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ABSTRACT

Background: Multiple pathway models of ADHD suggest that multiple, separ-

able biological pathways may lead to symptoms of the disorder. If this is the case, it should be possible to identify subgroups of children with ADHD based on distinct
patterns of brain activity. Previous studies have used latent class analysis (LCA) to define subgroups at the behavioral and cognitive level and to then test whether
they differ at the neurobiological level. In this proof of concept study, we took a reverse approach. We applied LCA to functional imaging data from two previously
published studies to explore whether we could identify subgroups of children with ADHD symptoms at the neurobiological level with a meaningful relation to
behavior or neuropsychology.

Methods: Fifty-six children with symptoms of ADHD (27 children with ADHD and 29 children with ASD and ADHD symptoms) and 31 typically developing children
performed two neuropsychological tasks assessing reward sensitivity and temporal expectancy during functional magnetic resonance imaging. LCA was used to
identify subgroups with similar patterns of brain activity separately for children with ADHD-symptoms and typically developing children. Behavioral and neu-
ropsychological differences between subgroups were subsequently investigated.

Results: For typically developing children, a one-subgroup model gave the most parsimonious fit, whereas for children with ADHD-symptoms a two-subgroup model
best fits the data. The first ADHD subgroup (n = 49) showed attenuated brain activity compared to the second subgroup (n = 7) and to typically developing children
(n = 31). Notably, the ADHD subgroup with attenuated brain activity showed less behavioral problems in everyday life.

Conclusions: In this proof of concept study, we showed that we could identify distinct subgroups of children with ADHD-symptoms based on their brain activity
profiles. Generalizability was limited due to the small sample size, but ultimately such neurobiological profiles could improve insight in individual prognosis and

treatment options.

1. Introduction

Much of what we know about ADHD comes from studies that have
compared groups of children with ADHD to groups of typically devel-
oping children (Costa Dias et al., 2013). However, multiple pathway
theories argue that changes in multiple neurobiological pathways could
lead to symptoms of ADHD independently of one another (Nigg et al.,
2005; Sonuga-Barke, 2005). If neurobiological pathways to ADHD are
truly separable, then it should be possible to identify subgroups of
children with ADHD-symptoms based on distinct patterns of brain ac-
tivity. Moreover, neurobiological subgroups will most likely not align
with current behavior-based subgroups (e.g. DSM-5 presentations of
ADHD) or we would long have identified neurobiological markers of
these subgroups. The present study aims to provide a proof of concept
by taking a reverse approach to most studies of ADHD neurobiology:
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instead of subgrouping children with ADHD on the basis of their be-
havior and subsequently testing for differences in neurobiology, we
tested whether distinct subgroups of children with ADHD-symptoms
can be identified based on their brain activity profiles. In a second step,
we tested for behavioral differences between these neurobiology-based
subgroups.

This approach is related to the Research Domain Criteria (RDoc)
rationale, which aims to “develop new ways of classifying mental dis-
orders based on dimensions of observable behavior and neurobiological
measures” (Insel et al., 2010). If we can identify meaningful neuro-
biological profiles within ADHD that are associated with behavioral
differences, this could improve our understanding of children with
ADHD symptoms. Our assessment of behavior could then be informed
by neurobiological knowledge, without the need to first scan every
child. Ultimately, this could lead to improved treatment options and
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align them closer with the needs of an individual child.

In this study, we focused on two neuropsychological domains: re-
ward processing and temporal expectancy. As a group, children with
ADHD show changes in reward processing: they tend to respond more
impulsively to reward, favoring smaller immediate rewards over larger
delayed ones. Furthermore, they show greater improvement in task
performance following reward than typically developing children
(Luman et al., 2005). Both, the dynamic developmental theory (DDT)
and dopamine transfer deficit theory (DTD) propose that such sensi-
tivity to reward may be the result of changes in dopamine signaling
(Sagvolden et al., 2005; Tripp and Wickens, 2008). Activity in ventral
striatum, as assessed with fMRI, can be used as proxy for local dopa-
mine activity (Delgado et al., 2005; Knutson and Gibbs, 2007). In ad-
dition to changes in reward processing, changes in temporal expectancy
have been suggested in children with ADHD (Durston et al., 2007; Nigg
and Casey, 2005; Rubia et al., 2003). Attenuated temporal expectancy
may be related to reduced anticipatory brain activity in fronto-striatal
networks (Durston et al., 2007; Ghajar and Ivry, 2009; McClure et al.,
2003), which in turn may also be related to reduced dopamine signaling
(Tripp and Wickens, 2008, 2009).

