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Abstract

Introduction—Colorectal cancer (CRC) continues to be difficult to diagnose due to the lack of 

reliable and predictive biomarkers.

Objective—To identify blood-based biomarkers that can be used to distinguish CRC cases from 

controls.

Methods—A workflow for untargeted followed by targeted metabolic profiling was conducted 

on the plasma samples of 26 CRC cases and ten healthy volunteers (controls) using liquid 

chromatography-mass spectrometry (LCMS). The data acquired in the untargeted scan was 

processed and analyzed using MarkerView™ software. The significantly different ions that 

distinguish CRC cases from the controls were identified using a mass-based human metabolome 

search. The result was further used to inform the targeted scan workflow.

Results—The untargeted scan yielded putative biomarkers some of which were related to the 

folate-dependent one-carbon metabolism (FOCM). Analysis of the targeted scan found the plasma 

levels of nine FOCM metabolites to be significantly different between cases and controls. The 

classification models of the cases and controls, in both the targeted and untargeted approaches, 

each yielded a 97.2% success rate after cross-validation.

Conclusion—We have identified plasma metabolites with screening potential to discriminate 

between CRC cases and controls.

Graphical Abstract

Correspondence and requests for materials should be addressed to S.G.L. (slouie@usc.edu).
Author Contributions statement
I.A., S.G.L and D.V.C. conceived the study; I.A., H.P., E.Z., S.L., D.C. and E.Y. analyzed the plasma samples and I.A. performed the 
data analyses. I.A., S.G.L. and D.V.C. drafted the manuscript. All authors reviewed the manuscript.

Conflicts of Interest
There are no conflicts of interest to declare.

HHS Public Access
Author manuscript
Mol Omics. Author manuscript; available in PMC 2020 February 11.

Published in final edited form as:
Mol Omics. 2019 February 11; 15(1): 21–29. doi:10.1039/c8mo00158h.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Using metabolomics data from colorectal cancer cases and controls, we found contrasting trends 

in their plasma folate metabolites.

1.0 Introduction

Colorectal cancer (CRC) is the third leading cause of cancer-related death in the 

industrialized world 1. In the United States, CRC is the third most commonly diagnosed 

cancer, accounting for approximately 50,000 deaths annually. The annual expenditure for 

CRC treatment is estimated to be $5.5-$6.5 billion, where inpatient hospital care accounts 

for about 80% of the total cost 2.

CRC evolves as a consequence of uncontrolled intestinal cell proliferation. Early diagnosis 

of CRC requires highly sensitive and precise detection of the cellular transformational 

process or while the disease is still in the initial stages exhibiting only local spread. 

Immediate effective treatment of localized disease is most likely to lead to curative modality 
3. Unfortunately, most CRC cases are diagnosed when they are in the late stages of the 

disease with metastasis, making it harder to achieve complete remission. Furthermore, 

metastatic disease is associated with low five-year survival despite aggressive treatment 

strategies 4, 5. The development of reliable and predictive biomarkers would be a critical tool 

to identify individuals with evolving CRC or presence of early disease.

The ability to detect evolving tumorigenesis while transitioning from anaplasia to neoplasia 

may open the door for preemptive interventions. Also, the capacity to identify early stages of 

the disease can significantly improve clinical outcomes after immediate and aggressive 

therapy. Colonoscopy is currently the choice for screening and detecting CRC; however, this 

invasive procedure is not widely accepted and often avoided. The development of a blood-

based molecular biomarker(s) that can reliably identify the potential of CRC development 

may significantly improve screening compliance. To facilitate the development of such a 

test, an understanding of the aberrant mechanisms underlining the disease can enable the 

biomarker development process.

Folates are pteroyl glutamates that serve as the primary methyl carriers essential for two 

paths of methyl trafficking in the cell, such as DNA replication or repair, and formation of S-

adenosyl methionine (SAM) which serves as the primary methyl group donor for the 

transmethylation reactions in the cells 6. Specific folate metabolites are involved in genomic 

stability processes. Folate one-carbon metabolism (FOCM) cycle regulates oncogenes and 

tumor suppressors involved in cancers. This regulation is accomplished by controlling DNA 
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synthesis and methylation. Critical enzymes found in the FOCM cycle have shown to be 

associated with increased risk for CRC, making this metabolic cycle a good target to probe 

for in the development of a CRC biomarker.

Some epidemiological studies have evaluated the association between folates and the risk of 

CRC. Most have found an association between increasing folates intake and decreasing risk 

of CRC7–10. Unlike these studies, this study focuses on the metabolites of the FOCM cycle 

to determine whether their imbalance may be a consequence of metabolic or cellular 

transitioning. The most reflective measure for FOCM metabolites would be the cellular 

concentrations, but cellular samples are difficult to obtain and process. To address this 

challenge, cellular concentrations may be substituted with the extracellular (plasma) 

concentration as a surrogate for phenotyping the subjects involved and extrapolate any 

association because there is usually a homeostatic flux between the two systems.

