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A B S T R A C T

Objective: Create an automated classifier for imaging characteristics of disproportionately enlarged sub-
arachnoid space hydrocephalus (DESH), a neuroimaging phenotype of idiopathic normal pressure hydrocephalus
(iNPH).
Methods: 1597 patients from the Mayo Clinic Study of Aging (MCSA) were reviewed for imaging characteristics
of DESH. One core feature of DESH, the presence of tightened sulci in the high-convexities (THC), was used as a
surrogate for the presence of DESH as the expert clinician-defined criterion on which the classifier was trained.
Anatomical MRI scans were automatically segmented for cerebrospinal fluid (CSF) and overlaid with an atlas of
123 named sulcal regions. The volume of CSF in each sulcal region was summed and normalized to total in-
tracranial volume. Area under the receiver operating characteristic curve (AUROC) values were computed for
each region individually, and these values determined feature selection for the machine learning model. Due to
class imbalance in the data (72 selected scans out of 1597 total scans) adaptive synthetic sampling (a technique
which generates synthetic examples based on the original data points) was used to balance the data. A support
vector machine model was then trained on the regions selected.
Results: Using the automated classification model, we were able to classify scans for tightened sulci in the high
convexities, as defined by the expert clinician, with an AUROC of about 0.99 (false negative ≈ 2%, false positive
≈ 5%). Ventricular volumes were among the classifier's most discriminative features but are not specific for
DESH. The inclusion of regions outside the ventricles allowed specificity from atrophic neurodegenerative dis-
eases that are also accompanied by ventricular enlargement.
Conclusion: Automated detection of tight high convexity, a key imaging feature of DESH, is possible by using
support vector machine models with selected sulcal CSF volumes as features.

1. Introduction

Idiopathic normal pressure hydrocephalus (iNPH) is a treatable
disorder, with clinical symptoms that present as the triad of gait dis-
turbance, urinary incontinence, and dementia (Hakim and Adams,
1965). Standard treatment for iNPH is shunt placement to drain cere-
brospinal fluid (CSF) (Mori et al., 2012). Prevalence of iNPH is esti-
mated clinically at between 1.1% and 2.9% among the elderly (Hiraoka
et al., 2008; Jaraj et al., 2014; Mori et al., 2012). Disproportionately
enlarged subarachnoid space hydrocephalus (DESH) is a neuroimaging

variant of iNPH defined by enlarged Sylvian fissures, ventriculomegaly,
and, most specifically, constricted CSF spaces in the high convexities of
the brain (Hashimoto et al., 2010). The Japanese Society of Normal
Pressure Hydrocephalus guidelines for management of iNPH now in-
clude radiologic signs of DESH as a supporting factor, making auto-
matic detection potentially impactful in treatment of patients (Mori
et al., 2012). The frequency of DESH has not been systemically studied
outside of iNPH. In the current study, the presence of a tight high-
convexity (THC) was visually assessed on all participants by an ex-
perienced neurologist, blinded to any clinical information about the
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participants. Manual grading for THC was selected as a criterion stan-
dard indicator of DESH, because it is a radiologic marker that does not
overlap with any common neurodegenerative disorder, unlike ven-
triculomegaly. We developed an automatic classifier aimed at re-
producing the manual THC assessments based on the volume of CSF in
individual sulci. Such a classifier may serve as a rapid, fully automated,
high-throughput pre-screening test for DESH. Because CSF expansion in
DESH can be confused with tissue atrophy on in-vivo imaging, DESH
may be an unrecognized confounding factor in imaging studies of
neurodegenerative disorders. Automated screening for DESH features
may assist in correctly classifying individuals with iNPH.

2. Materials and methods

Participants were identified from the Mayo Clinic Study of Aging
(MCSA) (Petersen et al., 2010; Roberts et al., 2008). Demographics for
the sample population are shown in Table 1 (Graff-Radford et al.,
2016). The Mayo Clinic Study of Aging is an epidemiologically

recruited sample of participants from Olmsted County, Minnesota
(Roberts et al., 2008).

All images were acquired on GE 3 T scanners using an 8-channel
receiver array. T1-weighted MRI scans were performed using a sagittal
3D magnetization prepared rapid acquisition gradient recalled echo
(MP-RAGE) sequence with no acceleration. Repetition time (TR) was ≈
2300ms, echo time (TE)≈ 3ms, and inversion time (TI)= 900ms. The
MP-RAGE was used for atlas-based anatomic parcellation. Voxel di-
mensions were ≈1.20×1.015×1.015mm. FLAIR imaging was per-
formed using 3mm thick axial slices, TR/TI/TE of 11,000/2250/
150ms with 1Nex, a 256×192 acquisition matrix, and three-fold in-
terleave.