In this proof of concept study, we used latent class analysis (LCA) to
identify subgroups of children with ADHD-symptoms based on their
individual patterns of brain activity, rather than grouping them to-
gether based on predefined criteria of symptomatic or cognitive mar-
kers. To do so, we used brain activity data from two earlier fMRI-studies
(B.M. van Hulst et al., 2017a, 2017b). In addition, to be able to describe
these subgroups in terms of behavior and cognition, we used ques-
tionnaire and task performance data collected in these same two fMRI-
studies. In these studies, we tested reward processing and timing in
children (aged 8-12) with a primary diagnosis of ADHD, as well as
children with a primary diagnosis in the autism spectrum and symp-
toms of ADHD (ASD +). We included this group because until now it is
unclear whether differences in reward processing and temporal ex-
pectancy are specific to ADHD or relate to ADHD-symptoms in a more
trans-diagnostic way. We hypothesized that we would be able to
identify subgroups of children with symptoms of ADHD, based on their
patterns of brain activity, and that these subgroups would show
meaningful differences in behavior or neuropsychology.

2. Methods and materials
2.1. Sample

We included data from all participants that were included in the
main analyses of the two original fMRI-studies. In these studies, data
was first screened to exclude participants with excessive head move-
ment or low scan quality from the main analyses (for details and
numbers see Supplementary text S1). This resulted in the inclusion of
high quality datasets from 87 right-handed boys between the ages 8-12;
56 boys with symptoms of ADHD (27 with a primary diagnosis of ADHD
and 29 with a primary diagnosis of ASD and ADHD symptoms (ASD +),
M,ge = 10.94, SD =1.24) and 31 typically developing children
(M,ge = 10.28, SD = 1.07).

There was a difference in age between the group of children with
ADHD symptoms and typically developing children (t(85) = —2.49,
p = 0.014). To address this, we included age as a covariate in all
comparisons between typically developing children and both ADHD
groups. If age was related to an outcome measure, analyses were run
both with and without the covariate. If not, age was left out of the final
model. 19 Children with ADHD and 19 with ASD+ were using short-
acting psychostimulants (e.g. methylphenidate). All participants were
asked not to take medication 24 h prior to scanning (van Hulst et al.,
2017a, 2017b).

Inclusion criteria for children with ADHD included a diagnosis of
ADHD based on DSM-IV-TR criteria (Association, 2000). The diagnosis
ADHD was confirmed using the Diagnostic Interview Schedule for
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Children (DISC-IV; (Shaffer et al., 2000)). Children with ASD and
symptoms of ADHD were included if they met two criteria: The first
criterion was a DSM-IV-TR diagnosis of ASD from an expert child and
adolescent psychiatrist. The second criterion was the presence of at-
tention problems as defined by a clinical or subclinical score (above the
age appropriate threshold) on the attention subscale of the Child Be-
havior Checklist (CBCL) (Verhulst et al., 1996). Inclusion criteria for
typically developing children included the absence of psychiatric dis-
orders based on the DISC-IV (except for specific phobia and enuresis).
General exclusion criteria included IQ lower than 70 as assessed using a
four-subtest shortened Wechsler Intelligence Scale for Children (WISC-
III; (Wechsler, 1991)), major illness of the cardiovascular, endocrine,
pulmonary or gastrointestinal system, the presence of interfering metal
object in or around the body, and a history of or present neurological
disorder.

2.2. Procedure

The study and its procedures were approved by the institutional
review board of the UMC Utrecht. Children with ADHD symptoms were
recruited through the UMCU outpatient clinic for developmental dis-
orders and schools for special education. Typically developing children
were recruited through local schools. After the purpose and procedure
of the study had been explained, informed consent was obtained from
parents and verbal assent was obtained from children.

