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Abstract: Behavioral and psychosocial factors related to development of cardiovascular disease have
been gaining increased attention. Notably, sleep is considered to be one of the most important
behavioral factors involved in progression of atherosclerosis and cardiovascular events, with
autonomic nervous function a potential mechanism. Several studies have shown associations
of sleep and autonomic dysfunction with major surrogate markers of atherosclerosis, such as
carotid intima-media thickness and arterial stiffness. Endocrinological, immunological, oxidative,
inflammatory, and metabolic responses, as well as endothelial dysfunction may mediate the effects
of the autonomic nervous system. For this review, we examined recent findings related to sleep,
autonomic nervous dysfunction, and atherosclerosis, with the aim of understanding the involved
pathophysiological mechanisms.
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1. Introduction

Classical cardiovascular risk factors, including obesity, hypertension, dyslipidemia, diabetes
mellitus, and chronic kidney disease (CKD), are established predictors of atherosclerosis and
cardiovascular disease (CVD) [1–3]. Recently, behavioral and psychosocial factors have been gaining
increased attention in regard to development, prevention, and treatment of CVD [4], with short sleep
duration and low sleep quality shown to be important behavioral factors that may be involved in its
occurrence [5]. In this context, potential mechanisms associated with short sleep duration and low
sleep quality include autonomic nervous function, and a previous study showed a strong association
between those in a general population [6]. Additionally, autonomic nervous dysfunction has also
been found to be a risk factor for CVD [7]. Potential mechanisms related to the associations among
sleep, autonomic nervous function, and progression of atherosclerosis are summarized in Figure 1.
It has been shown that short sleep duration, low sleep quality, and autonomic nervous dysfunction
are associated with several risk factors for atherogenesis, including endocrinological, immunological,
oxidative, inflammatory, and metabolic responses, as well as endothelial dysfunction.

Sleep duration and quality can be measured by subjective methods, including self-reported
questionnaires, the Epworth Sleepiness Scale (ESS), and Pittsburg Sleep Quality Index (PSQI), as
well as by objective methods, including actigraphy [8,9], while apnea-hypopnea during sleep can
be quantitatively determined using polysomnography or apnomonitor results [10,11]. Standardized
autonomic nervous function tests including Valsalva maneuver, hyperventilation, standup tilt test,
cold pressor, isometric handgrip, and heart rate variability (HRV) are also performed [12,13], among
which HRV is a practical method to assess impaired autonomic nervous function in clinical settings [7].
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Figure 1. Short sleep duration and low sleep quality, along with resultant autonomic nervous 
dysfunction may induce progression of atherosclerosis, potentially through endocrinological, 
immunological, inflammatory, and oxidative response, and endothelial dysfunction. 
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as by objective methods, including actigraphy [8,9], while apnea-hypopnea during sleep can be 
quantitatively determined using polysomnography or apnomonitor results [10,11]. Standardized 
autonomic nervous function tests including Valsalva maneuver, hyperventilation, standup tilt test, 
cold pressor, isometric handgrip, and heart rate variability (HRV) are also performed [12,13], among 
which HRV is a practical method to assess impaired autonomic nervous function in clinical settings 
[7]. 

Several studies have found relationships of short sleep duration, low sleep quality, and 
autonomic dysfunction with carotid intima-media thickness (IMT) and brachial-ankle pulse wave 
velocity (baPWV), which are major surrogate markers of atherosclerosis and established predictors 
of cardiovascular events [14,15]. We recently reported associations among sleep quality, autonomic 
nervous function, carotid IMT, baPWV, and nocturnal hypertension in subjects with risk factors for 
atherosclerosis who participated in the Hyogo Sleep Cardio-Autonomic Atherosclerosis (HSCAA) 
study [11,16–18]. The aim of this review was to summarize findings regarding the impact of sleep 
and autonomic nervous function on atherosclerosis, and elucidate their underlying mechanisms 
related to the progression of atherosclerosis. 