FLAIR images from the dataset were visually assessed for imaging
factors of iNPH by an experienced neurologist (NGR). All participants
were graded by the same neurologist, eliminating inter-rater variability.
Expert evaluation of high tight sulci was made by reviewing the FLAIR
images of each patient. The images were reviewed in three orientations
(coronal, axial and sagittal). For subjects with tight high sulci MRI scans
showed the posterior hemispheres were tightly opposed. Sample images
are shown in Fig. 1. Tight high convexity was typically found to co-exist
with ventriculomegaly and enlarged Sylvian fissures.

A four-dimensional probabilistic atlas of named sulcal regions was
obtained from the BrainVISA software (Mazziotta et al., 2001), then
warped to the Mayo Clinic Adult Lifespan Template space (Schwarz
et al., 2018) using the ANTS package (Avants et al., 2008). At this point
the probabilistic maps of each sulcus were smoothed using an empiri-
cally chosen 2mm isotropic kernel to ensure complete coverage of the
intracranial vault.

The atlas was warped to each subject's individual anatomic T1-
weighted MRI, again using the ANTS package. We then collapsed the
atlas into three dimensions by assigning each voxel to the region with

Table 1
Population characteristics for the dataset used in this study.
Summaries are given as mean (std deviation) [min, max] for con-
tinuous variables and count (percent) for categorical variables. Total
subjects: 1597.

Characteristic Summary

Male 870 (51%)
Age 78.5 (5.2) [70, 94]
Education (y) 13.9 (2.9) [6, 20]
APOE e4 carrier 438 (27%)
Cognitively Unimpaired 1353 (85%)

Fig. 1. Sample MP-RAGE images from subjects visually identified as having tight high convexity. CSF spaces near the mid-sagittal line at the high convexity of the
brain appear compressed. Each row presents images from a different subject. An axial slice chosen to be near the maximum A/P extent of the corpus callosum is
shown. Three coronal images spaced 5mm apart in regions where tight high convexity is observed are also shown. The numeric values are the machine learning
system output score as described in the text.
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the highest probability. This ensured that each voxel in the atlas only
belonged to one region and allowed us to straightforwardly extract
sulcal regions of interest (ROIs) in the subject-space T1-weighted image
coordinate system. For reference, a collapsed version the atlas of 123
named sulcal regions is shown in Fig. 2. The T1-weighted images were
segmented using in-house population-specific customizations to SPM12
Unified Segmentation (Ashburner and Friston, 2005; Schwarz et al.,
2016). The overlap between the probabilistic CSF segmentation and
each atlas region was summed to give a measure of CSF volume per
sulcal region. Each sulcal volume was then normalized by the subject's
total intracranial volume (TIV) to correct for head size (Barnes et al.,
2010).

A receiver operating characteristic curve (ROC) analysis was per-
formed using the pROC package (Robin et al., 2011) in R (R Core Team,
2013) to determine the ability of each individual sulcal volume to
predict the expert neurologist's classification of tightened high con-
vexity in the training data set. Regions with an individual area under
receiver operating characteristic curve (AUROC) of> 0.7 were selected
for inclusion in the composite model. We also included the right pos-
terior subcentral ramus of the lateral fissure (AUROC=0.604) to

preserve left-right symmetry in the selected regions.
Due to the small number of participants identified as having THC by

the expert reviewer, there was a problem of class imbalance between
selected (n=73) and unselected (n=1522) classes. This was an issue
because machine learning models with small minority classes will oc-
casionally learn to simply classify everything as the majority class and
accept the small error. Adaptive synthetic sampling (ADASYN) (He
et al., 2008) was applied to balance the classes by generating synthetic
positive samples of the minority class. ADASYN is an extension of
synthetic majority oversampling technique (SMOTE) (Chawla et al.,
2002) that weights instances of minority classes by the number of si-
milar majority-class instances. It then generates new data points using
the original instances as a base, generating more points the more ma-
jority classes are nearby. This shifts the decision boundary toward ex-
amples that are more difficult to classify, improving the model by en-
suring that it can classify the difficult examples correctly.

