
Understanding Effects of PAMAM Dendrimer Size and Surface 
Chemistry on Serum Protein Binding with Discrete Molecular 
Dynamics Simulations

Bo Wang#1,2, Yunxiang Sun#1, Thomas P. Davis3, Pu Chun Ke3, Yinghao Wu2, and Feng 
Ding1,*

1department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA

2Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, 
NY 10461, USA

3ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of 
Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia

# These authors contributed equally to this work.

Abstract

Polyamidoamine (PAMAM) dendrimers, a class of polymeric nanoparticles (NPs) with highly-

controllable sizes and surface chemistry, are promising candidates for many biomedical 

applications, including drug and gene delivery, imaging, and inhibition of amyloid aggregation. In 

circulation, binding of serum proteins with dendritic NPs renders the formation of protein corona 

and alters the biological identity of the NP core, which may subsequently elicit immunoresponse 

and cytotoxicity. Understanding the effects of PAMAM size and surface chemistry on serum 

protein binding is, therefore, crucial to enable their broad biomedical applications. Here, by 

applying atomistic discrete molecular dynamics (DMD) simulations, we first uncovered the 

binding of PAMAM with HSA and Ig and detailed the dependences of such binding on PAMAM 

size and surface modification. Compared to either anionic or cationic surfaces, modifications with 

neutral phosphorylcholine (PC), polyethylene glycol (PEG), and hydroxyls (OH) significantly 

reduced binding with proteins. The relatively strong binding between proteins and PAMAM 

dendrimers with charged surface groups was mainly driven by electrostatic interactions as well as 

hydrophobic interactions. Using steered DMD (SDMD) simulations, we conducted a force-pulling 

experiment in silico estimating the critical forces separating PAMAM-protein complexes and 

deriving the corresponding free energy barriers for dissociation. The SDMD-derived HSA-binding 

affinities were consistent with existing experimental measurements. Our results highlighted the 

association dynamics of protein-dendrimer interactions and binding affinities, whose implications 

range from fundamental nanobio interfacial phenomena to the development of “stealth NPs”.
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Understanding effects of dendritic polymer size and surface chemistry on the association with 
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Introduction

Dendrimers are a class of polymeric nanoparticles (NPs) with fractal-like structures, which 

can be precisely synthesized to assume high orders and mono-dispersity. The number of 

branching iterations emanating from the central core, named the “generation” of a 

dendrimer, defines its size.1 The central core, branching units and terminal groups of a 

dendrimer can be individually selected, allowing for great design flexibility. PAMAM 

(polyamidoamine) dendrimers, featuring a diamine core and tertiary amine branching units, 

are one of the most commonly investigated dendrimers.2,3 The structures and dynamics of 

PAMAM dendrimers have been well studied by both molecular dynamics (MD) simulations 

and experimental approaches such as small angle X-ray scattering (SAXS) and small angle 

neutron scattering (SANS).4–8 PAMAM dendrimers typically adopt globular structures with 

the repeating units loosely packed in the interior and the surface groups solvated in solution. 

The dynamically forming pores in the interior can be used to encapsulate various guest 

molecules, including ions,9,10 small molecules,11–13 and peptides.14–16 Surface groups of 

PAMAM can bind nucleotides for gene delivery17 and also be readily modified by drugs or 

other functional ligands.18,19 Because of their high versatility, PAMAM dendrimers have 

been explored for numerous applications, from environmental remediation11,20 to drug and 

gene delivery, imaging, and inhibition of amyloid aggregation2,15,17,21,22

Upon entering circulation, NPs encounter proteins in the biological media to form a protein 

corona.23–25 The protein corona shields the NP core and potentially compromises the 

designed functionalities.26 The physicochemical properties of the NP-protein complex, 

rather than the pristine NP core, dictate their biological functions or pathological 

manifestations.27,28 For example, the binding of NPs by opsonin proteins - e.g., 

immunoglobulin (Ig) and complement proteins in serum - may elicit immunoresponses,29–33 

which may subsequently promote the clearance of NPs, shorten their circulation lifetime, 
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and thus reduce the efficacy of nanomedicine. It is well established that the formation of a 

protein corona depends on the physicochemical properties of the NPs, such as their size, 

shape and surface chemistry.34,35 Therefore, it is important to understand the binding of 

serum proteins and their dependence on NP size and surface chemistry in order to enable the 

applications of dendritic NPs.36

Experimental studies using amine-terminated PAMAM dendrimers without surface 

modifications have demonstrated the formation of serum protein coronae, including 

complement proteins36, Ig proteins37,38, and transport proteins like human serum albumin 

