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Abstract

Despite progress in defining genetic risk for psychiatric disorders, their molecular mechanisms 

remain elusive. Addressing this, the PsychENCODE Consortium has generated a comprehensive 

online resource for the adult brain across 1866 individuals. The PsychENCODE resource contains 

~79,000 brain-active enhancers, sets of Hi-C linkages, and topologically associating domains; 

single-cell expression profiles for many cell types; expression quantitative-trait loci (QTLs); and 

further QTLs associated with chromatin, splicing, and cell-type proportions. Integration shows that 

varying cell-type proportions largely account for the cross-population variation in expression (with 

>88% reconstruction accuracy). It also allows building of a gene regulatory network, linking 

genome-wide association study variants to genes (e.g., 321 for schizophrenia). We embed this 

network into an interpretable deep-learning model, which improves disease prediction by ~6-fold 

versus polygenic risk scores and identifies key genes and pathways in psychiatric disorders.

Graphical Abstarct

INTRODUCTION: Strong genetic associations have been found for a number of psychiatric 

disorders. However, understanding the underlying molecular mechanisms remains challenging.

RATIONALE: To address this challenge, the 

PsychENCODEConsortiumhasdevelopedacomprehensiveonlineresourceandintegrative models for 

the functional genomics of the human brain.

RESULTS: The base of the pyramidal resource is the datasets generated by PsychENCODE, 

including bulk transcriptome, chromatin, genotype, and Hi-C datasets and single-cell 

transcriptomic data from ~32,000 cells for major brain regions. We have merged these with data 

from Genotype-Tissue Expression (GTEx), ENCODE, Roadmap Epigenomics, and single-cell 

analyses. Via uniform processing, we created a harmonized resource, allowing us to survey 

functional genomics data on the brain over a sample size of 1866 individuals.

From this uniformly processed dataset, we created derived data products. These include lists of 

brain-expressed genes, coexpression modules, and single-cell expression profiles for many brain 

cell types; ~79,000 brain-active enhancers with associated Hi-C loops and topologically 
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associating domains; and ~2.5 million expression quantitative-trait loci (QTLs) comprising 

~238,000 linkage-disequilibrium–independent single-nucleotide polymorphisms and of other types 

of QTLs associated with splice isoforms, cell fractions, and chromatin activity. By using these, we 

found that >88% of the cross-population variation in brain gene expression can be accounted for 

by cell fraction changes. Furthermore, a number of disorders and aging are associated with 

changes in cell-type proportions. The derived data also enable comparison between the brain and 

other tissues. In particular, by using spectral analyses, we found that the brain has distinct 

expression and epigenetic patterns, including a greater extent of noncoding transcription than other 

tissues.

The top level of the resource consists of integrative networks for regulation and machine-learning 

models for disease prediction. The networks include a full gene regulatory network (GRN) for the 

brain, linking transcription factors, enhancers, and target genes from merging of the QTLs, 

generalized element-activity correlations, and Hi-C data. By using this network, we link disease 

genes to genome-wide association study (GWAS) variants for psychiatric disorders. For 

schizophrenia, we linked 321 genes to the 142 reported GWAS loci. We then embedded the 

regulatory network into a deep-learning model to predict psychiatric phenotypes from genotype 

and expression. Our model gives a ~6-fold improvement in prediction over additive polygenic risk 

scores. Moreover, it achieves a ~3-fold improvement over additive models, even when the gene 

expression data are imputed, highlighting the value of having just a small amount of transcriptome 

data for disease prediction. Lastly, it highlights key genes and pathways associated with disorder 

prediction, including immunological, synaptic, and metabolic pathways, recapitulating de novo 

results from more targeted analyses.

CONCLUSION: Our resource and integrative analyses have uncovered genomic elements and 

networks in the brain, which in turn have provided insight into the molecular mechanisms 

underlying psychiatric disorders. Our deep-learning model improves disease risk prediction over 

traditional approaches and can be extended with additional data types (e.g., microRNA and 

neuroimaging). ▪

A comprehensive functional genomic resource for the adult human brain. The resource forms 

a three-layer pyramid. The bottom layer includes sequencing datasets for traits, such as 

schizophrenia. The middle layer represents derived datasets, including functional genomic 

elements and QTLs. The top layer contains integrated models, which link genotypes to 

phenotypes. DSPN, Deep Structured Phenotype Network; PC1 and PC2, principal components 1 

and 2; ref, reference; alt, alternate; H3K27ac, histone H3 acetylation at lysine 27.
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Disorders of the brain affect nearly one-fifth of the world’s population (1). Decades of 

research have led to little progress in our understanding of the molecular causes of 

psychiatric disorders. This contrasts with cardiac disease, for which lifestyle and 

pharmacological modification of environmental risk factors has had profound effects on 

morbidity, or cancer, which is now understood to be a direct disorder of the genome (2–5). 

Although genome-wide association studies (GWAS) have identified many genomic variants 

strongly associated with neuropsychiatric disease risk—for instance, the Psychiatric 

Genomics Consortium (PGC) has identified 142 GWAS loci associated with schizophrenia 

(SCZ) (6)—for most of these variants, we have little understanding of the molecular 

mechanisms affecting the brain (7).

Many of these variants lie in noncoding regions, and large-scale studies have begun to 

elucidate the changes in genetic and epigenetic activity associated with these genomic 

alterations, suggesting potential molecular mechanisms. In particular, the Genotype-Tissue 

Expression (GTEx) project has associated many noncoding variants with expression 

quantitative-trait loci (eQTLs), and the ENCODE and Roadmap Epigenomics (Roadmap) 

projects have identified noncoding regions acting as enhancers and promoters (8–10). 

However, none of these projects have focused their efforts on the human brain. Initial work 

focusing on brain-specific functional genomics has provided greater insight but could be 

enhanced with larger sample sizes (11, 12). Moreover, new methodologies, such as Hi-C and 

single-cell sequencing, have yet to be fully integrated at scale with brain genomics data (13–

16).

Hence, the PsychENCODE Consortium has generated large-scale data to provide insight 

into the brain and psychiatric disorders, including data derived through genotyping, bulk and 

single-cell RNA sequencing (RNA-seq), chromatin immunoprecipitation with sequencing 

(ChIP-seq), assay for transposase-accessible chromatin using sequencing (ATAC-seq), and 

Hi-C (17). All data have been placed into a central, publicly available resource that also 

integrates relevant reprocessed data from related projects, including ENCODE, the 

CommonMind Consortium (CMC), GTEx, and Roadmap. By using this resource, we 

identified functional elements, quantitative-trait loci (QTLs), and regulatory-network 

linkages specific to the adult brain. Moreover, we combined these elements and networks to 

build an integrated deep-learning model that predicts high-level traits from genotype via 

intermediate molecular phenotypes. By “intermediate phenotypes,” we mean the readouts of 

functional genomic information on genomic elements (e.g., gene expression and chromatin 

activity). In some contexts, these are also referred to as “molecular endophenotypes” (18). 

