Skip to main content
. 2019 Feb 24;19(4):958. doi: 10.3390/s19040958
Algorithm 1. DBSCAN Clustering Process
1. Begin
2. Input:
3.  U = {p1,p2,…pn}, MinPoints,
4.      Output:
5. C1,C2,…Ck//clusters descended by number of elements
6.  M = {m1,m2,…mn}//set of noises
7.  k = 0, l = 0
8.  for ( i = 1; i<= n; i ++)
9.    if 1{qΩ|dist(q,pi)<ε}MinPoints
10.  k = k + 1
11.  else
12.  if 1{qΩ|dist(q,pi)<ε}MinPoints
13.      l = l+1
14.      mk=pi
15. end