Metabolomics is a powerful tool useful for exploring metabolites (with molecular weight 

<1800 Da) to characterize the metabolic phenotype of a biological system 11, 12. It has 

extensive applications in biomarker discovery to facilitate disease diagnosis 13 and 

mechanistic dissection of disease pathophysiology 14. Metabolomics approaches may be 

targeted, untargeted or both. Untargeted metabolomics is commonly considered to facilitate 

the measure of all endogenous metabolites in the biological samples. One advantage of 

untargeted analysis is that it offers the opportunity to identify novel targets that may be 

difficult to identify and characterize. However, the specificity of the metabolites that are 

detected is dependent on the analytical platform. The limitation of this approach is that 

analytes of high-abundance are more likely to be detected 15. In contrast, the targeted 

approach quantifies defined analytes of compatible chemical characteristics and biochemical 

annotation. This approach optimizes the quantification of analytes of interest thereby 

reducing any interference from predominant analytes found in the sample. With the 

emergence of liquid chromatography mass spectrometry (LCMS) -based metabolomics, it is 

possible to profile and even quantify the metabolites found in a pathway.

In this study, we used untargeted metabolomics followed by the targeted approach to 

identify biomarkers that may be predictive for the identification of the absence or presence 

of CRC in the plasma of CRC cases and controls. These biomarkers will facilitate early 

detection, intervention and decrease CRC-related deaths.

2.0 Materials and methods

2.1 Ethics, consent and permissions.

The research was conducted in compliance with the Declaration of Helsinki. The study 

protocol was ethically reviewed and approved by the Western and Schulman Institutional 

Review Boards (United States). Signed informed consent was obtained from all participants 

in this research.

2.2. Study samples

Plasma samples from known CRC cases (26) were compared to that of healthy controls (10). 

Plasma samples were obtained from a vendor. Participants’ blood was drawn directly into 
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K3EDTA lavender-top tubes and centrifuged at 3000 g centrifugation to separate the plasma 

from the blood cells. The plasma samples were aliquoted into micro centrifuge tubes and 

frozen with liquid nitrogen. The samples were subsequently stored at −80oC until analysis. 

The medication history and medical history of participants were collected. Participants for 

the healthy control group were excluded if they had any forms of cancer. The demographic 

characteristics of the patients in this study are summarized in Table 1.

2.3. Chemicals and reagents

Analytical grade flavin mononucleotide (FMN), folic acid (FA), pyridoxine (B6), pyridoxal 

(PL) hydrochloride, pyridoxamine (PM) dihydrochloride, 4-pyridoxic acid (4PA), zinc 

sulphate, and tris(2-carboxyethyl)phosphine (TCEP) were purchased from Sigma (St Louis, 

MO, USA); riboflavin (B2) was purchased from Alfa Aesar, and 5-methyltetrahydrofolate 

(5MTHF), dihydrofolate (DHF) and tetrahydrofolate (THF) were purchased from Cayman 

Chemicals (Ann Arbor, MI, USA). Methotrexate (MTX), purchased from Enzo Life 

Sciences (Farmingdale, NY, USA), was used as an internal standard for the assay. The purity 

of each standard was above 97%, except DHF and THF which were 90% and 95% 

respectively. Ultrapure HPLC-grade water, LCMS-grade methanol, LCMS-grade acetonitrile 

and formic acid were purchased from Fisher Scientific (Pittsburg, PA, USA) and were used 

for sample processing and mobile phase systems. In addition, homocysteine (HCY), 

methionine (METH), S-adenosyl methionine (SAM), S-adenosyl homocysteine (SAH), 

deuterated SAH, cystathionine (CYSTH), methylmalonic acid (MMA), and tris(2-

carbixyethyl)phosphine (TCEP) were bought from Sigma (St Louis, MO, USA). The 

deuterated MMA was bought from Medical Isotopes (Pelham, NH, USA).

2.4. Sample preparation

To human plasma (50 μL), 50 μL of 30ng/ml MTX was added and thoroughly mixed. The 

plasma proteins were precipitated with the addition of 400 μL of cold 20% 0.2M ZnSO4 in 

methanol and kept at −20oC for 30 min. The sample was then centrifuged at 9,000 g for 15 

min at 4°C, after which 400μL of the supernatant solution was transferred into a new micro 

centrifuge tube and evaporated to dryness using a steady stream of dried and filtered 

nitrogen gas at room temperature. The residue was reconstituted using 50 μL of 1% ascorbic 

acid, where 20 μL was injected onto an LC-MS system linked to a reverse-phase column 

(Phenomenex Technologies Inc., Torrance, CA). The analytes were separated using gradient 

mobile phase system consisting of two components. Component A consisted of 0.1% formic 

acid in water, while component B was 100% acetonitrile.