However, we include additional low-level “phenotypes,” such as cell fractions, so we use the 

more general term “intermediate phenotype.” We also refer to the high-level traits as 

“observed phenotypes,” which include both classical clinical variables and characteristics of 

healthy individuals, such as gender and age.

Resource construction

The PsychENCODE resource (19) is the central website for this paper. It organizes data 

hierarchically, with a base of raw data files, a middle layer of uniformly processed and easily 

shareable results (such as open chromatin regions and gene expression quantifications), and 
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a top-level “cap” of an integrative, deep-learning model, based on regulatory networks and 

QTLs. To build the base layer, we included all adult brain data from PsychENCODE and 

merged these with relevant data from ENCODE, CMC, GTEx, Roadmap, and recent single-

cell studies (table S1 and Fig. 1). In total, the resource contains 3810 genotype, 

transcriptome, chromatin, and Hi-C datasets from PsychENCODE and 1662 datasets 

obtained by using similar bulk assays merged from outside the consortium. Overall, the 

datasets from the prefrontal cortex (PFC) involve sampling from 1866 individuals. The 

resource also has single-cell RNA-seq data for 18,025 cells from PsychENCODE and 

14,012 cells from outside sources (20). These data represent a range of psychiatric disorders, 

including SCZ, bipolar disorder (BPD), and autism spectrum disorder (ASD). The individual 

genotyping and raw next-generation sequencing of transcriptomics and epigenomics are 

restricted for privacy protection, but access can be obtained upon approval. The protocols for 

all associated data are readily available (fig. S1). Finally, PsychENCODE has developed a 

reference brain project on the PFC by using matched assays on the same set of brain tissues, 

which we used to develop an anchoring annotation (21).

Transcriptome analysis: Bulk and single cell

To identify the genomic elements exhibiting transcriptional activities specific to the brain, 

we took a conservative approach and used the standardized and established ENCODE 

pipeline to uniformly process RNA-seq data from PsychENCODE, GTEx, and Roadmap 

(figs. S2 and S3). This consistency makes our expression data and subsequent results 

(including eQTLs and single-cell analyses) comparable with previous work. Using these 

data, we identified noncoding regions of transcription and sets of differentially expressed 

and coexpressed genes (21, 22).

Brain tissue is composed of a variety of basic cell types. Gene expression changes observed 

at the tissue level may be due to changes in the proportions of basic cell types (23–28). 

However, it is unclear how these changes in cell proportions can contribute to the variation 

in tissue-level gene expression observed across a population of individuals. To address this 

question, we used two complementary strategies across our cohort of 1866 individuals.

First, we used standard pipelines to uniformly process single-cell RNA-seq data from 

PsychENCODE, in conjunction with other single-cell studies on the brain (14, 16, 20). Then 

we assembled profiles of brain cell types, including both excitatory and inhibitory neurons 

(denoted as Ex1 to Ex9 and In1 to In8, respectively, according to previous conventions), 

major nonneuronal types (e.g., microglia and astrocytes), and additional cell types associated 

with development (21). Depending on the underlying sequencing and quantification, our 

profiles were of two fundamentally different formats, transcripts per kilobase million (TPM) 

and unique molecular identifier (UMI) counts. The former (TPM profiles) includes the 

uniformly processed PsychENCODE developmental single-cell data merged with published 

adult and developmental data (fig. S4 and table S2) (14, 16). By contrast, the UMI profiles 

are built by merging PsychENCODE adult single-cell profiles with other recently published 

data-sets (14). Both formats share common neuronal and major nonneuronal cell types and 

are used interchangeably in various analyses in this study (fig. S5 and tables S3 and S4). 

Moreover, the expression values of biomarker genes for the same cell type were correlated 
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between two formats (figs. S6 and S7). However, our TPM profiles have additional 

development-specific cell types, such as quiescent and replicating.

From both sets of profiles, we can generate a matrix C of expression signatures, comprising 

marker genes and their expression levels across various cells (fig. S8). In this matrix, a 

number of genes (e.g., the gene for dopamine receptor DRD3) had expression levels that 

varied more across cell types than they did in bulk tissue measurements across individuals in 

a population (Fig. 2A). This suggests that cell-type changes across individuals could 

contribute substantially to variation in individual bulk expression levels.

Second, we used an unsupervised analysis to identify the primary components of bulk 

expression variation. We decomposed the bulk gene expression matrix by using nonnegative 

matrix factorization (NMF) (B ≈ VH, where B, V, and H represent matrices) and 

determined whether the top components (NMF-TCs), capturing the majority of covariance 

(columns of V) (Fig. 2B), were consistently associated with the single-cell signatures (Fig. 

2C) (21). A number of NMF-TCs were, in fact, highly correlated with cell types from matrix 

C for both TPM and UMI data—e.g., component NMF-17 is correlated with the Ex2 cell 

type (correlation coefficient r = 0.63) (Fig. 2C and fig. S9). This demonstrates that an 

unsupervised analysis derived solely from bulk data can roughly recapitulate the single-cell 

signatures, partially corroborating them.

We then examined how variation in the proportions of basic cell types contributes to 

variation in bulk expression. To this end, we estimated the relative proportions of various 

cell types (“cell fractions”) for each tissue sample. In particular, we deconvolved the bulk 

tissue-level expression matrix by using the single-cell signatures to estimate cell fractions 

across individuals (matrix W), solving B ≈ CW (Fig. 2B) (21). As a validation, our 

estimated fractions of NEU+/− cells matched the experimentally determined fractions from 

reference brain samples (median difference = 0.04) (fig. S10). Overall, our analyses 

demonstrated that variation in cell types contributed substantially to bulk variation. That is, 

weighted combinations of single-cell signatures could account for most of the population-

level expression variation, with an accuracy of >88% (Fig. 2D) (1 − ||B − CW||2/||B||2 > 

88%), and when calculated on a per-person basis, this quantity varies ±4% over the 1866 

individuals in our cohort (figs. S11 and S12). Also, our results explained more variation than 

previous deconvolution approaches (fig. S13) (21).

We identified cell fraction changes associated with different traits (Fig. 2E and figs. S14 to 

S17). For example, particular types of excitatory and inhibitory neurons (such as In6) are 

present different fractions in male and female samples (Fig. 2E). Also, in individuals with 

ASD, the fraction of Ex5 was higher and that of oligodendrocytes, lower, with some 

commensurate increase for microglia and astrocytes (Fig. 2E and fig. S18) (24, 29).

Lastly, we observed an association with age. In particular, with increasing age, the fractions 

Ex3 and Ex4 significantly increased and the fractions of some nonneuronal types decreased 

(Fig. 2F and fig. S19). These changes may be associated with differential expression of 

specific genes, e.g., the gene for somatostatin (SST), known to be associated with aging and 

neurotransmission (Fig. 2F) (30). Also, SST exhibits increasing promoter methylation with 
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age, perhaps explaining its decreasing expression. Other genes known to be associated with 

brain aging, such as those for EGR1 (early growth response) and CP (ceruloplasmin), 

exhibit different trends (Fig. 2F and figs. S20 and S21) (21, 31).

