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Aim. To evaluate the conditioning capabilities of the DAR� Hygrobac� S, a Heat and Moisture Exchanger (HME), using a new
device tomeasure the temperature (T) and the absolute humidity (AH) of the ventilated gases in vivo duringmechanical ventilation
in Intensive Care Unit (ICU) patients. Materials andMethods. In 49 mechanically ventilated ICU patients, we evaluated T and AH,
indicating the HME efficacy, during the inspiratory phase upstream and downstream the HME and the ratio of inspired AH to
expired AH and the difference between expired T and inspired T indicated theHME efficiency. Efficacy and efficiency were assessed
at three time points: at baseline (t

0
, HME positioning time), at 12 hours (t

1
), and at 24 hours (t

2
) using a dedicated, ad hoc built

wireless device. Differences over time were evaluated using one-way ANOVA for repeated measures, whereas differences between
in vivo and laboratory values (declared by themanufacturer according toUNI�EN ISO 9360 international standard) were evaluated
using one-sample Student t-test. Results. 49 HMEs were analysed in vivo during mechanical ventilation. T and AH means (SD) of
the inspired gas (the efficacy) were 31.5∘C (1.54) and 32.3mg/l (2.60) at t

0
, 31.1∘C (1.34) and 31.7mg/l (2.26) at t

1
, and 31∘C (1.29)

and 31.4mg/l (2.27) at t
2
. Both efficiency parameters were constant over time (inspired AH/expired AH=89%, p=0.24; and expired

T–inspired T = 2.2∘C, p=0.81). Compared with laboratory values, in vivo T and AH indicating efficacy were significantly lower
(p<0.01), whereas the efficiency was significantly higher (p<0.01). Conclusions. HME performances can be accurately assessed for
prolonged periods in vivo during routine mechanical ventilation in ICU patients. Temperature and absolute humidity of ventilated
gases in vivo were maintained within the expected range and remained stable over time. HME efficacy and efficiency in vivo
significantly differed from laboratory values.

1. Introduction

Conditioning (heating and humidifying) of inspired gases
is one of the functions of the upper airways. In critically
ill patients, tracheal intubation or tracheostomy limits the
efficacy of this process; therefore, when gases reach the lower
airways, they are inadequately humidified and heated. This
inadequate humidification may lead to respiratory heat loss,
airway obstruction due to thick secretions, and impairment
of the mucociliary function. Heat and Moisture Exchangers
(HMEs) combined with microbiological filters are currently
recommended to reduce the risk of respiratory complications

caused by inadequate warming and humidification of the
gases delivered to mechanically ventilated patients [1–9].

The performance of HMEs is dependent upon the type
of device, the ventilator setting (i.e., minute ventilation, and
tidal volume), and room and patient temperatures. Based on
normal physiology, HMEs should be able to provide 30 to
33mg/l of water to the airways at 30-36∘C for optimal use
in the Intensive Care Unit (ICU) [10, 11]. The commercially
available devices are tested in the laboratory according to
UNI� EN ISO 9360 international standard because the in
vivo measurements (during mechanical ventilation) of the
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humidity and temperature are technically demanding [12–
16]. Recently, some in vivo methods have been developed;
such methods enable the measurement of water exchange
performance of a variety of HMEs within a short timeframe
[17, 18].

In this study, we applied a new method for a rapid
and noninvasive assessment of the HME performance dur-
ing mechanical ventilation. The main characteristic of this
method was the use of a new device which can also be
applied for long-term assessment of the HME performance.
Wemeasured the conditioning capabilities of a commercially
available HME and its performance variations over time
during a 24-hour period of mechanical ventilation with
continuous HME use in a widely heterogeneous population
of artificially ventilated ICU patients.

2. Materials and Methods

This was a retrospective analysis of prospectively collected
data from November 2016 to August 2017 at the general
ICU of the Spedali Civili, a regional hospital, affiliated with
the University of Brescia, Italy. We enrolled 49 critically ill
patients who had been mechanically ventilated for at least
24 hours with use of a HME to provide adequate passive
gas conditioning. These patients were studied with a new
device, built by researchers of the Department of Information
Engineering of the University of Brescia (MS, PB, and ES)
to measure the performances of the DAR� Hygrobac� S, a
HME of standard clinical use at the time of the study.