Several different models were trained on the ADASYN balanced data
using the MATLAB classification learner toolbox (MathWorks, 2015).
We investigated discriminant analyses, logistic regression, support
vector machines, and random forest models. Many models performed
well, with model output AUROC's in excess of 0.95. Of the models

Fig. 2. The BrainVISA atlas laid on the left side of the Mayo Clinic Adult
Lifespan Template brain's CSF segmentation. Regions in the atlas are paired left-
right, so only one half of the brain is shown. Not pictured is the segmentation of
anterior ventricle horn volumes.

Fig. 3. Regions with individual AUROC values > 0.7 shown on the CSF seg-
mentation of the Mayo Clinic Adult Lifespan Template brain. These regions are
used to construct the composite model. Not pictured is our segmentation of
anterior ventricle horn volumes.
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tested, a support vector machine (SVM) (Noble, 2006) with a quadratic
kernel was empirically chosen for a balance of accuracy and con-
sistency, as well as ease of conceptual understanding. After the model
was chosen, its validity on the balanced data was tested by training it
on a dataset consisting of half of the original negative class and an equal
number of ADASYN generated instances of the positive class. The ori-
ginal positive class data were not used in training. The model was
subsequently tested on the other half of the negative class and the
original positive class. By doing so, the model was tested on data not
present in the training data.

3. Results

The number of participants selected for THC was low compared to
the size of the study (nselected= 72, ntotal = 1595, frequency≈ 4.5%)
(Table 1). Regions with individual AUROCS > 0.7 (selected for in-
clusion in the model), are shown in Fig. 3. Upon visual inspection, we
considered the selected regions consistent with typical radiologic

regions of interest for DESH. In Fig. 4, we show boxplots of CSF volume
by sulcal region, ordered from top to bottom by individual region
AUROC. The regions selected (those with AUROC > 0.7) included both
expanded and constricted regions. The most discriminant single regions
were the left and right posterior callosomarginal fissures where relative
constriction was found in participants identified as having THC. The
posterior portions of the callosomarginal fissures are superior to the
callosal gyri and inferior to the superior portions of the sensory-motor
cortex. The quadratic SVM model composed of the selected regions had
an AUROC of 0.99, much higher than the best individual region's
AUROC of 0.88 (Fig. 5).

4. Discussion

Several biologically plausible regions showed reasonable cap-
abilities to differentiate participants with and without tight high con-
vexity as determined by a blinded expert rater. For example, the pos-
terior parts of the callosomarginal sulci sit between the callosal gyrus

Fig. 4. Box plot of individual sulcal region volumes. AUROC values by region are displayed along the right side.
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and sensory-motor areas. While several individual regions showed some
effectiveness as predictors of tightened high convexity, a composite
model using both constricted and enlarged regions shows a much better
AUROC (best individual= 0.88, model composite= 0.99). When the
model was run, it produced several false positives (predicted posi-
tives= 101, false positives= 29, frequency≈ 29%). The false positive
participants were visually reviewed. One particpant image had a poor-
quality segmentation result. The remaining 28 subject images were
found to have tight sulci along the mid-sagittal line and moderately
enlarged Sylvian fissures but only modest ventricular enlargement.

Identifying DESH has treatment implications (Narita et al., 2016).
The development of automated, non-invasive screening criteria may be
helpful. A less obvious impact is in the study of neurodegenerative
disorders. Ventriculomegaly is commonly encountered in dementia
studies as a sensitive but non-specific measurement. We show that it is
possible to create an automated classification for THC. By including
regions outside of enlarged areas such as the ventricles, we increase the
selectivity of our model without decreasing the sensitivity. Such an
automated classification could potentially assist in the exclusion of
participants with possible DESH from studies of AD dementia and other
neurodegenerative disorders.

This study's primary strengths lie primarily in its large dataset and
completely automated approach. Additionally, consistency between
participants is a strength, as all participants were graded by the same
reviewer and scanned using consistent imaging protocols. While others
(Narita et al., 2016) have shown THC as indicative of shunt efficacy, a
limitation of this study is its purely retrospective nature. We have re-
stricted the scope to focus on image-based measurements. Epidemio-
logical interpretation and age-dependent prevalence is a work in pro-
gress along with studies of THC and clinically observed factors such as
gait. Our use of a single rater and imaging protocol also presents some
limitations. We have no estimate of interrater reliability, as there was
only one rater, and the robustness of this method against variations in
image acquisition protocols is unknown.
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