Enhancers

To annotate brain-active enhancers, we used chromatin modification data from the reference 

brain, supplemented by deoxyribonuclease sequencing (DNase-seq) and ChIP-seq data from 

Roadmap PFC samples. All data were processed by standard ENCODE ChIP-seq pipelines 

to ensure maximal compatibility of our results (fig. S22). Consistent with ENCODE, we 

define active enhancers as open chromatin regions enriched in H3K27ac (histone H3 

acetylation at lysine 27) and depleted in H3K4me3 (histone H3 trimethylation at lysine 4) 

(Fig. 3A and fig. S23) (21). Overall, we annotated a reference set of 79,056 enhancers in the 

PFC. [We also provide a filtered subset (21).]

Assessing the variability across individuals and tissues is more difficult for enhancers than 

for gene expression (32). Not only is the variability in chromatin-mark level at enhancers 

across different individuals and tissues high, but the boundaries of enhancers can grow and 

shrink, sometimes disappearing altogether (e.g., for H3K27ac) (Fig. 3A). To investigate this 

in more detail, we uniformly processed the H3K27ac data from the PFC, temporal cortex 

(TC), and cerebellum (CB) on a cohort of 50 individuals, primarily of European descent and 

sequenced to similar depths (21) (fig. S24). Aggregating data across the cohort resulted in a 

total of 37,761 H3K27ac “peaks” (enriched regions) in the PFC, 42,683 in the TC, and 

26,631 in the CB—where each peak is present in more than half of the individuals surveyed. 

In a comparison of aggregated sets for these three brain regions, the PFC was more similar 

to the TC than the CB (~90% versus 34% overlap in peaks). This difference is consistent 

with previous reports and suggests potentially different cell-type composition in the CB and 

the cortex (33, 34).

We also examined how many of the enhancers in the reference brain are active (i.e., have 

enriched H3K27ac) in each of the individuals in our cohort. As expected, not every reference 

enhancer was active in each individual. On average, only ~70% ± 15% (~54,000) of the 

enhancers in the reference brain were active in an individual in the cohort, and a similar 

fraction of the reference enhancers was active in more than half the cohort (68%) (Fig. 3B). 

To estimate the total number of enhancers in the PFC, we calculated the cumulative number 

of active regions across the cohort (fig. S25). This increased for the first 20 individuals 

sampled but saturated at the 30th. Thus, we hypothesize that pooling PFC enhancers from 

~30 individuals is sufficient to cover nearly all possible PFC enhancer regions, estimated at 

~120,000.

Consistent comparison: Transcriptome and epigenome

As we uniformly processed the transcriptomic and epigenomic data across the 

PsychENCODE, ENCODE, GTEx, and Roadmap datasets, we could compare the brain with 

other organs in a consistent fashion and also compare transcriptome variation with that of 

the epigenome (Fig. 3, C to F). Several approaches, including principal components anaylsis 
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(PCA), t-distributed stochastic neighbor embedding (t-SNE), and reference component 

analysis (RCA), were tested to determine the best method for comparison. We found that, 

although popular and interpretable, PCA deemphasizes local structure and is overly 

influenced by outliers; by contrast, t-SNE preserves local relationships but “shatters” global 

structure. RCA is a compromise (21): It captures local structure while maintaining 

meaningful distances globally. We used RCA to project gene expression from 

PsychENCODE samples against a reference panel of gene expression for different tissues 

derived from GTEx and then reduced the dimensionality of the projections with PCA. RCA 

thus allowed us to represent high-dimensional expression data in a simple two-coordinate 

diagram.

For gene expression, RCA revealed that the brain separates from the other tissues in the first 

component (Fig. 3E and fig. S26). In particular, for the brain, intertissue comparisons exhibit 

more differences than intratissue ones (figs. S27 to S30). A different picture emerged for 

chromatin. The H3K27ac chromatin levels at all regulatory positions were, overall, less 

distinguishable between the brain and other tissues (Fig. 3C) (21). At first glance, this is 

surprising, as one expects great differences in enhancer usage between tissues. However, our 

analysis compares chromatin signals over all regulatory elements from ENCODE (including 

enhancers and promoters), which is logically consistent with our expression comparison 

across all protein-coding genes (Fig. 3, F versus C, and tables S5 to S7). As the total number 

of human regulatory elements is much larger than the number of brain-active enhancers 

(~1.3 million versus ~79,000), our results likely reflect the fact that there are proportionately 

fewer brain-active regulatory elements than protein-coding genes (6% versus 60%).

Up to this point, our analysis has focused on annotated regions (genes, promoters, and 

enhancers). However, in addition to the canonical expression differences in protein-coding 

genes, we also found differences in unannotated noncoding and intergenic regions (fig. S30). 

In particular, testes and lung have the largest extent of transcription overall (the most genes 

transcribed) for protein-coding genes (Fig. 3D). However, when we shift to unannotated 

regions, the ordering changes: Brain tissues, such as the cortex and CB, now have a greater 

extent of transcription than any other tissue.

QTL analysis

We used the data in the brain resource to identify QTLs affecting gene expression and 

chromatin activity. We calculated expression, splicing-isoform, chromatin, and cell fraction 

QTLs (eQTLs, isoQTLs, cQTLs, and fQTLs, respectively). For eQTLs, we adopted a 

standard approach, closely adhering to the GTEx pipeline for maximal compatibility (figs. 

S31 to S33) (35). (However, for maximal utility of the resource, we also provide alternate 

lists, filtered more conservatively.) In the PFC, we identified ~2.5 million cis-eQTLs 

involving ~33,000 eGenes (expressed genes) [~17,000 noncoding and ~16,000 coding, with 

a false discovery rate of <0.05] (Fig. 4A). We found 1,341,182 eQTL single-nucleotide 

polymorphisms (SNPs) from ~5.3 million total SNPs tested in 1-Mb windows around genes, 

constituting 238,194 independent SNPs after linkage-disequilibrium (LD) pruning. This 

estimate identified substantially more eQTLs and associated eGenes than previous studies, 

reflecting our large sample size (8, 11, 21). The number of eGenes, in fact, approaches the 
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total number of genes estimated to be expressed in the brain. That said, a very large fraction 

of the smaller GTEx and CMC brain eQTL sets was contained within our set (as evident 

from overlap testing with the π1 statistic) (Fig. 4A) (36). Moreover, as expected, our brain 

eQTL set showed higher π1 similarity to and SNP-eGene overlap with GTEx brain eQTLs 

than with those from other tissues (Fig. 4B and fig. S31). Lastly, we applied the QTL 

pipeline to isoform levels to calculate a set of isoQTLs. We performed filtering in a variety 

of different ways, generating a number of different lists (21).