(HSA).39 Recent studied from biomedicine revealed that IgE could recognize PAMAM-

based antigens.37 HSA is the most abundant serum protein, which can recognize and bind 

different biomolecules including ions, small molecule drugs, and peptides.40–42 HSA 

binding has been shown to enhance the circulation of certain drugs.43,44 Using HSA as a 

model serum protein, the dependence of protein binding affinities on PAMAM size and 

surface modifications was measured.45 Amine-terminated PAMAM dendrimers could 

interact with membranes or membrane proteins to trigger structural disruption,46,47 and also 

bind fibrinogens in serum to cause blood cloting.48 Grafting dendrimers with neutral or 

anionic surface agents significantly eliminated nonspecific protein binding and reduced 

cytotoxic and hemolysis.49–53 For instance, anionic PAMAM dendrimers have a confirmed 

high biocompatibility within the lung tissue.52 Dendrimer-zwitterion conjugates displayed 

better protein resistance than their PEGylated counterpart for enhanced blood pool, lymph 

node and tumor CT imaging.53 While many of these experimental studies provided insights 

to serum protein binding and corona formation, the molecular details of these inter-

molecular interactions and the dependence on dendrimer size and surface chemistry remain 

poorly understood, as evidenced by the sometimes-inconsistent conclusions with respect to 

the binding and unfolding mechanisms (e.g., hydrophobic vs electrostatic, cationic surface 

vs anionic surface). Computational modeling therefore provides a useful approach to 

complement experimental studies and to derive a comprehensive picture of these 

biologically and biomedically important inter-molecular interactions.

Previous computational studies have been mainly focused on the structures and dynamics of 

dendrimers, dependence on dendrimer size and surface chemistry, as well as solvent 

conditions.4,8,14,54–56 Small molecule binding has also been extensively studied.12,20,57 

While MD simulations of PAMAM alone offered structural insight to their binding with 

HAS,45 the molecular details of protein-PAMAM binding58,59 were unknown due to the 

large molecular systems whose time and length scales were inaccessible to traditional MD 

approaches. Recently, all-atom discrete molecular dynamics simulations (DMD, a rapid and 

predictive MD algorithm60) have been used to capture the structures and dynamics of 

PAMAM dendrimers of different sizes and surface modifications, showing agreement with 

previous experimental and computational studies,13 including the binding of various proteins 

such as HSA61 and NPs.25,62 With multiple optimization implemented, including implicit 

solvent treatment and step-wise potential functions (details see Methods), DMD entailed a 

large sampling volume from both temporal and spatial spaces, thereby offering new 

opportunities to simulate large molecular systems and providing new molecular details that 

are often difficult to obtain from experimental techniques. In this study, specifically, we 

applied atomistic DMD simulations to systematically study the binding of HSA and IgE as 
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representative serum proteins to PAMAM dendrimers of different sizes (generations 1 to 4) 

and surface chemistry, including positively charged amine (NH2), negatively charged 

succinamic acid (SA), and neutral hydroxyls (OH), polyethylene glycol (PEG)63 and 

phosphorylcholine (PC). Surface modifications with PEG are the gold standard in the field 

of nanomedicine, in order to reduce nonspecific protein binding and increase blood 

circulation.64–67 PC, the zwitterionic head group of phospholipids forming cell membranes, 

has been recently demonstrated as an excellent alternative to PEG for reduced protein 

binding.61,68,69 We found that compared to either anionic or cationic surfaces, modifications 

with neutral PC, PEG, and OH significantly reduced protein fouling. The relatively strong 

binding between proteins and charged PAMAM dendrimers was mainly governed by 

electrostatic interactions since most proteins simultaneously contain both positively and 

negatively charged moieties on their surfaces. In addition, bound dendrimers may change 

their conformation for maximum binding, including facilitating hydrophobic interactions. 

For charged PAMAM dendrimers where the formation of dendrimer-protein complexes was 

observed in simulations, we applied steered DMD (SDMD) simulations to estimate the 

critical forces required to break inter-molecular interactions and also their corresponding 

free energy barriers of dissociation. This in silico experiment is of high relevance since 

force-pulling has recently been performed with atomic force microscopy for characterizing 

the interaction of PAMAM dendrimer and folate-binding protein.70 The SDMD-derived 

HSA-binding affinities for PAMAM dendrimers of different sizes and surface chemistries 

were consistent with previous experimental measurements.45 Our results highlighted the 

importance of surface modifications with zwitterionic ligands to reduce nonspecific protein 

binding for the design of stealthy NPs.