In the original fMRI studies, data was collected during two visits.
During the first visit, the DISC-IV (Shaffer et al., 2000) was adminis-
tered to one or both parents while children participated in a shortened
WISC-III (Wechsler, 1991) IQ assessment. Afterwards, children parti-
cipated in a mock-scanner session to prepare for the fMRI scan. Prior to
the visit, parents completed the Sensitivity to Punishment and Sensi-
tivity to Reward Questionnaire (SPSRQ-C; (Luman et al., 2012)), and
the Strengths and Weaknesses of Attention Deficit/Hyperactivity Dis-
order Symptoms and Normal Behavioral Scale (SWAN; (Swanson et al.,
2001)) at home. Three composite scales were computed: SWAN-atten-
tion, SWAN-hyperactivity, SPSRQC-reward. During the second visit, the
mock-scanner session was repeated. Afterwards, an fMRI session was
run in two parts with a break in the middle. During the fMRI session,
children performed two neurocognitive tasks, a child-friendly version of
the monetary incentive delay (MID) task and a timing manipulated go/
nogo task. Task performance and brain activity data were collected for
both tasks. A detailed description of the tasks can be found in the
supplementary text and earlier papers (De Zeeuw et al., 2012). Both are
briefly described below. Task order was randomized across subjects.

2.3. Task performance measures

A child-friendly modification of the MID task was used to assess
reward anticipation. In brief, this is a task where children are informed
on how much money they can win in the upcoming trial. The event of
interest is not the trial itself, but the brain activity elicited by the an-
ticipation of different monetary rewards. However, we did also use a
measure of task performance: the shift in reaction time (RT) distribu-
tion between rewarded and unrewarded trials. This was quantified
using linear regression of individual rank-ordered reaction times in the
high-reward condition (i.e. 15 cents) on the individual rank-ordered
reaction times in the non-rewarded conditions, as described previously
(De Zeeuw et al., 2012). A regression coefficient (RegB) smaller than
one indicates faster RT on rewarded than on unrewarded trials.

A timing manipulated go/nogo task was used to assess temporal
expectancy. In this task children were instructed to push a button when
they saw a picture of cheese (go cue) and withhold their response when
they saw a cat (nogo cue). Of interest was the timing of cues which was
manipulated to create a distinction between cues with expected and
cues with unexpected timing. We studied brain activity differences
between these expected and unexpected events. In addition, we used
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the difference score between mean response times on go-trials with
expected timing (i.e. RTexpectedgo) and mean response times on go-trials
with unexpected timing (i.e. RTyunexpectedgo) divided by the standard
deviation of response times, as a measure of task performance. This
measure indicates whether participants' responses on expected trials
were faster than on unexpected trials.

2.4. Neuroimaging measures

We used average brain activity in four regions of interest (ROIs) as
input for our latent class analysis (LCA). Mean activity in these four
ROIs was derived from brain activity data from two different fMRI
studies that have been previously published (B.M. van Hulst et al.,
2017a, 2017b). In Supplementary Text S1 we briefly describe the
Methods that were used in these previous studies. The choice of ROIs
was based on between-group differences found in this dataset. As such,
these previous studies tested for between-group differences, where this
study tests for within-group differences. Between-group differences
were found in left subthalamic nucleus and left pallidum related to
temporal expectancy, and bilateral nucleus accumbens related to re-
ward anticipation. As a result, these ROIs were further explored in this
study.

3. Analytic strategy

The analysis consisted of three steps: (1) identifying homogenous
subgroups of children with ADHD symptoms based on patterns of brain
activity during reward anticipation and temporal expectancy; (2) as-
sessing behavioral and neuropsychological differences between these
subgroups; (3) comparing neurobiological and neuropsychological
measures of these subgroups to those of (subgroups of) typically de-
veloping children.