2. Sleep and Atherosclerosis 

Several epidemiological studies have suggested associations of short sleep duration, low sleep 
quality, and obstructive sleep apnea (OSA) with atherosclerosis. Table 1 summarizes reports of 
patients with atherosclerotic risk factors regarding the association between sleep and surrogate 
markers of atherosclerosis, carotid IMT, and baPWV, though the majority of the cohorts examined 
were relatively small in size. As for subclinical atherosclerosis in 86 elderly patients (73.6 ± 4.9 years 
old), carotid IMT in subjects with shorter sleep duration (<5 h) examined with the PSQI was found to 
be higher than those with the reference number of sleep h (>7 h) [19]. In a study of 201 elderly patients 
(79.9 ± 6.4 years old), carotid IMT was also shown to be higher in those with subjective persistent 
insomnia than in those with no insomnia [20]. Yoda et al. assessed using objective sleep quality and 
elector-encephalography findings, and reported a significant correlation between carotid IMT and 
rapid eye movement latency in 63 patients with type 2 diabetes mellitus [21]. Furthermore, in the 
HSCAA study with a relatively large number of patients (n = 330) with cardiovascular risk factors, 
we showed that apnea-hypopnea index (AHI) assessed by an apnomonitor and poor sleep quality 
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dysfunction may induce progression of atherosclerosis, potentially through endocrinological,
immunological, inflammatory, and oxidative response, and endothelial dysfunction.

Several studies have found relationships of short sleep duration, low sleep quality, and autonomic
dysfunction with carotid intima-media thickness (IMT) and brachial-ankle pulse wave velocity
(baPWV), which are major surrogate markers of atherosclerosis and established predictors of
cardiovascular events [14,15]. We recently reported associations among sleep quality, autonomic
nervous function, carotid IMT, baPWV, and nocturnal hypertension in subjects with risk factors for
atherosclerosis who participated in the Hyogo Sleep Cardio-Autonomic Atherosclerosis (HSCAA)
study [11,16–18]. The aim of this review was to summarize findings regarding the impact of sleep and
autonomic nervous function on atherosclerosis, and elucidate their underlying mechanisms related to
the progression of atherosclerosis.

2. Sleep and Atherosclerosis

Several epidemiological studies have suggested associations of short sleep duration, low sleep
quality, and obstructive sleep apnea (OSA) with atherosclerosis. Table 1 summarizes reports of patients
with atherosclerotic risk factors regarding the association between sleep and surrogate markers of
atherosclerosis, carotid IMT, and baPWV, though the majority of the cohorts examined were relatively
small in size. As for subclinical atherosclerosis in 86 elderly patients (73.6 ± 4.9 years old), carotid IMT
in subjects with shorter sleep duration (<5 h) examined with the PSQI was found to be higher than
those with the reference number of sleep h (>7 h) [19]. In a study of 201 elderly patients (79.9 ± 6.4 years
old), carotid IMT was also shown to be higher in those with subjective persistent insomnia than in those
with no insomnia [20]. Yoda et al. assessed using objective sleep quality and elector-encephalography
findings, and reported a significant correlation between carotid IMT and rapid eye movement latency
in 63 patients with type 2 diabetes mellitus [21]. Furthermore, in the HSCAA study with a relatively
large number of patients (n = 330) with cardiovascular risk factors, we showed that apnea-hypopnea
index (AHI) assessed by an apnomonitor and poor sleep quality determined with actigraphy were
each significantly and positively associated with carotid IMT and plaque score [11]. Regarding arterial
stiffness, subjective low sleep quality was reported to be correlated with higher baPWV in 724 patients
with type 2 diabetes [22], while our recent study demonstrated that low sleep quality is significantly
associated with impaired nocturnal blood pressure fluctuations, a risk factor for arterial stiffness [17].
Arterial stiffness was also shown to be independently associated with obstructive sleep apnea in 127
patients with ischemic stroke [10].
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Table 1. Association of subjective or objective sleep duration and quality with carotid IMT and baPWV in patients with atherosclerotic risk factors.