For cQTLs, no established methods exist for large-scale data, although there have been 

previous efforts (37, 38). To identify cQTLs, we focused on our reference set of enhancers 

and examined how H3K27ac activity varied at these loci across 292 individuals (Fig. 4C) 

(21). Overall, we identified ~2000 cQTLs in addition to 6200 identified from individuals 

within the CMC cohort (39).

We next identified SNPs associated with changes in the relative abundances of specific cell 

types. We refer to such relationships with the term fQTLs. In total, we identified 1672 

distinct SNPs constituting 4199 fQTLs (fig. S34). The excitatory neurons Ex4 and Ex5 were 

associated with the most fQTLs (1060 and 896, respectively). The biological mechanism 

governing an fQTL may involve other QTL types, such as eQTLs. An illustrative example is 

the FZD9 gene (Fig. 4D): We found that the expression levels of this gene were associated 

with a neighboring noncoding SNP via an eQTL, and this same SNP was associated with the 

proportion of Ex3 cells via an fQTL. Perhaps connected to this, deletion variants upstream 

of FZD9 had previously been associated with cell fraction changes related to Williams 

syndrome (40).

Next, we attempted to recalibrate the observed gene expression variation by considering 

fQTLs. In particular, our scheme described above for approximately deconvolving gene 

expression from heterogeneous bulk tissue (matrix B) into single-cell signatures (matrix C) 

and estimated cell fractions (matrix W) enables us to calculate the residual gene expression 

(Δ) remaining after accounting for cell fraction changes (Fig. 2). Specifically, it is the 

component of the bulk tissue expression variation that cannot be explained by the changing 

cell fractions alone: Δ = B − CW. We can subsequently use this quantity to determine 

“residual QTLs” by directly correlating it with genotype. In total, this results in 202,940 

SNPs involved in residual eQTLs. Potentially, one can elaborate on this further by allowing 

the correlations to be done in a cell-type–specific fashion (fig. S35).

To further dissect the associations between genomic elements and QTLs, we compared all of 

the different types of QTLs with one another and with genomic annotations (Fig. 4E). As 

expected, eQTLs tended to be enriched at promoters, and cQTLs, at enhancers and 

transcription factor (TF)–binding sites; fQTLs were spread over many different elements. 

Also, an appreciable number of eQTLs were enriched on the promoter of a different gene 

from the one regulated, suggesting the activity of an Epromoter, a regulatory element with 

dual promoter and enhancer functions (41). For the overlap among different QTLs, we 

expected that most cQTLs and fQTLs would be a subset of the much larger number of 

eQTLs; somewhat surprisingly, an appreciable number of these did not overlap (Fig. 4F). To 

evaluate this precisely, we calculated π1 statistics and found that the cQTL overlap was 
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larger than the fQTL overlap (0.89 versus 0.11). Moreover, eQTL-cQTL overlaps often 

suggested that the expression-modulating function of an eQTL derived from chromatin 

changes (e.g., for MTOR) (Fig. 4F). Overall, the total number of overlapping QTLs was 

2477 (which we dub multi-QTLs) (Fig. 4F).

Regulatory networks

We next integrated the genomic elements described above into a regulatory network. We first 

processed a Hi-C dataset for adult brain in the same reference samples used for enhancer 

identification, providing a physical basis for interactions between enhancers and promoters 

(Fig. 5A and table S8) (13, 21). In total, we identified 2735 topologically associating 

domains (TADs) and ~90,000 enhancer-promoter interactions (fig. S36). As expected, ~75% 

of enhancer-promoter interactions occurred within the same TAD, and genes with more 

enhancers tended to have higher expression (Fig. 5B and fig. S36). We integrated the Hi-C 

data with QTLs; surprisingly, QTLs involving SNPs distal to eGenes but linked by Hi-C 

interactions showed significantly stronger associations (as indicated by the QTL P value) 

than those with SNPs directly in the eGene promoter or exons (Fig. 5C and fig. S37).

To gain insights into the brain chromatin, we compared the adult PsychENCODE Hi-C 

dataset with those from other tissues in a similar fashion to the transcriptomic and 

epigenomic comparisons described above. In particular, we selected a set of tissues and cell 

types from ENCODE and Roadmap, consistently processed their associated Hi-C data at a 

low resolution, and compared them with our reference-brain Hi-C data. As expected, we 

found that all the samples for adult brain regions tend to separate markedly from the other 

tissues in terms of A-B compartment similarity and other metrics (Fig. 5D and fig. S38).

In addition to data for the adult brain, we also added PsychENCODE Hi-C data for the fetal 

brain into the comparison, assessing the degree to which the chromatin differences between 

developmental stages relate to those between tissues (Fig. 5D). We found that whereas Hi-C 

datasets for the adult brain clustered together, the Hi-C dataset for the fetal brain was distinct 

(Fig. 5D and fig. S39). Only ~31% of the interactions in our adult Hi-C data were detected 

in the fetal dataset (figs. S39 and S40) (13). Though hard to exactly quantify, this difference 

appears to be larger than that seen from cross-tissue transcriptome comparison, with fetal 

samples included (fig. S41). We did a number of other comparisons between fetal and adult 

brain Hi-C datasets, analyzing the regulatory elements and genes linked by each. As 

expected, we found fetus-linked genes to be more highly expressed prenatally and adult-

linked ones postnatally (Fig. 5E). In addition, the fetus-linked genes were preferentially 

expressed in developmental cell types (Fig. 5F). They were also highly expressed in adult 

neurons, whereas the adult-linked ones were preferentially expressed in glia, reflecting 

known cell-type composition (Fig. 5, D and F) (42).

In addition to Hi-C linkages, we tried to find further regulatory connections by relating the 

activity of TFs to target genes (Fig. 5A). In particular, for each potential target of a TF, we 

created a linkage if it had a “good binding site” (matching the TF’s motif) in gene-proximal 

open chromatin regions (either promoters or brain-active enhancers) and if it had a high 

coefficient in a regularized, elastic net regression, relating TF activity to target expression 

Wang et al. Page 12

Science. Author manuscript; available in PMC 2019 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(fig. S42) (21). Elastic net regression assumes that target gene expression is determined by a 

linear combination of the expression levels of its regulating TFs, via regression coefficients 

(using sparsified L1 and L2 regularization). Overall, we found that a subset of regulatory 

connections could predict the expression of 8930 genes with a mean square error (MSE) of 

<0.05 (fig. S43). For example, we could predict the expression of the ASD-associated gene 

CHD8 with MSE = 0.034 (equivalent to coefficient of determination R2 = 0.77 over the 

population) (21). Lastly, the enhancer-binding TFs with high regression coefficients—

implying a high chance for TF regulation of the target genes via particular bound enhancers

—provide a third set of putative enhancer-to-gene links.