3.1. Step 1 — model selection

First, we used full information maximum likelihood (FIML) to deal
with missing data. In FIML, missing values are not replaced. Instead, the
model uses all available information from all variables in the model
(full information likelihood) to estimate values that would most likely
produce the estimates from the sample data. Then, to identify sub-
groups, we performed LCA on mean activity in the four ROIs listed
above using Mplus, Version 7.3 (Muthén and Muthén, n.d.). Model
selection followed a strict procedure that was defined a-priori. First, we
determined the number of latent classes (i.e. subgroups) on the basis of
the Bayesian Information Criterion (BIC). Better fitting models have a
lower BIC. If model selection using BIC yielded a class with less than
three subjects, the more parsimonious model was chosen (i.e. with
fewer classes). Note that we determined the number of classes (i.e.
subgroups) in this step, so before correlations were added to the model.
Second, we tested for conditional independence using a procedure de-
scribed by Vermunt and Magidson (2002). We incrementally added
correlations to the model each time adding the strongest correlation.
We used modification indices to check if model fit kept improving and
stopped adding correlations when they yielded no further improvement
in model fit. The modification index approximates the increase in chi-
square of the overall model fit by freeing a parameter. By introducing
possible local dependences between residuals, a more parsimonious
model fit can be found compared to adding more classes (Vermunt and
Magidson, 2002). Third, Wald tests were performed to characterize the
differences in brain activity between subgroups.

3.2. Step 2 - differences between subgroups
Next, we analyzed the relation between the latent classes and con-

tinuous outcome variables (i.e. RegB, RTpenefitsp, SWAN-attention,
SWAN-hyperactivity, SPSRQC-R, age, TIQ) using the Bolck, Croon and
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Hagenaars (BCH) method in Mplus (Bolck et al., 2004). BCH is a new
method for 3-step mixture modeling with continuous outcomes. It uses
weighted multiple group analysis in which the subgroups correspond to
the latent classes. In doing so, the subgroups are known and not sus-
ceptible to changes (Bakk and Vermunt, 2015). Categorical outcome
variables (i.e. DSM-IV-TR and DISC-IV diagnosis) were analyzed using
DCAT in Mplus. All results were corrected for multiple comparisons
using a False Discovery Rate (FDR) correction.

3.3. Step 3 — comparison with typically developing children

In a third step, we tested for differences on the distal outcome
variables between the ADHD-symptom subgroups and control sub-
groups using multiple independent sample t-tests in SPSS. All results
were corrected for multiple comparisons using a False Discovery Rate
(FDR) correction. To this end, we performed a separate LCA-analysis on
brain activity data from typically developing children. We chose to
perform two separate analyses, as opposed to a combined analysis on
data from all participants, as subgroups across typically developing and
ADHD children may differ in both qualitative (i.e. a different ratio
between activity in different brain areas) and quantitative (i.e. the same
ratio between activity in different brain areas, but an overall brain
activity difference) ways. As such, running a single combined analysis
in a relatively small sample would have risked lumping together sub-
groups into larger non-specific subgroups. In this, we followed the
method used by Fair and colleagues in their study of heterogeneity in
ADHD (Fair et al., 2012).

4. Post-hoc analyses

As head motion can be a confounding factor in imaging analyses, we
tested for differences in head motion between subgroups. Framewise
displacement (FD) was calculated as a measure of between-scan head
motion. FD averages the absolute values of the differentiated realign-
ment estimates (Power et al., 2012). We used a one-way ANOVA with
mean FD during both tasks as dependent variable and subgroup (ADHD-
1, ADHD-2 or control) as factor; and followed up with Tukey's honestly
significant difference post hoc test.

5. Results
5.1. Step 1 — model selection

Global maximum was achieved in all models on the data from
children with ADHD symptoms. The lowest BIC was found for the three-
class model. However, the three and four class models each included a
subgroup with only two participants. Therefore, we carried forward the
two-class model that had a better model fit (BIC) than the single class
model. We then tested for conditional independence by incrementally
adding correlations to the model, each time adding the strongest cor-
relation and using modification indices to check if model fit kept im-
proving (Vermunt and Magidson, 2002). We stopped adding correla-
tions when they yielded no further improvement in model fit. This
procedure resulted in including a correlation between activity in left
and right nucleus accumbens for the entire ADHD symptom group, and
including a correlation between left subthalamic nucleus and left pal-
lidum for subgroup 1. This resulted in a final model as depicted in
Fig. 1, with model fit statistics shown in Table 1.

