only 11–50%, which may be insufficient
for many genes to show a change in expression (37). Ad-
ditionally, we cannot rule out that other Tet members play
a compensatory role in the absence of Tet1. For example,
Tet1–/– mice do not show impaired differentiation (3,14)
and have normal brain morphology (37) in contrast to
Tet1-, Tet2-, Tet3-triple KO mice, which display impaired
differentiation, impaired embryonic development, and sig-
nificant promoter hypermethylation (14). In support of the
fact that the observed demethylation may activate tran-
scription, a gene found in cluster C3, regulator of G pro-
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Figure 4. (A–C) Metagene plots for clusters of similar differential methylation signatures (6-week-fetal) that are predictive of expression in the fetal-6-week
mouse brain comparison. Shading indicates the 68% bootstrapped confidence interval. Cluster C1: n = 76, C2: n = 29 and C3: n = 70. (D–F) Average
expression of all genes found in C1, C2 and C3 clusters across mouse brain development. Shading indicates the 95% confidence interval. (G) mRNA
expression in granule cells of genes whose promoters (defined as [–800 bp, +2 kb] around the TSS) are >50% marked by mCG, hmCG, a combination
of mCG and hmCG, or CG (unmethylated). Outliers have been cropped for clarity. The original plot can be found in Supplementary Figure S7. (H)
Log2 expression changes in cortex from Tet1–/– mice versus cortex from WT mouse. All dn and all up correspond to all down- and up-regulated genes,
respectively, in 6-week compared to fetal mouse brain. P-values computed using a Bonferroni adjusted Wilcoxon test.

tein signaling RGS14, was shown previously to up-regulate
after demethylation of neural progenitors using Dnmt in-
hibitors (39). In summary, while these data support a role
for 5hmCG as a functional repressor, whether demethyla-
tion is a cause or consequence of transcriptional silencing
or whether there is a context-dependent component is un-
clear.

ME-Class2 identifies 5mCH and 5mCG signatures in brain
tissues

In addition to mCG, adult neurons also contain high
amounts of non-CpG methylation (11). To determine
whether this non-CpG methylation has a significant associ-
ation with gene expression we compared ME-Class2 models
trained on only CpH methylation or on both CpG and CpH
methylation (Figure 5). Models only using 5hmCH showed
very poor performance likely indicating 5hmCH plays a reg-
ulatory role in very few if any genes (Supplementary Figure
S8). In contrast, using mCH alone resulted in fair perfor-
mance, and the addition of mCH to mCG models resulted
in a substantial improvement in ME-Class2 performance
(Figure 5A). Of the three mCH marks, mCA, the mark with
the highest levels of methylation (11), returned more genes

at higher accuracy than mCC and mCT (265 versus 5 and
40 respectively, Figure 5B). The addition of gene body mCH
using the WSG model improved performance as compared
to promoter-only models, in agreement with prior data sug-
gesting that mCH at gene bodies may regulate MeCP2 func-
tion, and that transcription is associated with levels of gene
body 5mCH (23). While feature analysis suggested mCH
near the TSS were the most important features (Figure 5C,
D), gene body features also were important. Since mCH is
severely depleted from the region adjacent to the TSS, TSS
mCH methylation may be relevant for only a small number
of genes. As a whole, this data suggests that mCH serves a
regulatory role in the brain, alongside mCG.

ME-Class2 identifies genes associated with neurodevelop-
mental disorders and neuronal development

Gene ontology analysis using DAVID (40) revealed genes
associated with neurodevelopmental disorders and basic
neuronal development in all clusters (Supplementary Table
S4). Several of these have been implicated to have disorder-
associated differential methylation including Shank2 in
cluster C2 and Nrxn1, Pacsin1, and Grin1 in cluster C3.
Shank2, a synaptic protein, has previously been shown to
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Figure 5. (A) ME-Class2 performance as assessed by accuracy versus 1 – reject rate (fraction of genes) for different ME-Class2 models incorporating mCH.
(B) ME-Class2 performance of the HRPS mCG, hmCG with WSG mCH model. (C, D) Feature importance analysis of the best performing model that
incorporates all features (HRPS mCG, hmCG with WSG mCH, 5hmC).

change methylation in the developing human brain and is
associated with neurodevelopmental disorders (41). Methy-
lation of Grin1, a component of NMDA receptor com-
plexes, is associated with depression in children (42). Nrxn1
has previously been discovered as having a high ranking
meQTL in 110 human hippocampus samples (43). Age-
related DNA methylation changes have been found in
Nrxn1, which has been implicated in schizophrenia and
autism (44). Methylation of PACSIN1 is associated with
substance-use risk (45). Importantly, our analysis suggests
that 5hmCG may regulate disease-risk genes differently de-
pending on whether it plays a role in repression or demethy-
lation.

DISCUSSION

We successfully extended ME-Class to predict gene expres-
sion classification from both 5hmCG and 5mCG. Feature
importance analysis shows that even in tissues with sub-
stantial 5hmCG, 5mCG is still the most useful mark for
predicting expression changes (Figure 2, Supplementary
Figure S4). 5hmCG models alone perform very poorly,
which demonstrates the importance of considering 5hmC
in the context of 5mC to understand potential associa-
tions and effects on transcription. Unsupervised analysis
revealed a set of down-regulated genes with no net change
in 5mCG + 5hmCG levels, but for which 5mCG levels de-
crease and 5hmCG levels rise. Models using only WGBS
data would miss these genes since WGBS only observes the
net change in 5mCG + 5hmCG. For other tissues with min-

imal amounts of 5hmCG it is unlikely that obtaining TAB-
or oxBS-seq data will provide more information over what
is already found using WGBS (5mCG + 5hmCG).