Computational Methods Section

Discrete molecular dynamics.

DMD is a special form of MD algorithm, where the conventional continuous potentials are 

replaced by step-wise functions.71,72 A comprehensive description of the DMD algorithm 

has been published elsewhere.60,73 Briefly, a united-atom model with implicit solvent is used 

to represent a molecular system, in which all heavy atoms and polar hydrogen atoms of 

proteins and PAMAM dendrimers are explicitly modeled. Interatomic interactions are 

adapted from the Medusa force field,74,75 which include van der Waals (VDW), solvation, 

hydrogen bond, and electrostatic interactions. The force field parameters for VDW, covalent 

bonds, bond angles and dihedrals are taken from CHARMM19.76 An implicit model 

proposed by Lazaridis and Karplus, the EEF1 for the CHARMM19 force field,77 is used to 

estimate the solvation energy. The distance- and angular-dependent hydrogen bond 

interaction is modeled using a reaction-like algorithm.78 Screened electrostatic interactions 

are computed by the Debye-Hückel approximation, where a Debye length of ~1 nm is used 

by assuming a water dielectric constant of 80 and a monovalent electrolyte concentration of 

0.1 M. Counter ions (Cl− or Na+) are added accordingly to maintain zero net charge of a 

simulated system and account for the counter-ion condensation effect in highly charge 

systems.79 Periodic boundary condition is applied. All simulations are performed at 300K 

using the Anderson’s thermostat.80
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Dendrimers of different size and surface chemistry.

There same structural parameters as in our previous studies were used to model PAMAM 

dendrimers.12,13,15 Specifically, we constructed the unmodified PAMAM dendrimers from 

generation 1 to 4 (G1-G4), whose terminal groups were amine (NH2). At neutral pH, 

terminal primary amines were protonated with positive changes and interior secondary or 

tertiary amines were neutral. The negatively charged PAMAM corresponded to a generation 

of 3.5 (G3.5), where the terminal groups were succinamic acid (PAMAM-SA). The OH-

terminated (PAMAM-OH) and PC-terminated (PAMAM-PC) dendrimers were constructed 

by modifying the terminal groups of a generation 4 PAMAM dendrimer (PAMAM-G4). The 

PEG-terminated PAMAM dendrimer (PAMAM-PEG) was constructed by conjugating the 

terminal groups of a generation 3 PAMAM dendrimer with PEG-10 (-[O-CH2-CH2]10-OH), 

such that it had a comparable molecular weight to the other two neutrally charged 

dendrimers. Schematic chemical structures of all the terminal groups are illustrated in the 

inset of Fig. 1.

The Medusa force field has already been benchmarked not only for proteins60,81 but also for 

small molecule ligands.75,82 As a result, Medusa-based DMD simulations were able to 

accurately capture the structure and dynamics of PAMAM dendrimers13, as well as their 

binding with different hydrocarbon molecules12 and amyloid peptides.15

Modeling of proteins

The atomic coordinates from Protein Data Bank (PDB)83 were used for both HSA (chain A; 

PDB ID: 1AO6) and IgE (chain A for the light chain and chain B for the heavy chain; PDB 

ID: 3HR5) (Fig. S1). For both proteins, basic and acidic amino acids were assigned charges 

according to their titration states at physiological condition (pH=7.4) - i.e., Arg and Lys 

were assigned +1e, Asp and Glu were assigned −1e, while His was neutral. Given the large 

protein sizes (e.g., ~440 and 580 amino acids in IgE and HSA, respectively), we only 

allowed dendrimers free to move, but kept HSA and IgE immobilized except all charged 

residues.

DMD simulations of protein-dendrimer binding.

We kept one protein and one dendrimer for the binding simulations. For each protein-

dendrimer system, fourteen independent simulations were performed starting from randomly 

generated configurations with different intermolecular distances (larger 2nm) and 

orientations. Each independent simulation lasted 75 ns and an accumulative 1.05 p,s DMD 

simulations for each protein-dendrimer pair were executed. To avoid a potential bias from 

initial conformation, the first 25 ns trajectory of each independent simulation was discarded 

in the analysis of inter-molecular binding.

Steered discrete molecular dynamics.