The study was approved by the Ethics Committee of the
University of Brescia at Spedali Civili (protocol number 2440,
June 20th, 2016) that waived the requirement for consent
because the study only involved recording data from the
medical device with complete patients anonymisation (i.e.,
the data subjects were not identifiable).

The HMEs were changed routinely every 24 hours as per
manufacturer’s recommendations or earlier in case of copious
secretions or when increases in airway pressure were thought
to be due to increased HME resistance. The ventilator circuit
remained intact for the duration of the period of ventilation.
The ventilatory settings were not modified during the 24-
hour study period (unless required by clinical conditions, but
never significantly). The incharge intensivist was not directly
involved in the study and took full responsibility for clinical
and ventilatory management.

2.1. Description of the Experiment and Definitions. In this
study, we defined the followingHMEperformance indicators:

(i) Input: as the temperature (T) and absolute humidity
(AH) of fresh gases flowing from the ventilator to the
HME during inspiration;

(ii) Load: as the T and AH of the gases flowing from the
patient to the HME during expiration;

(iii) Return: as the T and AH of gases flowing from the
HME to the patient during inspiration (it describes
the “efficacy”);

(iv) Loss: as the T and AH of gases leaving the HME for
the ventilator during expiration;

(v) Yield: as the AH return to AH load ratio (it describes
the “efficiency”);

(vi) �ermal differential: as the difference between T
load and T return (it describes the “efficiency”);

T and AH values were measured by means of the sensors
described below.

Data were recorded in three different moments:

(i) at HME positioning time [t0]
(ii) after 12 hours of use [t1]
(iii) at the end of 24 hours of use [t2]

Tidal volumes, respiratory rates, minute ventilation, inspi-
ration:expiration time (I:E) ratios, and room and patient
temperatures were also recorded in those moments.

We assessed the following: (a) the absolute T and AH
values of input, load, return, loss, yield, and thermal differ-
ential; (b) their variation over time (24 hours); and (c) the
differences between in vivo obtained values of HME perfor-
mance indicators and their laboratory values declared by the
manufacturer in the technical sheet and/or prescribed by the
UNI� EN ISO 9360 international standard. In particular, T
and AH declared laboratory values (efficacy) were 32.3∘C and
33.6mg/l, respectively, whereas efficiency laboratory values
(inspired AH/expired AH and expired–inspired T) were 77%
and 4.7∘C, respectively.

2.2. Description of the Instrument. The measurement system
was composed of twomain sections, calledMeasuring Section
and Reading Section. The first was the core of the project and
it executed themain operations: reading the sensors, building
the data block, and managing the Bluetooth� Low Energy
(BLE) connection; this was also subdivided into two parts:
machine side and patient side.

Project specifications required two different measure-
ment points, upstream and downstream the HME filter.
Upstream the HME (machine side), T and relative humidity
(RH) were measured using the IST� HYT 271 sensor (Fig-
ure 1) and downstream that (patient side) only T using the
RTD HERAEUS� M222 Pt1000 sensor (Figure 2), consider-
ing that on the patient’s side the air is always almost saturated
in water content (RH 100%) during expiration and it is about
RH 98% during inspiration [21, 22].The Reading Section read
the data sent by Measuring Section and converted the raw
data to T and AH values by adopting the formulas reported
elsewhere [19] (Figure 3).

The complete system, measuring module (sensors and
electronics) and display module, was validated in the labora-
tory before clinical trials. After an evaluation in the climatic
chamber, a specific analysis of the dynamic behaviour of
the humidity and temperature sensors has been performed,
including a comparison of the measured data to typical
clinical T and AH variation to assess error in the evaluation
of T and AH values. The results showed that the percentage
error of the measured values compared to the real signals was
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Table 1: Ventilatory variables at t
0
, t
1
, and t

2
assessment time; SD: standard deviation.

t
0
: mean t

1
: mean t

2
: mean Differences over time (p)

(SD) (SD) (SD)

Tidal volume (ml) 443 431 425 0.70
(136) (109) (93)

Respiratory rate (min−1) 18 18 18 0.82
(6.55) (6.91) (6.91)

Minute ventilation (l/min) 7.46 7.52 7.42 0.92
(2.49) (2.13) (2.41)

I:E ratio 0.53 0.59 0.58 0.70
(0.26) (0.27) (0.28)

Room temperature (∘C) 24.0 23.3 23.7 0.09
(1.75) (1.14) (1.16)

Patient temperature (∘C) 36.7 36.9 36.7 0.76
(0.70) (0.75) (0.59)

Figure 1: T and AH sensor: IST�HYT 271 (machine side).