Collectively, we generated a full regulatory network, linking enhancers, TFs, and target 

genes (fig. S42). This includes 43,181 proximal and 42,681 distal linkages involving 11,573 

protein-encoding target genes (TF–to–target gene via promoter for proximal versus via 

enhancer–target gene connection for distal) (Fig. 5A) (15, 21). As functioning regulatory 

connections reflect cell type, we also generated potential cell-type–specific regulatory 

networks (Fig. 5, F and G, and fig. S44). In these, we found a number of well-known TFs 

associated with brain development—e.g., NEUROG1, DLGAP2, and MEF2A for excitatory 

neurons and GAD1, GAD2, and LHX6 for inhibitory neurons (Fig. 5G) (43–46). Lastly, for 

broad utility on the resource website, we also provide an expanded regulatory network with 

slightly different parameterization (fig. S42).

Linking GWAS variants to genes

We used our regulatory network based on Hi-C, QTLs, and activity relationships to connect 

non-coding GWAS loci to potential disease genes. In particular, for the 142 SCZ GWAS 

loci, we identified a set of 1111 putative SCZ-associated genes, covering 119 loci (the SCZ 

genes) (Fig. 6A) (47). Of these, 321 constitute a “high-confidence” set supported by more 

than two evidence sources (e.g., QTLs and Hi-C) (Fig. 6, A and B, and fig. S45); examples 

include the CHRNA2 and CACNA1C genes (Fig. 6, B and C). Overall, the SCZ genes 

represent an increase from the 22 genes reported in an earlier QTL study and a larger 

number than can be linked simply by genomic proximity (176) (Fig. 6A) (11, 47). The 

majority of SCZ genes were not even in LD with the index SNPs (~67%, or 748 of 1111 

genes with r2 < 0.6) (fig. S45), consistent with the fact that regulatory relationships often do 

not follow linear genome organization (13).

We then looked at the characteristics of the 1111 SCZ genes (and the high-confidence subset 

of 321). As expected, they shared many characteristics with known SCZ-associated genes, 

being enriched in translational regulators, cholinergic receptors, calcium channels, synaptic 

genes, SCZ differentially expressed genes, and loss-of-function-intolerant genes (fig. S45) 

(47). Next, we identified the TFs regulating the SCZ genes (on the basis of our regulatory 

network, either directly or via an enhancer) (Fig. 6D). These include LHX9 and SOX7, TFs 

critical for early cortical specification and neuronal apoptosis, respectively (48, 49). Lastly, 

we integrated the SCZ genes with single-cell profiles and found that they are highly 

expressed in neurons, particularly excitatory ones, consistent with the recent findings (Fig. 

6E) (47).
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In addition to SCZ, we also looked at other diseases linked by our regulatory network. In 

particular, we found aggregate associations between our brain eQTLs and enhancers and 

many brain disorder GWAS variants, much more so than for GWAS variants for non-brain 

diseases (Fig. 6F and table S9).

Integrative deep-learning model

The full interaction between genotype and phenotype involves many levels, beyond those 

encapsulated by the regulatory network. We addressed this by embedding our regulatory 

network into a larger multilevel model. In particular, we developed an interpretable deep-

learning framework, the Deep Structured Phenotype Network (DSPN) (21). This model 

combines a Deep Boltzmann Machine architecture with conditional and lateral connections 

derived from the regulatory network (50). Traditional classification methods such as logistic 

regression predict phenotype directly from genotype, without using intermediates such as 

the transcriptome (Fig. 7A). In contrast, the DSPN is constructed via a series of intermediate 

models that add layers of structure. We included layers for intermediate molecular 

phenotypes associated with specific genes (i.e., their gene expression and chromatin state) 

and predefined gene groupings (cell-type marker genes and coexpression modules), multiple 

higher layers for inferred groupings (hidden nodes), and a top layer for observed traits 

(psychiatric disorders and other brain phenotypes). Finally, we used sparse inter- and 

intralevel connectivity to integrate our knowledge of QTLs, regulatory networks, and 

coexpression modules from the sections above (Fig. 7B). By using a generative architecture, 

we ensure that the model is able to impute intermediate phenotypes, as well as provide 

forward predictions from genotypes to traits.

Using the full model with the genome and transcriptome data provided, we demonstrated 

that the extra layers of structure in the DSPN allowed us to achieve substantially better trait 

prediction than traditional additive models (Fig. 7C). For instance, a logistic predictor was 

able to gain a 2.4-fold improvement when including the transcriptome versus using the 

genome alone (+9.3% for the transcriptome versus +3.8% for the genome, above a 50% 

random baseline). By contrast, the DSPN was able to gain a larger, 6-fold improvement 

(+22.9% versus +3.8%), which may reflect its ability to incorporate nonlinear interactions. 

This result clearly manifests that the transcriptome carries additional information, which the 

DSPN is able to extract. Moreover, the DSPN allows us to perform joint inference and 

imputation of intermediate phenotypes (i.e., transcriptome and epigenome) and observed 

traits from just the genotype alone, achieving a ~3.1-fold improvement over a logistic 

predictor in this context (Fig. 7C and fig. S46). Overall, these results demonstrate the 

usefulness of even a limited amount of functional genomic information for unraveling gene-

disease relationships and show that the structure learned from such data can be used to make 

more accurate predictions of observed traits, even on samples for which intermediate 

phenotypes are imputed.

We transformed our results to the liability scale for comparison with narrow-sense 

heritability estimates (Fig. 7C) (21). Prior studies have estimated that common SNPs explain 

25.6, 20.5, and 19% of the genetic variance for SCZ, BPD, and ASD, respectively (51). 

These may be taken as theoretical upper bounds for additive models, given unlimited 
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common-variant data. By contrast, nonlinear predictors can exceed these limits. Our best 

liability scores (from just the genotype at QTL-associated variants) are substantially below 

these bounds, implying that additional data would be beneficial. By contrast, the variance 

explained by the full DSPN model exceeds that explained by common SNPs in SCZ and 

BPD, possibly reflecting the influence of rare variants and epistatic interactions (32.8 and 

37.4% respectively—the variance of 11.3% for ASD is slightly lower). However, these 

estimates may be confounded by trait-associated variation that is environmental in origin 

(fig. S47).

A key aspect of the DSPN is its interpretability. In particular, we examined the specific 

connections learned by the DSPN between intermediate and high-level phenotypes. Here, 

we included coexpression modules in the model, referring to this modification as “DSPN-

mod” (fig. S48). Using it, we determined which modules were prioritized, as well as the sets 

of genes associated with latent nodes that were found at each hidden layer (Fig. 8A and table 

S10) (15, 21). Broadly, we take an unbiased view of all 5024 modules and higher-order 

groupings constructed from these and then prioritize a subset of ~180 modules and 

groupings for each psychiatric disorder, showing these to be enriched in specific functional 

categories and to intersect substantially with the modules from more disease-focused 

analyses (Fig. 8, B and C, and fig. S49) (22). [For completeness, we provide a full table 

showing the prioritization and functional categories for all possible modules associated with 

various traits (fig. S50).] In particular, we found that cross-disorder prioritized modules are 

associated with functional categories such as “immune processes,” “synaptic activity,” and 

“splicing,” consistent with the findings from more disease-focused analyses (Fig. 8C) (22). 