Steered MD (SMD) is widely used for evaluating protein-ligand binding84,85 and 

mechanically-induced unfolding of proteins.86–88 As in force pulling experiments with 

AFM, either constant force or constant pulling velocity could be used in SMD. In our study, 

we adopted the constant force protocol to investigate the binding in our steered DMD 

(SDMD) simulations, where the constant pulling force was deployed between a pair of 
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atoms via a step-wise potential function with a potential energy jump of dE at every step of 

dR - i.e., the force F = dE/dR. The force can be adjusted by tuning either dE or dR. For 

instance, the force corresponding to a potential energy change dE = 1 kcal/mole at a distance 

interval dR = 1 A is equivalent to ~70 pN.

For a given protein-dendrimer pair, the most stable molecular complex was subject to force 

pulling in SDMD. Specifically, we selected the bound state with lowest potential energy out 

of all independent binding simulations discussed above as the starting confirmation for 

SDMD simulations to estimate the corresponding inter-molecular binding affinities. A 

selected dendrimer-protein complex was then subject to a set of forces applied between their 

centers of mass as discussed above in DMD simulations. Given the high complexity of the 

free energy landscape, we performed for each force ten independent pulling simulations to 

ensure sufficient sampling, where the initial atomic velocities were randomized according to 

the Maxwell-Boltzmann distribution. The force range in each protein-dendrimer system was 

from zero to 175 pN. An interval of 8.75 pN was assigned to the range from zero to 87.5 pN, 

while a larger interval of 17.5 pN was assigned to the range of 87.5 pN to 175 pN. Each 

independent constant force SDMD simulations lasted 30 ns and the mean first massage time 

of dissociation was computed as bellow.

Derivation of critical forces for dissociation.

The dissociation time of a protein-dendrimer was governed by a free energy barrier, ΔG≠, at 

the inter-molecular distance, d≠, mainly due to the loss of inter-molecular interactions - i.e., 

~ exp(βΔG≠). Here, β equals to the inverse of kbT, kb is the Boltzmann constant and T is the 

temperature. Under a given force F, the barrier was reduced by ~ F*Δd, where Δd=d≠-deq 

and deq denoted the equilibrium inter-molecular distance. In our simulations, we estimated 

the dissociation time by computing the mean first passage time (MFPT) of dissociation, 

tMPFT, from monitoring the number of inter-molecular contacts (Fig. S3A).

Under weak forces where the barrier still existed and assuming d≠ and deq remained the 

same under different forces, the logarithm of tMPFT linearly decreased with respect to the 

force, ~ (ΔG≠-F*Δd). The critical force Fc corresponded to the force that rendered the barrier 

zero. As the force increased beyond Fc and barrier no longer existed, the dissociation was 

analogous to diffusion under a net force, ~(F-Fc), with frictions. Under the weak force 

approximation in the barrier-less dissociation regime, the logarithm of tMPFT also linearly 

decreased with respect to the net force.89 Hence, we estimated the critical force by plotting 

the logarithm of tMPFT as a function of force and linearly fitting the function in both barrier 

and barrier-less regions (Fig. S3B).88 The intersection of the two linear fits determined Fc. 

We used error bars of the linear regression to estimate the error bards of Fc via the error 

propagation.

Results and Discussion

Dendrimers of different sizes and surface modifications.

To account for the size effect, we studied unmodified PAMAM dendrimers from generations 

1 to 4 (G1-G4), where the number of positively charged terminal amine groups increased 
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from 8 (23) to 64 (26) correspondingly (Fig. 1). We included modified PAMAM dendrimers 

with negatively charged carboxyl (PAMAM-SA) and neutrally changed groups of hydroxyl 

(PAMAM-OH), polyethylene glycol (PAMAM-PEG), and phosphorylcholine (PAMAM-

PC). All PAMAM derivatives were constructed with similar sizes to ensure a reasonable 

comparison for their binding with proteins (details see Methods). As observed previously,13 

PAMAM dendrimers equilibrated rapidly in DMD simulations (equilibrated snapshot 

structures in Fig. 1). The computed equilibrium radii of gyration (Rg) of different PAMAM 

dendrimers were consistent with previous experiments and computational simulations (Fig. 

1A).4–8 For unmodified PAMAM dendrimers, the size increased monotonically with the 

increasing number of generations. PAMAM-SA corresponded to a generation of 3.5 and thus 

had Rg values between PAMAM-G3 and PAMAM-G4. With the same generation as 

PAMAM-G4, PAMAM-OH significantly collapsed due to the formation of extensive 

hydrogen bonds among terminal hydroxyls and also between hydroxyls and interior 

amidoamine groups. PAMAM-PEG and PAMAM-PC were constructed from PAMAM-G3, 

featuring intermediate Rg values between PAMMA-G3 and PAMAM-G4. Different from 

PAMAM-OH, the PC and PEG terminal groups tended to be solvated due to their high water 

solubility61 (Fig. 1).