Figure 2: Tsensor: RTD HERAEUS�M222 Pt1000 (patient side).

from 5% to 14% depending on respiratory frequency rate and
I:E ratio, so the error trend was linear with the increase of the
respiratory frequency rate and was inversely proportional to
the I:E ratio [23–30].

2.3. Data Presentation and Statistical Analysis. All variables
were expressed as means and standard deviations (SD).

We estimated that a sample of 36 HMEs would provide
80% power to detect a difference of 2∘C in T, 2mg/l of AH,
and a 5% variation in the yield, at a two-sided alpha level of
0.05.

Variations over time of the HME performance indicators
(input, load, return, loss, yield, and thermal differential)
were analysed using ANOVA for repeated measures. The
differences between in vivo observed and manufacturer-
declared laboratory values were analysed using one-sample
Student t-test. A p < 0.05 was considered as statistically
significant.

3. Results

We evaluated 49 HMEs in vivo in 49 mechanically ventilated
ICU patients. For 36 HMEs, the performances were analysed
for 24 hours according to the study protocol, while for 13
HMEs the assessment was interrupted after 12 hours because
of device replacement for clinical needs.

Table 1 describes the ventilatory variables, as well as room
and patient temperatures at t

0
, t
1
, and t

2
. The minute ventila-

tion varied between 7.42 and 7.52 l/min, room temperature
between 23 to 24∘C, and patient temperature between 36.7
and 36.9∘C. There were no statistically significant changes in
these parameters over time.

Concerning the main aims of the study, (a) T and AH
of the inspired gases, describing the efficacy, are shown in
Table 2, (b) none of the measured parameters significantly
varied over time (Table 2, last column), and (c) differences
between in vivo observed and laboratory values are shown in
Table 3.

In vivo measured efficacy was lower than the laboratory
values for both T and AH, whereas the efficiency was higher
in vivo than in laboratory conditions (p < 0.01). Moreover,
our clinical setting was significantly different in terms of tidal
volumes, respiratory rates, minute ventilations, I:E ratios,
room temperatures, patient temperatures, and load T and
AH, compared to the laboratory setting (Table 3).
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Table 2: Temperature (T) and absolute humidity (AH) values of Heat andMoisture Exchanger (HME) performance indicators; SD: standard
deviation.

HME performance indicators t
0
: mean t

1
: mean t

2
: mean Differences over time (p)

(SD) (SD) (SD)

LOAD
T (∘C) 33.6 33.4 33.3 0.51

(1.38) (1.49) (1.18)

AH (mg/l) 36.9 36.4 36.2 0.18
(2.66) (2.83) (2.26)

RETURN (efficacy)
T (∘C) 31.5 31.1 31.0 0.67

(1.54) (1.34) (1.29)

AH (mg/l) 32.3 31.7 31.4 0.11
(2.60) (2.26) (2.27)

YIELD (efficiency)
Thermal differential (∘C) 2.2 2.2 2.3 0.81

(0.55) (0.54) (0.76)

AH yield 0.89 0.89 0.89 0.24
(0.03) (0.03) (0.04)

INPUT
T (∘C) 25.9 25.2 25.5 0.80

(0.76) (0.71) (0.88)

AH (mg/l) 1.2 1.3 1.2 0.11
(0.70) (0.52) (0.56)

LOSS
T (∘C) 26.0 25.3 25.5 0.59

(0.76) (0.72) (0.89)

AH (mg/l) 6.3 6.9 6.6 0.62
(1.36) (1.94) (2.57)

MACHINE SIDE PATIENT SIDE

MEASURING SECTION

HUM + TEMP

MCU

TX - RX HME FILTER

TEMPERATURE

PATIENT

MECHANICAL
VENTILATION

MACHINE

USB

READING SECTION

Figure 3: Data acquisition system.