Surrogate Marker of
Atherosclerosis Sleep Parameter Study Design Subjects Sleep Measurement Comments References

Carotid intima media
thickness (IMT)

Duration Cross-sectional Elderly (n = 86) PSQI
Actigraphy

Shorter sleep duration (<5 h)
increased IMT as compared

to longer duration (>7 h)
Nakazaki et al. [19]

Quality Cross-sectional

Elderly (n = 86)
Elderly (n = 201)

Type 2 diabetes mellitus
(n = 63)

Cardiovascular risk
factors (n = 330)

Self-reported
questionnaire

Single-channel EEG
Actigraphy

Insomnia associated with
IMT as compared with

non-insomnia

Nakazaki et al. [19]
Nagai et al. [20]
Yoda et al. [21]

Kadoya et al. [11]

Apnea-hypopnea Cross-sectional Cardiovascular risk
factors (n = 330) Apnomonitor OSA associated with IMT

and plaque score Kadoya et al. [11]

Brachial-ankle pulse
wave velocity (baPWV)

Quality Cross-sectional Type 2 diabetes mellitus
(n = 724) PSQI Poor sleep quality associated

with higher PWV Osonoi et al. [22]

Prospective Cardiovascular risk
factors (n = 306) Actigraphy

Low sleep quality associated
with progression of PWV

over 3-year period
Kadoya et al. [18]

Apnea-hypopnea Cross-sectional Ischemic stroke (n = 127) Polysomnography OSA associated with PWV Chen et al. [10]

PSQI: Pittsburg sleep quality index, EEG: electro-encephalography: OSA: obstructive sleep apnea.
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Until recently, no prospective study examined the association of sleep duration or quality with
atherosclerotic progression in patients with atherosclerotic factors. Our report presented in 2018 of a
3-year longitudinal investigation (n = 306) in association with the HSCAA study was the first to show
a relationship of low sleep quality with progression of baPWV [18]. Those findings indicated that poor
sleep quality is associated with progression of arterial stiffness independent of other cardiovascular
risk factors, including ambulatory blood pressure, apnea-hypopnea, and cardiac autonomic function,
in patients with cardiovascular risk factors.

Some largescale studies examined associations of subjective and objective sleep duration, and
quality with carotid IMT and baPWV in healthy general populations (Table 2). In an investigation
of 617 middle-aged healthy subjects (37–52 years old), Sands et al. showed that objective shorter
sleep duration was associated with greater carotid IMT [23]. However, it is important to note
that the association of subjective sleep duration with carotid IMT was U-shaped in that healthy
population. Wolff et al. reported that both longer (>11 h) and shorter (<5 h) sleep duration was
associated with increased risk of atherosclerosis as compared to the reference sleep duration (7–8 h)
in a general population (n = 2383) [24]. Abe et al. also queried 2214 general population subjects
and showed that a longer sleep duration (>7 h) was significantly correlated with the incidence
of carotid artery atherosclerosis as compared with a duration of 6 h [25]. Additionally, several
studies revealed that longer sleep duration has an association with the incidence of stroke and
cardiovascular mortality [26,27], while several largescale studies found associations of sleep duration
and quality with baPWV. Importantly, the association between sleep duration and baPWV also had
a U-shape in a manner similar to the association of sleep duration with carotid IMT. In a large
general population study (n = 18,106), Kim et al. reported that both longer (>8 h) and shorter (<5 h)
sleep durations were associated with higher baPWV as compared with recommended sleep time
(7 h) [28]. Yoshioka et al. also showed that daily sleep duration (>9 h) was associated with elevated
baPWV in 4268 employees [29]. Also, in 3508 males in the general population, Tsai et al. found an
association between long sleep duration and increased baPWV [30]. More recently, low sleep quality
was shown to be associated with subclinical coronary atherosclerosis, as assessed by cardiac computed
tomography [31].
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Table 2. Associations of subjective or objective sleep duration, and quality with carotid IMT and baPWV in healthy populations.

Surrogate Marker of
Atherosclerosis

Sleep
Parameter Study Design Population

Characteristics
Sleep

Measurement Comments References

Carotid intima media
thickness (IMT) Duration Cross-sectional

Healthy, middle-aged
(n = 617) Actigraphy

Shorter sleep duration (<5 h)
increase IMT. Sands et al. [23]

General population
(n = 2383)

Health check-up subjects
(n = 2214)

Long sleep duration (>7 h or >11 h)
significantly correlated with the

incidence of carotid artery
atherosclerosis

Wolff et al. [24]
Abe et al. [25]

Brachial-ankle pulse
wave velocity (baPWV)

Duration Cross-sectional
Health check-up subjects

(n = 18,106) PSQI Subjective short sleep duration (<5 h)
is associated with higher PWV Kim et al. [28]