The dependence of serum protein binding on PAMAM dendrimer size and surface 
chemistry.

We used HSA and IgE as model serum proteins to study their binding with PAMAM 

dendrimers (Methods). IgE and HSA are generally stable and comprise 440 and 580 residues 

each. Given the large protein sizes, we allowed the dendrimers free to move, but kept HSA 

and IgE immobilized except all charged residues, which were able to sample their side-chain 

conformations to achieve optimal binding with charged dendrimers. In drug/gene delivery 

applications, the dendrimer concentration is much lower than that of HSA and Ig proteins 

during circulation, leading to a substoichiometry in binding. Given PAMAM dendrimers are 

soft polymeric NPs90 that can change their conformation upon binding with proteins, and 

also considering the low nanoparticle concentration in serum, minimal backbone 

perturbations to both HSA and IgE were plausible. Despite these simplifications to reduce 

simulation cost, we noted that there were 179 charged amino acids in HSA and 73 in IgE.

To derive fundamental association dynamics of the systems and screen the potential binding 

sites on proteins, our DMD simulations followed the common usage of 1:1 molecular ratio, 

i.e., one protein and one PAMAM dendrimer with periodic boundary conditions. For each 

protein-dendrimer pair, multiple independent simulations starting from randomly generated 

conformation with different intermolecular distances (larger than 2 nm) and orientations 

were performed to ensure sufficient sampling (Methods). However, in experiments with 

controlled biomolecule concentrations, excessive dendrimers compared to proteins may 

form complex supramolecular complexes beyond the 1:1 stoichiometry,91 as we previously 

observed with dendrimer-hydrocarbon binding.12 Examination of simulation trajectories 

indicated that the neutrally charged PAMAM dendrimers bound proteins dynamically, and 

the charged dendrimers tended to stay bound to proteins for a longer time period while 

diffusions on the protein surface and dissociations from proteins were frequently observed. 

To quantify the binding of PAMAM dendrimers to proteins, we calculated the binding 
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frequencies of each protein residue with the dendrimer by averaging over all independent 

simulations for each dendrimer-protein pair (Fig. 2). A cutoff distance of 0.65 nm was used 

to define a contact between two heavy atoms, and two molecules interacted with each other 

by forming at least one intermolecular atomic contact. Indeed, HSA with a net charge of 

−15e had highly preferred binding sites for positively charged PAMAM-G1 to G4, 

displaying binding frequencies as high as ~80% (Fig. 2A). As expected, PAMAM-SA had 

less frequent binding to HSA residues compared to these unmodified dendrimers, but 

significantly more than the neutrally charged dendrimers. Both positively and negatively 

charged PAMAM dendrimers had binding sites on IgE (a net charge of +3e) with 

comparable frequencies (~10%), which were also significantly higher than those with 

neutrally charged dendrimers (Fig. 2B). As evident from the residue-wise binding frequency 

profiles, the same charged PAMAM-G1 to G4 with different sizes tended to have similar 

binding sites on proteins, while dendrimers with opposite or neutral charges usually bound 

to proteins differently.

Electrostatic interactions in the binding of charged dendrimers with proteins.

To visualize the dendrimer binding sites on proteins, we colored each residue according to 

its binding frequencies with dendrimers (Figs. 3&5). HSA residues with high binding 

frequencies to both positively (PAMAM-G1 to G4) and negatively charged (PAMAM-SA) 

dendrimers were all clustered together on the protein surface (Fig. 3A). The binding site to 

PAMAM dendrimers G1-G4 on the HSA surface corresponded to a large area with many 

acidic residues (e.g., E6, D13, E57, D63, E95, E218, E227, E230, D237, E244, E252, D256, 

E321) and thus negative electrostatic potentials. PAMAM-SA, on the other hand, bound to a 

smaller surface area containing multiple basic residues (e.g., K413, K414, K475, K536, 

K538, K541) with positive electrostatic potentials. Dendrimer-protein interactions have been 

described by different models. Shcharbin et al. proposed that PAMAM possessed 5–6 non-

specific ‘binding sites’ on albumin based on local concentrations of charged amino acid 

residues on the protein surface.58 Chiba et al. presented a ‘hot spot’ model illustrating 

dendrimer bound to the surface charged hotspot region of chymotrypsin and cytochrome-c.92 

Our current simulation (Fig. 3A) is in agreement with the above models. Moreover, 

dendrimers could undergo major conformational changes, not just for maximizing 

electrostatic interactions but also for hydrophobic interactions with the protein (Fig. 4A). 