4. Discussion

In this retrospective study, we analysed the DAR�
Hygrobac� S HME performances in vivo during routine
mechanical ventilation in critically ill patients by applying
a newly devised wireless, portable device of reduced
weight, with a user-friendly interface and long battery life,

measuring the gas temperature and absolute humidity with
low invasiveness for the patients and complete integration
with respiratory circuit. By using a complete list of HME
performance indicators, we found that the in vivo efficacy
of the HME was within the required range for optimal gas
conditioning which should be maintained between 30 and
36∘C of T and 30 and 33mg/l of AH and did not significantly
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Table 3: Comparison of temperature (T) and absolute humidity (AH) of Heat and Moisture Exchanger (HME) performance indicators
between laboratory values as declared by the manufacturer and in vivomeasured values. All values are expressed as laboratory values minus
in vivo values and were measured at a tidal volume of 500 ml.

HME performance indicators
and ventilatory parameters Laboratory – in vivo t

0
Laboratory – in vivo t

1
Laboratory – in vivo t

2

Laboratory values
[15, 16, 19, 20]

Load T (∘C) + 3.4 + 3.7 + 3.7 37.0
(p < 0.01) (p < 0.01) (p < 0.01)

Load AH (mg/l) + 6.9 + 7.4 + 7.6 43.8
(p < 0.01) (p < 0.01) (p < 0.01)

Return T (efficacy) (∘C) + 0.8 + 1.2 + 1.3 32.3
(p < 0.01) (p < 0.01) (p < 0.01)

Return AH (efficacy) (mg/l) + 1.3 + 2.0 + 2.2 33.6
(p < 0.01) (p < 0.01) (p < 0.01)

Thermal differential (efficiency)
(∘C)

+ 2.5 + 2.5 + 2.4 4.7
(p < 0.01) (p < 0.01) (p < 0.01)

AH yield (efficiency) - 0.12 - 0.12 - 0.12 0.77
(p < 0.01) (p < 0.01) (p < 0.01)

Input T (∘C) - 2.9 - 2.2 - 2.5 23.0
(p < 0.01) (p < 0.01) (p < 0.01)

Input AH (mg/l) - 0.2 - 0.3 - 0.2 1.0
(p = 0.03) (p < 0.01) (p = 0.049)

Loss T (∘C) - 3.0 - 2.3 - 2.5 23.0
(p < 0.01) (p < 0.01) (p < 0.01)

Loss AH (mg/l) - 0.3 - 0.9 - 0.6 6.0
(p = 0.10) (p <0.01) (p =0.16)

Tidal volume (ml) + 57 + 69 + 75 500
(p < 0.01) (p < 0.01) (p < 0.01)

Respiratory rate (min−1) - 3 - 3 - 3 15
(p < 0.01) (p < 0.01) (p < 0.01)

Minute ventilation (l/min) + 0.04 - 0.02 + 0.08 7.5
(p = 0.91) (p = 0.96) (p = 0.84)

I:E ratio + 0.47 + 0.41 + 0.42 1
(p < 0.01) (p < 0.01) (p < 0.01)

Room temperature (∘C) - 1.0 - 0.3 - 0.7 23.0
(p < 0.01) (p = 0.63) (p < 0.01)

Patient temperature (∘C) + 0.4 + 0.1 + 0.3 37.0
(p < 0.01) (p = 0.12) (p < 0.01)

change over time. The HME in vivo efficacy was lower than
expected based on laboratory values; i.e., the HME provided
less heat and humidity than anticipated; on the contrary, the
efficiency was higher; i.e., the ratio of AH return to load was
89%, which was significantly higher than the 77% expected
value based on laboratory values. The reasons for differences
in efficacy and efficiency between in vivo and laboratory
values are speculative. Other factors, in addition to the HME
itself, may have influenced these parameters. The patient’s
and room temperature, the type and the length of the
tracheal tube, and the ventilatory setting might have played
a role; however, the evidence supporting this hypothesis
has not been evaluated in other studies. Importantly, these
ambient factors are an integral part of in vivo functioning of

the HME and should be assessed in future studies aiming at
quantifying their impact on HME performances.

5. Conclusions

In conclusion, we demonstrated that HME performances
can be accurately assessed for prolonged periods in vivo
during routine mechanical ventilation in ICU patients with
the use of a newly introduced device. Temperature and
absolute humidity of ventilated gases in vivoweremaintained
within the expected range and remained stable over the entire
observation period. However, HME efficacy and efficiency in
vivo differed significantly from laboratory values.
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