Also, we showed that prioritized SCZ and BPD modules are enriched for known GWAS 

SNPs (fig. S51) (for ASD, the lack of GWAS SNPs precludes similar analyses). For SCZ, 

which is the best characterized of the three disorders, we find enrichments for pathways and 

genes known to be associated with the disease, including glutamatergic-synapse pathway 

genes, such as GRIN1; calcium-signaling pathway and astrocyte-marker genes; and 

complement cascade pathway genes such as C4A, C4B, and CLU (Fig. 8D) (22). Other 

prioritized modules include well-characterized genes such as MIAT, RBFOX1, and ANK2 
(SCZ); RELA, NFkB2, and NIPBL (ASD); and HOMER1 (BPD), consistent with the results 

of (22). Finally, we identify modules associated with aging, finding that they are enriched in 

Ex4 neuronal cell-type genes, synaptic and longevity functions, and the gene NRGN—all 

consistent with differential expression analysis (Fig. 8D and fig. S20).

Conclusions

We have developed a comprehensive resource for functional genomics of the adult brain by 

integrating PsychENCODE data with a broad range of publicly available datasets. In 

closing, we review our main findings and ways that they can be improved in the future.

First, in terms of QTLs, we identified a set of eQTLs several times as large as those in 

previous studies, targeting a saturating proportion of protein-coding genes. Moreover, we 

were able to identify a substantial number of cQTLs. PsychENCODE was, in fact, among 

the first efforts to generate ChIP-seq data across a large cohort of brain samples, with 

experiments focused primarily on H3K27ac. In the future, further increasing cohort size and 
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performing additional chromatin assays, such as STARR-seq (self-transcribing active 

regulatory region sequencing) and ChIP-seq for other histone modifications, will improve 

the identification of enhancers and cQTLs (52). More fundamentally, one-dimensional 

fluctuations in the chromatin signal reflect changes in three-dimensional chromatin 

architecture, and new metrics beyond cQTLs may be needed.

Second, in terms of single-cell analysis, we found that varying proportions of basic cell 

types (with different expression signatures) accounted for a large fraction of the expression 

variation across a population of individuals. However, this assumes that the expression levels 

characterizing a signature are fairly constant over a population of cells of a given cell type. 

In the future, larger-scale single-cell studies will allow us to examine this question in detail, 

perhaps quantifying and bounding environment-associated transcriptional variability. In 

addition, current single-cell techniques suffer from low sensitivity and dropouts; thus, it 

remains challenging to reliably quantify low-abundance transcripts (15, 53). This is 

particularly the case for specific brain cell substructures, such as axons and dendrites (15).

Third, we developed a comprehensive deep-learning model, the DSPN, and used it to 

illustrate how functional genomics data could improve the link between genotype and 

phenotype. In particular, by integrating regulatory-network connectivity and latent factors, 

the DSPN improves trait prediction over traditional additive models. Moreover, it takes into 

account dependencies between gene expression levels not modeled by univariate eQTL 

methods. In this study, we kept our eQTL methods very standard, closely following the 

GTEx paradigm. This separation we make between univariate eQTL detection and 

multivariate integrative modeling allows us to compare our eQTLs directly with those from 

previous analyses, such as the CMC study. However, multivariate-based methods for QTLs 

have been used elsewhere and, in the future, may be combined with our approach (54, 55).

Further, in the future, we can envision how our DSPN approach can be extended to modeling 

additional intermediate phenotypes. In particular, we can naturally embed in the middle 

levels of the model additional types of QTLs and phenotype-phenotype interactions—e.g., 

QTLs associated with microRNAs, neuroimaging, human-and primate-specific genes, and 

developmental brain enhancers (56–59).

We expect that the DSPN will improve accuracy mainly for complex traits with a highly 

polygenic architecture, but not necessarily for traits that are strongly determined by only a 

few variants, such as Mendelian disorders, or are closely correlated with population 

structure, such as ethnicity. However, even when the DSPN performance is low, it may still 

provide insights about intermediate phenotypes; for instance, in our analysis, the PFC 

transcriptome appears substantially less predictive with respect to gender (after removing the 

sex chromosome genes) than age, but this very fact highlights the similarity of the 

transcriptome between sexes (60). Finally, although our focus has been on common SNPs, 

the DSPN may be able to capture the effects of rare variants, such as those known to be 

implicated in ASD (51), through their influence on intermediate phenotypes.
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In summary, our integrative analyses demonstrate the usefulness of functional genomics for 

unraveling molecular mechanisms in the brain (21, 61), and the results of these analyses 

suggest directions for further research into the etiology of brain disorders.

Materials and methods summary

The materials and methods for each section of the main text are available in the section with 

same heading in the supplementary materials (21); i.e., supplementary content for a given 

main text section within the supplementary materials is named in a parallel fashion. Detailed 

data protocols are available in the supplementary materials. Moreover, associated and 

derived data files are available at the PsychENCODE resource site (19). Often we provide 

multiple versions of the derived summary files with different parameterizations (e.g., for the 

single-cell profiles and for eQTLs).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Comprehensive data resource for functional genomics of the human brain.
The functional genomics data generated by the PsychENCODE Consortium (PEC) 

constitute a multidimensional exploration across tissue, developmental stage, disorder, 

species, assay, and sex. The central data cube represents the results of our data integration 

for the three dimensions of disorder, assay, and tissue, where the numbers of datasets in the 

analysis are depicted. Projections of the data onto each of these three parameters are shown 

as graphs for assay and disorder and as a schematic for the primary brain regions of interest. 

Assay: Dataset numbers for a subset of assays are shown, including RNA-seq (2040 

PsychENCODE samples and 1632 GTEx samples, used in multiple downstream analyses), 

genotypes (1362 PsychENCODE and 25 GTEx individuals for a total of 1387 individuals 

matched to RNA-seq samples for QTL analysis after quality control filtering), and H3K27ac 

ChIP-seq (408 PsychENCODE and 5 Roadmap samples). The number of cells assayed by 

small conditional RNA sequencing (scRNA-seq) (right-hand y axis) is 18,025 for 

PsychENCODE and 14,012 for external (ext.) datasets. Disorder: Across all assays, there are 

113 GTEx and 926 PsychENCODE control individuals and 558 SCZ, 217 BPD, 44 ASD, 

and 8 affective disorder (AFF) individuals from PsychENCODE, resulting in 1866 

individuals. Tissue: Three brain regions are considered—the PFC (n = 26,769 samples), TC 

(n = 2153 samples), and CB (n = 348 samples). See table S11 and (19) for more details. 