The hydrophobic interior of PAMAM-G3 exposed to HSA surface, thereby contributing a 

complementary hydrophobic interaction. The significance of hydrophobic interaction in 

protein-dendrimer binding has been highlighted by a number of other studies.93,94 For 

instance, Giri et al. suggested that the inner shell protons of PAMAM interacted more 

strongly with HSA.45 Our current finding may help resolve the inconsistencies of dominated 

forces in dendrimer-protein interactions (electrostatic vs hydrophobic) concluded by 

different experiments.45,93,36 A two-step process was plausibly involved in the interaction: 

PAMAM dendrimers first anchored on the HSA surface via electrostatic interaction, and 

hydrophobic interactions were consequently evoked via conformation changes. Similar 

phenomena have been observed in PAMAM-Ig interactions. PAMAM dendrimers G1 to G4 

also had one preferred site on IgE surface with negative electrostatic potentials. Interestingly, 

the binding sites for these positively charged dendrimers corresponded to the well-known 

complementarity-determining regions (CDR) - CDR1, CDR2, and CDR3 loops (Fig. 3B and 
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Fig. 4B),95 which are responsible for binding to specific antigens and are closely related to 

binding with major histocompatibility complex (MHC).96 As positively charged PAMAM 

dendrimers are cytotoxic,48 IgE could recognize the PAMAM via these loops, as evidenced 

by a recent experiment that multiepitope dendrimeric antigens (constructed based on 

PAMAM-G4) can be recognized by human IgE.37 Considering neutrally charged dendrimer 

also bound CDR loops (details in the following section), our simulations provided important 

information concerning IgE-antigen recognition. PAMAM-SA had more than one binding 

site on IgE, all of which corresponded to patches with positive electrostatic potentials and 

one of which was preferred with a higher dendrimer binding frequency (Fig. 3B).

Weak and dynamic protein binding by neutrally charged PAMAM dendrimers.

Neutrally charged dendrimers usually possessed multiple binding sites on both HSA and IgE 

(Fig. 5A). PAMAM-PC had similar binding sites on HSA as PAMAM-OH (also see Fig. 

2A), although each binding site for PAMAM-PC had larger surface areas. This observation 

suggests that PAMAM-PC and PAMAM-OH shared similar binding interactions with HSA, 

and the difference was likely due to the more packed 3D structure of PAMAM-OH than that 

of PAMAM-PC (Fig. 1B and Fig. S2A). PAMAM-PEG, on the other hand, had completely 

different binding to HSA than PAMAM-OH and PAMAM-PC, likely due to the outer PEG 

moieties (Figure. S2B). Compared to HSA, IgE tended to have more residues involved in 

binding with these neutrally charged dendrimers and more similar binding profiles to the 

three different dendrimers (Fig. 5B and Fig. 2B). Specifically, the CDR loops had a tendency 

to bind all three types of neutrally charged dendrimers, underscoring the unique function of 

these loops in recognizing antigens.

To further compare the binding of neutrally charged PAMAM dendrimers with proteins, we 

computed for each dendrimer-protein pair the histogram of binding frequencies per residue 

to the dendrimer (Fig. 5C). Compared to HSA, the slower decrease in the log-log plot for 

IgE was consistent with the observation that IgE had more residues involved in the binding 

with these neutrally charged dendrimers and also the functional role of IgE in recognition 

versus HSA in transportation. Interestingly, OH and PC displayed faster decreases in the 

log-log plot than PEG, suggesting that OH and PC terminated dendrimers tended to have 

weaker binding frequencies to proteins. Hence, these results suggest that OH and PC might 

serve as alternative antifouling agents against nonspecific or specific protein binding.

Free energy barrier of dissociation estimation using steered DMD simulations.

Steered MD simulations utilize a similar approach as single-molecule force spectroscopy 

techniques to evaluate protein-ligand binding affinity in silico.87,97,98 Typically, the probed 

protein-ligand complexes feature a two-state dynamics between bounded and unbound 

states. Here, we applied SDMD simulations (details see Methods) to estimate the binding 

between proteins and the charged dendrimers, which revealed the formation of stable 

protein-dendrimer complexes in binding simulations above. Briefly, we applied constant 

forces separating protein and dendrimer from their bounded state, and performed multiple 

independent simulations with randomized velocities to estimate the mean first passage time 

of dissociation (MFPT) as the approximation for dissociation time (Fig. 6). The dissociation 
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time decreased with increasing forces and different protein-dendrimer complexes required 

different forces to dissociate from each other.