5.2. Step 2 - differences between subgroups

As per definition, we found differences in brain activity between the
two subgroups, with higher ROI activity in ADHD subgroup 2 (ADHD-2,
n=7) than in ADHD subgroup 1 (ADHD-1, n = 49) (Wald
(3) = 144.141, p < 0.001). Univariate tests of individual ROIs did not
reach significance (Waldjefpalidqum (1) = 2.124, p = 0.145), (Waldyestn
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Note. The final model includes the correlation between left and right nucleus accumbens in both subgroups, and a correlation between left subthalamic nucleus and

left pallidum only for subgroup ADHD-1.

(1) =0.021, p=0.883), (Waldrenace (1) =3.343, p = 0.067),
(Waldjgnacc (1) = 0.087, p = 0.768). As the effect sizes were medium
to large for some of the univariate tests (e.g. left pallidum d = 0.52,
right nucleus accumbens d = 0.77) this may reflect limited statistical
power.

To assess whether subgroups ADHD-1 and ADHD-2 differed in de-
mographics, task performance or behavior, we compared the subgroups
using the BCH method. Subgroup ADHD-2 showed more parent-rated
reward sensitivity (Wald(1) = 11.468, p < 0.001) and more parent-
rated attention problems (Wald(1) = 6.059, p = 0.014) than subgroup
ADHD-1 (see Fig. 3). The subgroups did not differ in age (t
(55) = 0.722, p = 0.395), total IQ (t (55) = 0.383, p = 0.536), DSM-
IV-TR diagnosis (¥2(1) = 0.003, p = 0.956) or DISC diagnosis (x2
(3) = 0.687, p = 0.876).

5.3. Step 3 — comparison with typically developing children

For the typically developing children, we selected the one-class
model, as adding more classes resulted in a subgroup with only one
participant. Here, the correlation between left and right nucleus ac-
cumbens was also high (r = 0.87) and was included in the final model.
Conditional independence testing indicated no residual correlations.
Model fit statistics are given in Table 2. Fig. 2 shows mean activity for
all four ROIs for the two ADHD subgroups and the control group.

We compared the two subgroups of children with ADHD symptoms
to the typically developing group on the same measures as above and
found differences in brain activity (see Fig. 2). Subgroup ADHD-1 had
less activation than typically developing controls in left subthalamic
nucleus and right nucleus accumbens at a statistically significant level
(see supplementary Table 1). In addition, at the descriptive level, all
four ROIs appeared less active in subgroup ADHD-1, but not subgroup
ADHD-2, compared to the typically developing group. As expected,
both subgroups of children with ADHD showed more parent-rated re-
ward sensitivity, attention problems and hyperactivity in everyday live
than typically developing children (see supplementary Table 2). There
were no differences in task performance. Age was not significant as a

covariate in any of the analyses above and was consequently left out of
the final analyses.

5.4. Post-hoc analyses

We found an overall difference in head motion (i.e. framewise dis-
placement) between the three subgroups (F(2,83) = 5.863, p = 0.004).
A posteriori testing indicated no difference (p = 0.242) in head motion
between children in subgroup ADHD-1 (M = 0.29, SD = 0.15) and
children in subgroup ADHD-2 (M = 0.38, SD = 0.16). While both
subgroup ADHD-1 (p = 0.031) and subgroup ADHD-2 (p = 0.010) dif-
fered from typically developing children (M = 0.42, SD = 0.22).

6. Discussion

The goal of this proof of concept study was to explore whether we
could identify latent neurobiological subgroups among children with
symptoms of ADHD, based on their brain activity. Previous studies have
used latent class analysis (LCA) to define subgroups at the behavioral
and cognitive level and have subsequently investigated neurobiological
differences between these subgroups. We took a reverse approach and
used LCA to directly identify neurobiological subgroups based on their
functional imaging data. Two subgroups of children with ADHD-
symptoms were identified. The largest ADHD subgroup (ADHD-1) had
lower brain activity in the selected ROIs than the second subgroup
(ADHD-2). However, subgroup ADHD-2 exhibited more ADHD-related
symptoms as reported by parents.