HBCC, Human Brain Collection Core.
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Fig. 2. Deconvolution analysis of bulk and single-cell transcriptomics reveals cell fraction 
changes across the population.
(A) Genes had significantly higher expression variability across single cells sampled from 

different types of brain cells than across equivalent tissue samples taken from a population 

of individuals. (Left) Dopamine gene DRD3. (B) The heatmap shows the Pearson 

correlation coefficients of gene expression between the NMF-TCs and single-cell signatures 

(for n = 457 biomarker genes) (15). Micro, microglia; OPC, oligodendrocyte progenitor 

cells; endo, endothelial cells; astro, astrocytes; oligo, oligodendrocytes; peri, pericytes; 

quies, quiescent cells; repl, replicating cells. (C) (Top) The bulk tissue gene expression 

matrix (B, genes by individuals) can be decomposed by NMF (see fig. S52). (Bottom) The 

bulk tissue gene expression matrix B can be also deconvolved by the single-cell gene 

expression matrix (C, genes by cell types) to estimate the cell fractions across individuals 

(the matrix W); i.e., B ≈ CW. The three major cell types analyzed are depicted with 

neuronal cells in red, nonneuronal cells in blue, and developmental cells in green, as 

highlighted by column groups in matrix C (also row groups in W). frac, fraction. (D) The 

estimated cell fractions can account for >88% of the bulk tissue expression variation across 

the population. (E) Cell fraction changes across genders and brain disorders. **Differences 

from control samples are significant (via a Kolmogorov-Smirnov test) after accounting for 

age distributions. See table S12 for more detail. CTL, control. (F) Changing cell fractions 

(for Ex3), gene expression (for SST), and promoter methylation level (median level, for 

SST) across age groups are shown. With increasing age, the fractions of Ex3 and Ex4 

significantly increase, and some nonneuronal types decrease (Ex3 trend analysis, P < 6.3 × 

10−10).
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Fig. 3. Comparative analysis of transcriptomics and epigenomics between the brain and other 
tissues.
(A) Epigenetics signals of the reference brain (purple) were used to identify active enhancers 

with the ENCODE enhancer pipeline. The H3K27ac signal tracks at the corresponding 

enhancer region from each individual in the cohort are shown in green, with the gradient 

showing the normalized signal value for each H3K27ac peak. (B) The overlap of the 

H3K27ac peaks from an individual in the population with the reference brain enhancers is 

shown as a Venn diagram. The histogram shows the varying percentages of overlapped 

H3K27ac peaks across individuals. (C) The tissue clusters of RCA coefficients [principal 

component 1 (PC1) versus PC2] for chromatin data of any potential regulatory elements are 

shown. Clusters of PsychENCODE samples (dark green ellipses), external brain samples 

(light green ellipses), and other non-brain tissues (magenta ellipses) are plotted. (D) The 

extent of transcription for coding (arrowhead) and noncoding (diamond) regions. The 

average transcription extent (x axis) is shown compared with the cumulative extent of 

transcription across a cohort of individuals (y axis) for select tissue types, including the CB, 

cortex, lung, skin, and testis, by using polyadenylate RNA-seq data. (E and F) Similar to 

(C), but now for transcription rather than epigenetics. (E) RCA coefficients for gene 

expression data from PsychENCODE, GTEx brains, and other tissue samples are shown in 

dark green, light green, and magenta, respectively. (F) The center (cross) and ranges of 

different tissue clusters (dashed ellipses) are shown on an RCA scatterplot of (E).

Wang et al. Page 28

Science. Author manuscript; available in PMC 2019 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. QTLs in the adult brain.
(A) The frequency of genes with at least one eQTL (eGenes) is shown across different 

studies. The number of eGenes increased as the sample size increased. PsychENCODE 

eGenes are close to saturation for protein-coding genes. The estimated replication π1 values 

for GTEx and CMC eQTLs versus PsychENCODE are shown (36). (B) The similarity 

between PsychENCODE brain dorsolateral PFC (DLPFC) eQTLs and GTEx eQTLs of other 

tissues are evaluated by π1 values and SNP-eGene overlap rates. Both π1 values and SNP-

eGene overlap rates are higher for brain DLPFC than for the other tissues. (C) An example 

of an H3K27ac signal across individuals in a representative genomic region, showing largely 

congruent identification of regions of open chromatin. The region within the dashed 

rectangle represents a cQTL; the signal magnitudes for individuals with a G/G or G/

Tgenotype were lower than those for individuals with a T/Tgenotype. chr1, chromosome 1; 

rs, reference SNP. (D) An example of the mechanism by which an fQTL may affect 

phenotype. This fQTL overlaps with an eQTL for FZD9, a gene located in the 7q11.23 

region that is deleted in Williams syndrome. The fQTL may affect the fraction of Ex3 by 

regulating FZD9 expression. Only Ex3 constitutes a statistically significant fQTL with this 

SNP (as designated by the asterisk). ref, reference; alt, alternate. (E) The enrichment of 

QTLs in different genomic annotations is shown. Pink circles indicate highly significant 

enrichment (P < 1 × 10−25 and OR > 2.5). OR, odds ratio; TFBS, TF binding site; UTR, 

untranslated region. (F) Numbers of identified QTL-associated elements (eGenes, 
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enhancers, and cell types) and QTL SNPs are shown in the bottom left table. Asterisks 

indicate that, for cQTLs, we show only the number of top SNPs for each enhancer. Overlaps 

of all QTL SNPs are shown in heatmaps (square rows). The linked circles show the overlap 

of QTL types. The intersections of other QTLs with eQTLs are evaluated by using π1 values 

in the orange bar plot. The greatest intersection is between cQTLs and eQTLs. An example 

is displayed on the right: the intersection of eQTL SNPs (for the MTOR gene) and cQTL 

SNPs (for the H3K27ac signal on an enhancer ~50 kb upstream of the gene). Hi-C 

interactions (bottom) indicate that the enhancer interacts with the promoter of MTOR, 

suggesting that the cQTL SNPs potentially mediate the expression modulation manifest by 

the eQTL SNPs.
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Fig. 5. Building a gene regulatory network (GRN) from Hi-C and data integration.
(A) A full Hi-C dataset from adult brain reveals the higher-order structure of the genome, 

ranging from contact maps (top) to TADs and promoter-based interactions. (Bottom) A 

schematic of how we leveraged gene regulatory linkages involving TADs, TFs, enhancers 

(Enh), and target genes (TG) to build a full GRN (fig. S42) and a high-confidence 

subnetwork consisting of 43,181 TF–to–target gene promoter and 42,681 enhancer–to–target 

gene promoter linkages (21). (B) We compared the number of genes (left y axis, dotted line) 

and the normalized gene expression levels (right y axis, boxes) with the number of 

enhancers that interact with the gene promoters. Boxes show means and SDs. (C) QTLs that 

were supported by Hi-C evidence (174,719) showed more significant P values than those 

that were not (promoter or exonic QTLs, 130,155; nonsupported QTLs, 1,065,311). (D) 