Our results suggest that the incorporation of 5mCG and
5hmCG marks at gene promoters and proximal promoters
are the most important features for predicting expression
changes. Features in the gene body or outside a 2–3 kb win-
dow from the TSS have little impact on the ability to asso-
ciate methylation and transcription changes. This contrasts
with 5mCH which showed importance both in this region
and also through the gene body. In the CpG context, the
direct addition of gene body features based on differential
methylation of internal exons and introns using the ROI ap-
proach led to no boost in performance. Feature importance
analysis (Figure 2, Supplementary Figure S4) clearly indi-
cates that for all models, the features within 2–3 kb of the
TSS are most essential for prediction and that gene body
features greater than 2–3 kb from the TSS are of limited
utility. Taken together, this implies either that average gene
body 5hmCG plays little functional role in the regulation
of transcription, or that gene body information is redun-
dant with that found within 2–3 kb of the promoter. This
finding is similar to as previously reported for 5mCG (28).
Another alternative is that gene body 5hmCG plays a sub-
tle effect on gene regulation that can only be uncovered with
additional training data. For example, these models do not
effectively incorporate individual regulatory elements such
as enhancers, which are known to be regulated by 5hmC
(20), and that may have context-dependent contributions on
nearby genes.
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We cannot rule out that the small amount of 5fC (and
possibly 5caC) in the genome may play some as of yet un-
defined role in this process since these marks are indistin-
guishable from 5hmC in TAB- and oxBS-seq assays. Recent
biochemical evidence has suggested that the majority of de-
tectable 5fC in the genome is stable (46) and 5fC can inhibit
the rate of transcript elongation (47).

Our results further show that the addition of 5hmCG
data has the greatest effect on performance in samples with
substantial amounts of 5hmCG, such as the brain. 5hmCG
accumulates in the adult brain as can be observed in Fig-
ure 4A, where 5hmCG increases in most regions around the
TSS in 6wk relative to fetal mouse brain (11). Post-mitotic
neurons have high 5hmCG levels (11) and thus these sam-
ples benefit the most from inclusion of 5hmCG for predic-
tions. 5hmCG exists at relatively low levels in liver (2.27–
5.68%) and lung (1.94–3.04%) (16) in comparison to mouse
brain (17.2%) (11) and human cortex (13%) (30) tissue.
5hmCG is an intermediate cytosine modification which is
not replicated during mitosis (1). Lack of gene expression
correlating 5hmCG patterns in normal lung and liver may
be because dividing cells in these tissues passively dilute
5hmCG from their genomes. Thus, the scarcity of 5hmCG
might explain its lack of predictive ability for expression
class change in non-neuronal tissues. In agreement, clus-
tering analysis of 5mCG and 5hmCG signals of predictive
genes did not reveal a cluster of 5mCG to 5hmCG con-
version as we observed in the model of mouse brain devel-
opment. Instead, the patterns of differential 5hmCG and
5mCG closely follows that of 5mCG alone across all predic-
tive signatures. However, we cannot rule out that 5hmCG
inclusion in tissues with low amounts of 5hmCG might
facilitate the identification of a few rare genes regulated
by 5hmCG, which cannot be assessed with the amount of
training data currently available.

Lastly our work points to a potential mechanism of
5hmCG mediated repression of gene proximal promoters
independent of that observed by 5mCG. We identify that
conversion of 5mCG to 5hmCG primarily is associated
with the downregulation of gene expression in brain and
many of these genes are up-regulated upon the removal
of Tet1. Since there have been very few proteins identified
that specifically bind 5hmC relative to 5mC (6), it is possi-
ble that 5hmCG-associated gene silencing could instead be
caused by Tet1-recruitment of interacting partners, such as
Sin3A and OGT, which have been shown to be involved in
Tet1-dependent silencing of LINE-1 (48) or PRC2, which
forms repressive chromatin (17,19). It is further unclear at
this point why 5hmCG would stabilize in some genes ver-
sus others, and complicating matters is that how much ac-
tive versus passive demethylation occurs via 5hmCG is still
a point of contention (1). TET enzymes have substantially
higher activity on 5mC relative to 5hmC and 5fC substrates,
which may facilitate 5hmCG stability (3,49). It may be that
demethylation is the dominant mechanism prior to neurons
exiting the cell cycle, while stable 5hmCG occurs after.

Here we have demonstrated the power of integrated epi-
genetic analysis using ME-Class2 to examine the interplay
of 5mC and 5hmC. However, ME-Class2 can be easily used
with any epigenetic marks. Our application of ME-Class2
to the study of 5mC and 5hmC demonstrates that incorpo-

rating 5hmCG information is critical for prediction of gene
expression changes in samples with high levels of 5hmC
such as the brain and neurons. ME-Class2 has identified
a class 5mCG/5hmCG patterns that show the conversion
from 5mCG to 5hmCG in the 3′ proximal region of the pro-
moter in a model of mouse brain development. We speculate
that these patterns of 5mCG and 5hmCG coordinate with
additional silencing factors potentially recruited either di-
rectly by 5hmCG or by the Tet enzymes in a context-specific
manner. As the field continues to collect genome-wide, dif-
ferential DNA methylation, tools such as ME-Class2 will
prove invaluable for the interpretation of this epigenomic
data and will guide mechanistic studies into the integrated
function of 5mC and 5hmC in human disease.
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