Skip to main content
. 2019 Feb 25;20(4):995. doi: 10.3390/ijms20040995

Table 2.

Comparisons among different QSAR models on FRAP dataset a.

Descriptors Before Logarithmic Transformation After Logarithmic Transformation
Q2 R2 optPC Q2 R2 optPC
VHSE 0.0042 0.2655 3 0.4878 0.6122 6
5Z-scale 0.1408 0.3177 2 0.4809 0.5568 3
DPPS 0.0059 0.2290 3 0.4147 0.5463 4
ST-scale 0.0263 0.3220 8 0.3968 0.5410 9
FASGAI 0.0470 0.2753 2 0.3735 0.5006 4
E-scale 0.0560 0.2521 1 0.3714 0.4734 5
HESH 0.0444 0.2818 10 0.3668 0.5290 3
HSEHPCSV 0.0259 0.2475 7 0.3624 0.4952 3
G-scale 0.1066 0.2334 5 0.2836 0.3850 1
VSW 0.0130 0.3071 1 0.2382 0.4361 2
MS-WHTM2 0.0342 0.0370 3 0.1728 0.2594 3
MS-WHTM1 0.0452 0.0329 9 0.1207 0.1941 4
T-scale 0.0682 0.0706 2 0.0750 0.2129 10
V-scale 0.0293 0.0748 4 0.0699 0.1495 1
Z-scale 0.0052 0.1445 1 0.0301 0.1456 6
ISA-ECI 0.0242 0.0141 1 0.0071 0.0411 1
Integrated descriptors 0.1069 0.4212 3 0.4953 0.6423 3
BOSS 0.6088 ± 0.0041 0.6655 ± 0.0094 3.5100 ± 2.5086

a R2 is the coefficient of determination; Q2 is the cross-validated R2; optPC is optimal principal components for PLS regression model; the results of BOSS are shown in the form of mean value ± standard deviation in 100 runs, the top ranked Q2 scores were marked in bold.