The applied force, F, decreased the free energy barrier for dissociation, and the critical force, 

Fc, rendered the dissociation barrier zero. Hence, the dissociation dynamics underwent a 

transition from a barrier-ed (i.e., activation-dependent) to a barrier-less (i.e., diffusion under 

a net force of F-Fc with frictions) process, featuring different dependence characteristics on 

the applied force (see Methods). We quantified the critical force by determining the 

crossover point (Fig. 7A&B). As expected, the low generation dendrimers were more 

sensitive to the growing forces and were more readily dissociated from protein while high 

generation dendrimers were more robustly bound to proteins requiring a high level of critical 

forces.

The free energy barrier for dissociation ΔG≠ equaled to the work done by the critical force 

Fc to dissociate the complex, which required the estimation of distance between equilibrium 

and force-induced dissociation, i.e., the effective pulling distance Δd. By analyzing the 

histogram of intermolecular distances, dNP-protein, and also the dependence of the number of 

intermolecular contacts as the function of dNP-protein (Fig. S4), we were able to determine Δd 
and thus ΔG≠=Fc*Δd (Fig. 7C&D). The binding affinity ΔG is related to the binding 

constant Kb, ΔG = - RTlnKb. As the binding constant is defined by both association rate kon 

and dissociation rate koff, the binding affinity can be expressed as -(RTlnkon - RTlnkoff). The 

SDMD performed in our study only considered the contribution from dissociation, i.e., ΔG≠ 

~ RTlnkoff. Association rate (commonly approximated by the diffusion limit) could be 

affected by many factors, such as buffer, ionic strength and pH, leading to different values in 

experimental measurements (Table 1). However, similar trends were expected in terms of 

protein binding with dendrimers of different generations or surface chemistry. Indeed, the 

dissociation free energy barriers ΔG≠ agreed well with previous experimental measurement 

of binding affinities between HSA and dendrimers of different sizes and surface chemistry,45 

where the binding affinities increased with increasing sizes. Although the binding of 

negatively charged PAMAM-SA required a relative weak force to separate its binding from 

the overall negatively charged protein (e.g., with a value between those of G1 and G2), the 

high conformational flexibility upon dissociation resulted in a dissociation free energy 

barrier ΔG≠ comparable to that of PAMAM-G4, suggesting a surprisingly strong HSA-

binding affinity, in agreement with experimental measurements.45

Conclusion

In summary, we applied atomistic DMD simulations to systematically investigate the 

molecular details of the binding between primary serum proteins, HSA and IgE, with 

PAMAM dendrimers of different sizes and surface modifications. Despite the difference 

between HSA and IgE in terms of size, secondary structure, and net charge, both proteins 

displayed relatively strong binding with either positively or negatively charged PAMAM 

dendrimers. The strong binding was governed by electrostatic interactions since all proteins 

possess both positively and negatively charged moieties, forming mosaic like surface patches 

with either negative or positive electrostatic potentials (Fig. 3). Neutrally charged PAMAM 

dendrimers, on the other hand, showed dynamic and weak binding to both proteins. Binding 
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analysis indicated that, comparing to HSA, IgE whose function was to bind antigens tended 

to administer more contacts with neutrally charged dendrimers, especially by its CDR loops. 

Since the binding of proteins, especially by opsonin proteins like IgE, may elicit 

immunoresponse and reduce the circulation lifetime of NPs, our results suggest that surface 

modifications by neutrally charged, polar agents instead of charged groups can efficiently 

reduce specific or nonspecific protein binding, i.e., achieving the anti-fouling effect. Our 

results also suggest that both hydroxyl and phosphorylcholine are excellent alternative to 

PEG as anti-fouling agents against serum proteins, at least for the most abundant species of 

HSA and IgE. We also applied steered DMD simulations to study the binding affinity 

between the serum proteins and charged PAMAM dendrimers. Using stable complexes 

derived from binding simulations, dendrimers were pulled away from the proteins by a set of 

constant forces, where the dissociation times were determined as a function of applied 

forces. By estimating both the critical forces and the work done to separate the dendrimer-

protein complexes, the free energy barriers for dissociation (or the off-rates) were also 

calculated. The computational results were consistent with experimentally measured binding 

affinities of HSA with PAMAM dendrimers of different sizes and surface chemistry, 

vindicating the predictive power of the DMD methodology. Together, our study offered a 

mechanistic insight to the binding of serum proteins with NPs of different sizes and surface 

modifications, and should prove valuable for the design of biocompatible and stealthy 

nanomedicines.
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Figure 1. DMD simulations of dendrimers with different sizes and surface modifications.
(A) The averaged Rg of PAMAM dendrimers derived from DMD simulations. Eight 