Health check-up subjects
(n = 18,106)

Health check-up subjects
(n = 4268)

Health check-up subjects
(n = 3508)

Self-Report
questionnaire

PSQI

Long sleep duration (> 8 h) is
associated with elevated PWV

Kim et al. [28]
Yoshioka et al. [29]

Tsai et al. [30]

Quality Cross-sectional Health check-up subjects
(18,106) PSQI Poor sleep quality is associated with

higher PWV Kim et al. [28]

PSQI: Pittsburg sleep quality index.
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3. Potential Mechanisms underlying Association of Sleep with Atherosclerosis Progression

Short sleep duration and low sleep quality can have strong effects on several aspects of
endocrinological, immunological, and metabolic responses. Both are known to disturb the daily
rhythm of the hypothalamic-pituitary-adrenal axis. Following activation of that axis, resultant higher
cortisol levels are associated with insulin resistance, cardiovascular risk factors, and coronary heart
disease [32]. Also, Lee et al. showed that testosterone, a cortisol-linked stress hormone, is associated
with coronary artery calcium (CAC) and carotid IMT [33]. In our study, we reported a relationship of
low sleep quality with higher serum macro TSH (Table 3), which was found to be regulated in a manner
distinct from free TSH, potentially due to an altered glycosylation structure [34]. In our subjects, serum
macro TSH levels and sleep physical activity index values (higher value indicating poor sleep quality)
were higher, while total sleep time was lower in patients with diabetes, as compared to those without
(Figure 2). On the other hand, no such significant differences were found when the patients were
categorized by the presence or absence of hypertension or dyslipidemia. Serum macro TSH levels
were also shown to be significantly associated with fasting glucose, HbA1c, and homeostasis model
assessment for insulin resistance (HOMA-R). Together, these results suggest that sleep quality is deeply
related to altered endocrinological responses, which may be involved in progression of atherosclerosis
through modulation of metabolic status.

Table 3. Multiple linear regression analyses of macro TSH and sleep parameters.

Variables Sleep Physical Activity % Sleep

β p β p

Macro TSH (high = 1. Low = 0) 0.145 0.01 −0.150 <0.01
Adjusted R2 0.041 <0.01 0.047 <0.01

Multiple linear regression analyses were performed. Covariates in each model included age, male gender, body
mass index, presence of hypertension, dyslipidemia, and diabetes mellitus. Higher sleep physical activity and lower
% sleep each represent low sleep quality. TSH: thyroid-stimulating hormone. β: standard regression coefficient.
Modified from [34].
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Figure 2. Macro-TSH and sleep quality assessed by actinography in patients with and without
diabetes. Macro-TSH is significantly associated with low sleep quality [34]. When compared between
non-diabetic (non-DM) and diabetic (DM) patients, all macro-TSH and activity index during sleep
(high values represent poor sleep quality) were significantly higher in DM patients. Values shown in
each column represent the mean ± standard error. Student’s t-test was used for analyses.

It has also been reported that oxidative stress, subclinical systemic inflammation, and endothelial
dysfunction may mediate the effects of short sleep duration and low sleep quality [35–37]. Short sleep
duration and low sleep quality have been shown to induce a proinflammatory state, characterized
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by increased levels of several cytokines, including IL1β, TNFα, IL6, and IL17 [38–40]. Another study
of rodents noted that chronic sleep fragmentation may induce morphological vessel changes, which
are characterized by disruption and disorganization of elastic fibers, and increased recruitment of
inflammatory cells [41]. An epidemiologic study found that short sleep duration (4 h) contributes to
endothelial dysfunction, as measured by flow-mediated brachial artery vasodilatation (FMD) [42].
Other reports have shown that oxidative stress, such as total antioxidant capacity (TAC) and
8-hydroxy-2-deoxyguanosine (8-OHdG), is elevated in patients with OSA. Oxidative stress may
be involved in dysregulation of collagen and elastin fibers of the vascular wall, leading to increased
arterial stiffness [36,43]. Furthermore, study findings have indicated that OSA can lead to endothelial
dysfunction and arterial disease [37], in which intermittent hypoxia and intrathoracic pressure changes
may be involved.