Children in this study were classified based on their brain activity in
left pallidum, left subthalamic nucleus and bilateral nucleus ac-
cumbens. This permitted us to identify two subgroups of children with
ADHD symptoms: subgroup ADHD-1 was characterized by attenuated
brain activity across all four ROIs compared to subgroup ADHD-2. In
part, this is in keeping with the multiple pathway hypothesis that
proposes that children with ADHD can be distinguished based on se-
parable brain activity profiles while exhibiting the same, or similar,
behavioral problems (Sonuga-Barke, 2005). On the other hand,

Table 1
Model fit statistics for the one to four class models for children with ADHD-symptoms.
1-Class Model 2-Class Model 3-Class Model 4-Class Model
BIC Entropy BIC Entropy BIC Entropy BIC Entropy
Without correlation 364.0 1.00 352.6 0.88 339.5 0.86 339.7 0.88
Overall correlation 297.1 1.00 302.7 0.72 308.8 0.90 318.5 0.78
Correlation in subgroup ADHD-1 287.2 0.85

BIC, bayesian information criterion; LCA, latent class analysis.

Note.Table 1 shows the different steps taken in fitting the LCA model. First, the number of latent classes was determined based on BIC-values. The 3-class model had
the lowest BIC-values but included a subgroup with only two participants. In view of parsimony and interpretability, the 2-class model was carried forward. In
subsequent steps, we included direct effects in the model: first, the overall correlation between left and right nucleus accumbens; then the correlation between left

pallidum and left subthalamic nucleus for subgroup ADHD-1.
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Table 2
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Model fit statistics for the one to four class models for typically developing controls.

1-Class Model 2-Class Model

3-Class Model 4-Class Model

BIC Entropy BIC Entropy BIC Entropy BIC Entropy
Without correlation 204.3 1.00 194.5 0.98 194.2 0.80 199.3 0.80
Overall correlation 172.6 1.00

BIC, bayesian information criterion; LCA, latent class analysis.

Note.Table 2 shows the different steps in fitting the LCA model for the group of typically developing children. First, the number of latent classes was determined
based on BIC-values. The 2 and 3-class models had the lowest BIC-values but both included a subgroup with only one participant. Therefore the 1-class model was

carried forward.

multiple pathway models could be taken to suggest a more differ-
entiated profile, where one subgroup might be affected in reward sen-
sitivity but not timing and another subgroup vice versa (De Zeeuw
et al., 2012; Sonuga-Barke et al., 2010).

As a group, typically developing children showed a more homo-
genous pattern of brain activity and the 1-class model gave the most
parsimonious fit. Interestingly, brain activity of subgroup ADHD-2 re-
sembled that of typically developing children more than subgroup
ADHD-1, but subgroup ADHD-2 simultaneously exhibited more symp-
toms of ADHD.

We investigated whether (sub-) groups defined on functional ima-
ging data differed at the cognitive and behavioral levels. No differences
between the two ADHD subgroups were found on task performance
measures. There were no differences between the ADHD subgroups on
DSM-IV-TR (sub-)diagnosis, which is consistent with previous studies
that have reported that multiple etiological pathways to ADHD do not
appear to correspond to DSM-IVs behavioral subtypes (Castellanos and
Tannock, 2002; Durston et al., 2003). However, at the behavioral level,
the subgroups differed from each other on measures of attention pro-
blems and reward sensitivity: the parents of children in subgroup
ADHD-2 reported more attention problems and more reward sensitive
behavior in everyday life. This is a counterintuitive result, as ADHD
subgroup 2 showed most difficulties in daily life, but had a profile of
brain activity more similar to typically developing children than ADHD
subgroup 1. One explanation could be that children in ADHD subgroup
2 seek more external stimulation to compensate for reduced brain ac-
tivity. This fits with existing theories that have proposed that an or-
ganism will work to maintain optimal levels of arousal (Geissler et al.,
2014; Zentall and Zentall, 1983). According to this theory, impulsive
and reward seeking behavior represents an auto-regulatory mechanism
to attain more optimal levels of brain activity (Geissler et al., 2014). If
this is true, it suggests that forms of therapy that directly target arousal
levels may be effective. Indeed, some studies have shown that in-
troducing environmental noise can improve ADHD symptoms for some

children (S6Derlund et al., 2007). Furthermore, one interpretation for
the mechanism by which stimulants are effective is that they increase
dopamine levels and may therefore lead to more optimal levels of
arousal, and thus ameliorate behavior (Bresnahan et al., 2006). Lastly,
it is noteworthy that differences in reward sensitivity between these
neurobiology-based subgroups were found in parent-rated reward
sensitivity but not in the task performance proxy of reward sensitivity.
As such, it seems that these two measures of reward sensitivity may not
relate to the same underlying mechanisms.