PAMAM dendrimers include unmodified PAMAM from G1 to G4, negative charged 

PAMAM dendrimer (PAMAM-SA), and surface modified by hydroxyl (OH), polyethylene 

glycol (PEG), and phosphorylcholine (PC). The error bars corresponded to the standard 

error of mean (SEM) from independent simulations. From top to bottom, the schematic 

chemical structures for amine, OH, PC, PEG, and SA-terminated groups are given in the 

inset. (B) Snapshot structures from equilibrated DMD simulations are shown in stick 

representations for each of the eight types of PAMAM dendrimers. The terminal groups are 

shown in different colors - amine group in blue, OH in cyan, PC in purple, PEG in wheat, 

and SA in orange.

Wang et al. Page 18

ACS Sustain Chem Eng. Author manuscript; available in PMC 2019 September 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. The reside-wise binding frequencies of different proteins with different dendrimers.
(A) The binding of HSA residues with eight different dendrimers. Residues was reindexed to 

start from 1 instead of 5 as in the PDB. (B) The binding of IgE residues with eight different 

dendrimers. Residue index form 1 to 219 corresponds to Chain A (the Light Chain) and 

residues from 220 to 439 form Chain B (the Heavy Chain). The dashed vertical lines are 

used to indicate the chain separation.
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Figure 3. Mapping of protein residues with their binding frequencies to charged dendrimers.
Since all PAMAM G1-G4 had similar per residue binding profile (Fig. 2), only the 

PAMAM-G3 is shown here. For both (A) HSA and (B) IgE, three different views are shown 

as indicated by the rotation axes and angles. For comparison, the protein structures in 

cartoon representation (red for helix, yellow for strand, and green for loop) and the protein 

surface electrostatic potentials computed by the PyMol (colored from negative potential in 

red to positive potential in blue) are shown in the first and second column. For the binding 

with PAMAM-G3 and PAMAM-SA, protein surfaces are colored according to each 

residue’s binding frequency to the dendrimer, in rainbow colors from blue (low) to red 

(high).

Wang et al. Page 20

ACS Sustain Chem Eng. Author manuscript; available in PMC 2019 September 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Snapshots of (A) PAMAM-G3-HSA and (B) PAMAM-G3-IgE complexes from DMD 
simulations.
The protein surfaces are colored from the negative electrostatic potentials in red to the 

positive potentials in blue. Accordingly, the positively charged surface groups of PAMAM 

are also colored in blue, while the hydrophobic dendrimer interior is colored in grey. 

Hydrgen bondsonds between PAMAM and proteins are denoted in yellow dashed-lines in 

zoom-in snapshots to the right.

Wang et al. Page 21

ACS Sustain Chem Eng. Author manuscript; available in PMC 2019 September 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. The binding of neutrally charged dendrimers with proteins.
Both (A) HSA and (B) IgE are shown in cartoon representation, and are colored according to 

each residue’s binding frequencies to the dendrimer in rainbow colors from blue (low) to red 

(high). (C) For each protein-dendrimer pair, the histogram of residue-wise binding 

frequencies computed from data in Fig. 2 is shown as a log-log plot.

Wang et al. Page 22

ACS Sustain Chem Eng. Author manuscript; available in PMC 2019 September 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Steered DMD simulations of stable protein-dendrimer complex by charged PAMAM 
dendrimers.
The mean first passage time for dissociation as a function of pulling forces between 

dendrimer and (A) HSA or (B) IgE.
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Figure 7. The SDMD analysis of the binding between the protein and dendrimer complex.
The critical forces and the free energy barriers for dissociation estimated for dendrimer 

binding with (A,C) HSA and with (B,D) IgE.
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Table 1.

Binding parameters of dendrimers with HSA.

PAMAM-G1 PAMAM-G2 PAMAM-G3 PAMAM-G4 -SA -OH PEG-G3 PEG-G4

Kb (M−1)

Ref.45 2.83±0.78 × 105 2.91±0.41 × 105 3.65±0.75 × 105 1.67±0.15 × 106 2.52±0.75 × 106 1.29±0.93 × 104 1.77±0.28 × 104

Ref.59 2.6±0.5 × 104 1.3±0.2 × 104 2.2±0.4 × 104

Ref.99 1.38×105

ΔG≠ (Kcal/Mol), 
This work

6.9±1.0 10.0±0.8 14.3±1.3 25.0±5.0 21.9±4.1
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