In addition to progression of atherosclerosis, several have reported close associations of sleep
condition with obesity, including epidemiologic examinations that found an association between short
sleep duration and weight gain [44–46]. Potential mechanisms underlying this relationship are feeding
behavioral changes and dysregulation of the neuroendocrine system, including the leptin-ghrelin
system. Fang et al. conducted a human study that showed that sleep deprivation leads to increased fat
intake through brain connectivity from the dorsal anterior cingulate cortex to the putamen and anterior
insula [47]. Taheri et al. also presented results showing that short sleep duration may reduce leptin and
induce ghrelin [48]. Moreover, in basic research findings, chronic sleep fragmentation was indicated to
induce hypothalamic endoplasmic reticulum stress, which is associated with leptin resistance, alters
eating behavior, and leads to weight gain [49]. A recent study found that acute sleep loss is attributable
to epigenetic changes in adipose tissue and skeletal muscle, which are the result of an alteration of
metabolic fuel utilization [50]. In that study of individuals with sleep loss, down-regulated proteins
in skeletal muscles were shown to include genes involved in glycolysis, such as phosphoglycerate
kinase 1 (PGK1), whereas the protein is up-regulated in adipose tissue. It was also demonstrated that
alterations in circadian rhythm may be involved, since protein levels of the core clock component
BMAL1 were significantly higher in skeletal muscle. Indeed, significant roles of circadian rhythm and
BMAL1 in metabolic utilization have been shown in animal studies [51,52].

A longitudinal study reported that low sleep quality due to insomnia increases the risk for
hypertension [53]. The association between OSA and hypertension has been well established by
findings of several pathophysiological and epidemiological studies, in which autonomic dysfunction,
including sympathetic and parasympathetic imbalance, appears to be involved. Furthermore,
cross-sectional studies have also shown a significant association between OSA and dyslipidemia [54,55].
A recent review by Barros [56] elegantly summarizes potential mechanisms related to sleep and
dyslipidemia. Intermittent hypoxia due to OSA up-regulates hypoxia-induced factor-1 (HIF-1),
which might be involved in lipolysis in adipose tissue lipolysis, lipid synthesis in the liver favoring
secretion of very low-density lipoprotein (VLDL), and delayed clearance of triglyceride-rich lipoprotein.
Excessively produced reactive oxygen species (ROS) may be involved in generation of an oxidized
form of LDL cholesterol, which is known to have a more atherogenic form. Indeed, higher levels of
oxidized LDL cholesterol have been found in patients with OSA [57]. Dysfunction of high-density
lipoprotein (HDL) has also been suggested in OSA patients [58], which may be mediated through
increased noradrenaline and cortisol secretion [59,60]. In our 1-year prospective study, we also found
that low sleep quality is associated with worsening of dyslipidemia (Figure 3). Objectively measured
poor sleep quality and short sleep duration are each associated with a decrease in HDL cholesterol
and increase in triglyceride level, independent of sleep apnea-hypopnea index. Short sleep duration
has also been shown to be associated with increased prevalence of diabetes and impaired glucose
tolerance [61,62]. A 15-year longitudinal prospective study showed that difficulty with falling asleep
or regular use of hypnotics is associated with diabetes incidence in middle-aged men [46]. Moreover,
several epidemiological studies have found that OSA is an independent risk factor for development of
diabetes [63], in which autonomic dysfunction, oxidative stress induced by intermittent hypoxia, and
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inflammation may be involved. The associations between OSA and atherosclerotic risk factors may
not be universal among ethnic groups. Recent papers based on Multi-Ethnic Study of Atherosclerosis
(MESA) results showed that low sleep quality is associated with hypertension or peripheral artery
disease (PAD) in blacks, but not in whites or Hispanics. Potential mechanisms of this heterogeneity
include differences in salt sensitivity and diet quality among ethnicities [64].
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4. Autonomic Nervous Function and Atherosclerosis

HRV provides a practical means to assess impaired autonomic nervous function in clinical
settings by use of continuous electrocardiographic records, as those reflect sympatho-vagal balance
and parasympathetic nervous activity.