Cross-tissue comparison of chromatin architecture indicates that adult brains in 

PsychENCODE and Roadmap (e.g., DLPFC and hippocampus tissues) share chromatin 

architecture more than nonrelated tissue types. Fetal brain shows chromatin architecture 

distinct from that in adult brain, indicating extensive rewiring of chromatin structures during 

brain development. ES, embryonic stem cell. (E) Genes assigned to fetal active elements are 

prenatally enriched, whereas genes assigned to adult active elements are postnatally 

enriched. (F) Genes assigned to fetal active elements are relatively more enriched in neurons 

in the adult brain and fetal (developmental) brain, whereas genes assigned to adult active 

elements are relatively more enriched in glia (adult astrocytes, endothelial cells, and 

oligodendrocytes). Ex. N, excitatory neuron; Int. N, inhibitory neuron; IPC, intermediate 

progenitor cells; NEP, neuroepithelial cells; trans, transient cell type. (G) The circos plots 

show the linkages from the full regulatory network targeting the cell-type–specific 

biomarker genes. The biomarker genes for excitatory or inhibitory neuronal type are the 

biomarker genes shared by at least five excitatory or inhibitory subtypes (20). Selected TFs 

for particular cell types are highlighted.
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Fig. 6. GRNs assign genes to GWAS loci for psychiatric disorders.
(A) A schematic depicting how SCZ GWAS loci were assigned to putative genes. The 

number of SCZ GWAS loci and their putative target genes (SCZ genes) annotated by each 

assignment strategy is indicated (top). The overlap between SCZ genes defined by QTL 

associations (QTL), chromatin interactions (Hi-C), and activity relationships (activity) is 

depicted in a Venn diagram (bottom). SCZ genes with more than two evidence sources were 

defined as high-confidence (high conf.) genes. (B) A GRN of TFs, enhancers, and 321 SCZ 

high-confidence genes, on the basis of TF activity linkages. A subnetwork for CACNA1C is 

highlighted on the right. (C) An example of the evidence indicating that GWAS SNPs that 

overlap with CHRNA2 eQTLs also have chromatin interactions and activity correlations 

with the same gene. Orange dots refer to SNPs that overlap between eQTLs and GWAS 

plots. (D) TFs that are significantly enriched in enhancers (left) and promoters (right) of 

SCZ genes. FDR, false discovery rate. (E) SCZ genes show higher expression levels in 

neurons (particularly excitatory neurons) than in other cell types. (F) Brain disorder GWAS 

show stronger heritability enrichment in brain regulatory variants (eQTLs) and elements 

(enhancers) than non–brain disorder GWAS. ADHD, attention-deficit/hyperactivity disorder; 

T2D, type 2 diabetes; CAD, coronary artery disease; IBD, inflammatory bowel disease.
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Fig. 7. DSPN deep-learning model links genetic variation to psychiatric disorders and other 
traits.
(A) The schematic outlines the structure of the following models: logistic regression (LR), 

conditional Restricted Boltzmann Machine (cRBM), conditional Deep Boltzmann Machine 

(cDBM), and DSPN. Nodes are partitioned into four layers (L0 to L3) and colored according 

to their status as visible, visible or imputed (depending on whether nodes were observed or 

not at test time), or hidden. (B) DSPN structure is shown in further detail, with the biological 

interpretation of layers L0, L1, and L3 highlighted. The GRN structure learned previously 

(Fig. 5A) is embedded in layers L0 and L1, with different types of regulatory linkages and 

functional elements shown. Co-expr. mods., coexpression modules. (C) The performance of 

different models is summarized, with comparisons of performance across models of 

different complexity and of transcriptome versus genome predictors, corresponding to being 

with or without imputation for the DSPN (colors highlight relevant models for each 

comparison). Performance accuracy is shown first, with variance explained on the liability 

scale in brackets. All models were tested on identical data splits, which were balanced for 

predicted trait and covariates (including gender, ethnicity, age, and assay). RNA-seq, cell 

fraction, and H3K27ac data were binarized by thresholding at median values (per gene, cell 

type, and enhancer, respectively), as was age (median, 51 years) when predicted. LR-gene 

and LR-trans are logistic models using genetic and transcriptomic predictors, respectively; 

Wang et al. Page 33

Science. Author manuscript; available in PMC 2019 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DSPN-impute and DSPN-full are models with imputed intermediate phenotypes (genotype 

predictors only) and fully observed intermediate phenotypes (transcriptome predictors), 

respectively. Differential performance is shown in terms of improvement above chance, with 

liability variance score increases in brackets. GEN, gender; ETH, ethnicity; AOD, age of 

individual at death.
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Fig. 8. Interpretation of the DSPN model highlights functional associations and shared disease 
mechanisms.
(A) The schematic illustrates the module (MOD) and higher-order grouping (HOG) 

prioritization schemes. Red and blue lines represent positive and negative weights, 

respectively, and full and dotted lines represent first and second ranks by absolute value 

[creating a directed acyclic graph (DAG) with branching factor 4, rooted at L3]. Highlighted 

nodes (gray) in L1d show positive prioritized MODs, for which a positive path (containing 

an even number of negative links) exists connecting the module to the SCZ node. a1/a2 and 

b1/b2 highlight “best positive paths” from a and b, respectively, to SCZ in terms of absolute 

rank score. Associated HOGs are defined for a1/a2, containing all nodes in L1d having a 

path in the DAG to a1 (respectively a2), which is identically signed to the best path from a to 

a1 (respectively a2) (21). Positive prioritized HOGs are associated with nodes on best paths 

from all positive prioritized MODs; negative prioritized MODs and HOGs are calculated 
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similarly. (B) Summary of the functional annotation scheme. (i) A total of 5024 weighted 

gene coexpression network analysis (WGCNA) MODs (modules and submodules) are 

derived from multiple data splits. (ii) MODs are prioritized as in (A) for each disorder, and 

(iii) associated HOGs are calculated. (iv) Gene set enrichment analysis associates functional 

terms with all MODs and HOGs. (v) Terms are ranked per disorder by counting the number 

of prioritized MODs or HOGs they associate with, and broad functional categories are 

defined; (vi) prioritized MODs and HOGs are linked to potentially interesting genes, 

enhancers, and SNPs by using GRN connectivity. proc., processing. (C) Upper segment of 

cross-disorder ranking of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) functional terms, where cross-disorder ranks are assigned by using the 

average per-disorder rank ordering. Ranking score levels and functional categories are as in 

the key in (B). Highlighted ranks and terms correspond to examples shown in (D). See fig. 

S49 for extended ranking. sig., signaling; staph., staphylococcus; inf., infection; dop., 

dopamine; cGMP-PKG, guanosine 3′,5′-monophosphate–cGMP-dependent protein kinase; 

int., interaction. (D) Examples of associations between prioritized MODs or HOGs and 

genes, enhancers, and SNPs for each disorder and age model. Associated functional terms 

and categories are as in (B). A table providing coordinates of eQTLs and cQTLs for all 

examples shown is provided in table S13. Chem. syn. trans., chemical synaptic transmission.
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