We tested for neurobiological subgroups within children with
symptoms of ADHD as the search for a neurobiological profile of ADHD
might have been hampered by the assumption of a homogeneous di-
agnostic group (Crosbie et al., 2008; Nigg et al., 2005). Findings that
only hold for a subgroup might be diluted or even cancelled out when
heterogeneity is disregarded. Techniques to quantify neurobiological
heterogeneity should make it possible to study differential relationships
between behavior and neurobiology within one clinical group (Fair
et al.,, 2012; van Hulst et al., 2015). We showed that by temporarily
disregarding our knowledge of behavioral profiles (e.g. ADHD) and
behavioral subtyping (e.g. DSM-5 presentations of ADHD) and focusing
on neurobiological subgroups, we could eventually study behavior from
a more biological perspective. This follows the RDoc rationale (Insel
et al.,, 2010), as it steers away from symptom-based definitions as a
basis for research. In addition, we would like to argue that for any
neurobiological finding to be clinically relevant, it would have to add
significantly to our perspective on behavior, as opposed to simply re-
stating what we already knew from behavioral studies.

7. Limitations and future directions

While the sample size of the current study is typical for fMRI studies,
especially ones including young children with behavioral disorders, it
also borders on the minimum for LCA. As such, complex models such as
the ones presented here should not be generalized to the population at
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Fig. 2. Mean activity in the four regions of interest.

Note.Fig. 2 shows mean activity per ROI for the two ADHD-symptom subgroups (ADHD-1 and ADHD-2) and typically developing children.

*Significant subgroup difference.

**Multivariate subgroup difference; univariate tests of individual ROIs did not reach significance.
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Fig. 3. Behavioral differences between ADHD subgroups.
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Note.Fig. 3 shows differences in behavior between the two ADHD subgroups as reported by parents. Panel A shows reward sensitivity; panel B shows attention
problems; panel C shows hyperactivity. Subgroup ADHD-2 showed more parent-rated reward sensitivity (Wald(1) = 11.468, p < 0.001) and more parent-rated

attention problems (Wald(1) = 6.059, p = 0.014) than subgroup ADHD-1.
*Significant subgroup difference.

large. Moreover, our between subgroup analyses had limited power to
detect differences and thus conferred an increased risk for type-II er-
rors. A promising direction for future studies would be to include larger
samples and to cross-validate the resulting neurobiological profiles in
independent samples. However, the sample size here was sufficient for
a proof of concept, as our intention was to demonstrate a bottom-up
approach where we profiled at the neurobiological level and subse-
quently explored differences at the behavioral level. A second limitation
is that our regions of interest were chosen a priori, based on previously
found between-group differences in the same dataset. Accordingly,
other subgroup differences might have gone undetected. Larger samples
would enable analyses of a wider range of brain regions or even a whole
brain approach to differences in brain activity. A third limitation is our
limited data on medication use. Children using short acting psychosti-
mulants were equally spread over the two original ADHD symptom
groups (ADHD and ASD+) and all children were asked to not to take
medication 24h prior to scanning. However, since psychostimulants
may have long lasting effects it would have been relevant to know how
long and in which doses medication had been used (Schrantee et al.,
2016). Last but not least, it would be of further interest to design
longitudinal studies to investigate the development and the temporal
stability of the different developmental pathways and examine inter-
subject variability.

8. Conclusion

We found that we could use neuroimaging data to identify sub-
groups within a group of children with ADHD symptoms, but that
generalizability was limited due to a small sample size. This study
should be taken as an incentive for other initiatives to empirically ad-
dress neurobiological heterogeneity in ADHD. The present findings
suggest that insight into underlying neurobiological subgroups of chil-
dren with symptoms of ADHD may enhance our perspective on beha-
vior. Our assessment of behavior could then be informed by neuro-
biological knowledge, without the need to scan each individual child.
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