It has been shown that reduced HRV predicts all-cause mortality and cardiovascular events [7],
while that has also been recognized in patients with myocardial infarction [65], diabetes mellitus [66],
and short sleep duration or low sleep quality [6,11]. Table 4 summarizes the limited numbers of studies
presented thus far that have examined the relationships of HRV with carotid IMT and baPWV in
specific patient groups [11,67–72]. In a longitudinal study, Gottsater et al. showed an association of
low HRV with progression of carotid IMT in 61 type 2 diabetic patients over a period of 3–4 years [67].
Furthermore, Melillo et al. reported that low HRV was significantly associated with carotid IMT in
200 hypertensive patients [68]. In the HSCAA study, we found that HRV was associated with carotid
IMT in patients with cardiovascular risks, independent of sleep quality and apnea-hypopnea [11].
Pizzi et al. showed an inverse association of carotid IMT or inflammatory markers (CRP, IL-6)
with HRV in 391 depressed subjects with coronary risk factors [69], while Ulleryd et al. reported
mutual relationships among HRV, inflammatory markers (CRP, white blood cell count), and carotid
atherosclerosis in 124 men over 40 years old [70]. Together, these results suggest that inflammation
plays an important role in the association of autonomic dysfunction with atherosclerosis. Recently,
Pereira et al. reported that HRV noted during a deep breathing test was significantly and negatively
correlated with carotid IMT in 101 patients with atherosclerotic risk factors [71]. As for arterial
stiffness, Jaiswal et al. found that HRV was significantly and negatively associated with baPWV in
344 patients with type 1 diabetes [72], though no prospective studies that investigated this association
have been presented.
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Table 4. Associations of HRV with carotid IMT and baPWV.

Surrogate Marker
of Atherosclerosis Study Design Population Comments References

Carotid intima media
thickness (IMT)

Cross-sectional

Cardiovascular risk factors (n = 330)
Depressed with cardiovascular risk

factors (n = 391)
Males >40 years old (n = 124)

Cardiovascular risk factors (n = 101)

HRV associated with carotid IMT, independent
of sleep quality and apnea-hypopnea.

Inflammation may be involved in association
between autonomic dysfunction and

atherosclerosis.

Kadoya et al. [11]
Pizzi et al. [69]

Ulleryd et al. [70]
Pereira et al. [71]

Retrospective Hypertensive (n = 200) HRV associated with renal damage Melillo et al. [68]

Prospective Type 2 diabetes (n = 61) Decreased HRV may predict progression of
carotid atherosclerosis Gottsater et al. [67]

Brachial-ankle pulse wave
velocity (baPWV) Cross-sectional Type 1 diabetes (n = 344) Lower HRV associated with higher baPWV (no

prospective studies available) Jaiswal et al. [72]

HRV: heart rate variability.
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5. Potential Mechanisms underlying Association of Autonomic Nervous Dysfunction and
Progression of Atherosclerosis

Autonomic nervous dysfunction can cause alterations in immunological response and endothelial
dysfunction, which eventually could lead to progression of atherosclerosis, while an increased level of
inflammatory cytokines may mediate the effects of autonomic nervous dysfunction on atherosclerosis
progression [69,70]. Similar to the association between low sleep quality and atherosclerosis,
augmented recruitment of inflammatory cells into vessel walls induces morphological changes in vessel
cells. Another recent study suggested that autonomic dysfunction dysregulates neurotransmitters,
such as norepinephrine (NE), adenosine triphosphate (ATP), neuropeptide Y (NPY), and acetylcholine
(Ach), which are released from autonomic nerve terminal varicosities, and become diffusely distributed
to smooth muscle cells and endothelial cells in the vessel [73]. The effects of autonomic function and
these neuropeptides on vascular functions including arterial tone may be mediated by nitric oxide
(NO) and endothelin, vasoactive factors produced by endothelial cells [74]. Additionally, platelet
aggregation might serve to mediate the effects of autonomic nervous dysfunction on progression of
atherosclerosis [75].

Furthermore, autonomic nervous dysfunction disturbs metabolic factors and may be attributable
to classical atherosclerotic risk factors, such as hypertension, dyslipidemia, and diabetes mellitus.
Yamada and Katagiri showed that the autonomic nervous system plays an important role in
communicating organ-to-organ metabolic information [76]. Using these systems, the brain obtains
information regarding peripheral metabolic status and processes the signals to regulate peripheral
metabolism. Indeed, a relationship between autonomic nervous function and metabolic syndrome
was shown in a large prospective cohort study conducted over a 2-year period of follow-up
examinations [77]. Their findings indicated that an index of autonomic dysfunction was associated
with increased numbers of metabolic syndrome components, such as high blood pressure and low
HDL cholesterol.

The effects of autonomic dysfunction on atherosclerosis may be mediated by endocrinological
alterations, including circulating epinephrine [78], as well as insulin resistance and adipocytokines,
including leptin. Recent findings in animal models clearly showed that leptin, which reduces food
intake, is significantly associated with autonomic nervous function [79]. The leptin receptor is
expressed in the central nervous system. In our study conducted with the HSCAA cohort and
performed under clinical conditions, we showed an association between plasma leptin and autonomic
nervous function in patients with type 2 diabetes, and that association was independent of other
clinical factors [80]. Additionally, brain-derived neurotrophic factor (BDNF) may be another key
factor related to the effects of autonomic nervous function [81], as it has critical roles in survival,
growth, maintenance, and death of central and peripheral neurons, and is also involved in regulation
of the autonomic nervous system. In the HSCAA cohort study, we found a positive and significant
association between plasma BDNF and autonomic nervous function in patients with cardiovascular
risk factors [16].

6. Fatigue, Atherosclerosis and Cardiovascular Diseases

Fatigue is a common symptom in patients with a variety of conditions. Although the
pathophysiological details have not been well characterized, it is known to be associated with
continuous short sleep deprivation and low sleep quality. Recent epidemiological studies have
found that fatigue is more common in patients with cardiovascular risk factors, such as diabetes [82],
obesity [83], and sleep apnea [84]. We showed that higher fatigue score, determined using a recently
established fatigue questionnaire, is a predictor of cardiovascular events in patients undergoing
hemodialysis, with an impact independent of the presence of diabetes or past history of cardiovascular
diseases [85]. Although the underlying mechanisms of those findings are not clear at present, potential
candidates include short sleep duration, low sleep quality, autonomic nervous dysfunction such as
elevated sympathetic nervous function, and altered endocrine and immune functions. We reported
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that loading of psychological fatigue in rats was associated with disturbance of neuroendocrinological
functions [86]. Furthermore, in the HSCAA cohort study, fatigue score was found to be closely
associated with plasma leptin level in patients with cardiovascular risk factors [87]. The leptin
receptor is expressed in the central nervous system and may be involved in cardiac autonomic
nerve function [80]. We have also shown that low plasma BDNF level, another potential biomarker
indicating fatigue, is independently associated with a reverse-dipper pattern of nocturnal blood
pressure [16] and development of chronic kidney disease (CKD) [88], in which autonomic nervous
dysfunction may be involved, at least in part. Additional studies are needed to explore the mechanisms
related to the contributions of fatigue to progression of atherosclerosis and cardiovascular diseases via
autonomic dysfunction.

7. Conclusions and Perspectives

Behavioral and psychosocial factors, especially sleep, have been gaining increased attention in
regard to their relationship with development of cardiovascular disease. In this review, we aimed
to focus on the pathogenic impact of sleep problems, autonomic nervous function, and fatigue in
relation to development of atherosclerosis and cardiovascular diseases (Figure 4). It is possible that
inflammatory and oxidative response, endothelial dysfunction, endocrinological and immunological
factors, and metabolic responses, as well as yet unveiled mechanisms underlie the effects of sleep
problems, autonomic dysfunction, and fatigue on atherosclerosis progression. As shown in Figure 4,
these psycho-behavior factors might accelerate the degree of progression, which is induced by classical
risk factors such as diabetes, hypertension, obesity, and others. As highlighted in this report, the
association between sleep problems and atherosclerosis has mainly been demonstrated in healthy
populations, and results of a prospective large cohort study of patients with atherosclerotic risks are
definitely needed. Moreover, no randomized controlled trial to examine the impact of improvement of
these psycho-behavior problems on progression of atherosclerosis and occurrence of cardiovascular
diseases has been reported. Additionally, basic studies are mandatory to identify feasible biomarkers
for assessment of sleep problems and autonomic dysfunction in clinical settings. Fortunately, greater
attention and additional investigations have brought focus to this important research field, and we
believe that behavior factors will be recognized in the near future as promising clinical targets for
prevention of atherosclerotic diseases.
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