2.5. LCMS data acquisition for targeted and untargeted scan

Analytes of the FOCM (including their metabolites) - B2, FMN, B6, 4PA, PL, PM, FA, DHF, 

THF, and 5MTHF were targeted during this scan. The samples were analyzed with the 

targeted approach using a published assay 16.

The untargeted analysis was conducted with a modification of the targeted assay16, but 

separation was achieved with a longer reverse phase Kinetex PFP 100A (75 X 3.0 mm, 2.6 

μm) column (Phenomenex Technologies Inc., Torrance, CA) at an extended 33-min gradient. 
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This longer version of the separation was preferred to facilitate better acquisitions of the 

features and lessen overlap of features acquired at a retention time.

2.6 Quantitation of plasma methylmalonic acid, homocysteine, and related metabolites

The plasma levels of MMA, HCY and its related metabolites in the FOCM were determined 

using modified procedures from published assays 17, 18. The MMA, HCY, METH, SAM, 

SAH and CYSTH were quantified using these assays. To 50 μL of plasma, 50 μL of 30ng/ml 

deuterated SAH solution, 25 μL of 200ng/ml deuterated MMA and 25 μL of 0.1M TCEP 

were added while working on ice. Ice-cold precipitation solution (350 μL) made up of 20% 

0.2M ZnSO4 in methanol was added, vortexed for 30 seconds and stored at −20°C for 30 

minutes. The sample was then centrifuged at 9,000 g for 15 minutes at 4°C and 50 μL of the 

solution transferred into HPLC vials for the injection of 30 μL unto a reverse phase 

Shimadzu C18 (50 X 4.6mm, 3 μm) column for LC/MS/MS analysis. The mobile phase 

consisted of 0.1% formic acid in water as Component A and 0.1% formic acid in methanol 

as Component B running at the following gradient conditions: starting at 20% of component 

B, it was maintained for 1.2min followed by a linear increase to 80% of component B within 

1.3 min, and then it kept at the same condition for 1.5 min. It was followed by a declined to 

20%B within 0.5 min. The condition of the column was recovered with a 1.5-min run of 

20% of component B. The samples were analyzed using an LCMS system comprising of 

Shimadzu Prominence HPLC system linked to an API 4000 LC/MS/MS spectrometer 

(Applied Biosystems, Foster City, CA) operating in the positive mode. The mass 

spectrometer was set at a source temperature of 350°F; collision gas, 10 psi; curtain gas, 25 

psi; ion source gas (1), 40 psi; ion source gas (2), 30 psi; and Ion Spray Voltage, 5500 V.

300uL of the remaining supernatant was transferred into a clean 1.5mL Eppendorf tube and 

dried under nitrogen gas. The residue was reconstituted into 30uL of 15% methanol in water 

and transferred into HPLC vials for injection of 20 μL unto Gemini C18 (150 X 4.6 mm, 3 

μm) column (Phenomenex Technologies Inc., Torrance, CA). During analysis, the 

LCMS/MS operated in the negative mode with the following settings: source temperature, 

350 °C; collision gas, 12 psi; curtain gas, 40 psi; ion source gas (1), 50 psi; ion source gas 

(2), 20 psi; and Ion Spray Voltage, −3000 V. Chromatographic separation was achieved with 

an 18.5-min gradient mobile phase system consisting of 0.1% formic acid in water as 

Component A and 0.1% formic acid and 10mM ammonium formate in methanol as 

Component B. The gradient was as follows: starting at 15% of component B, it was 

increased to 95% of component B within 6.2 min, and then it kept at the same condition for 

3.1 min. It was followed by declining to 15% of component B within 0.2 min. The condition 

of the column was recovered with an 8-min run of 15%B.

2.7. Data acquisition and processing

2.7.1. Untargeted Scan—Plasma extracts from samples were analyzed using the 

LCMS to obtain a Q3 scan with an integrated data acquisition (IDA) criterion which 

triggered a product ion scan for the top four hits. The acquired data was loaded into the 

MarkerView™ software (Sciex Applied Biosystems) setting a threshold of 100,000 counts 

per second and generating 5,000 features which were present in at least five samples. Peak 

finding options were set as follows: subtraction offset, 10 scans; subtraction multiplication 
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factor, 1.3; noise threshold, 100,000; minimum spectral peak width, 0.4 Da, minimum 

retention time peak width, two scans and maximum retention time, 22 mins. Peak alignment 

options were set as follows: retention time tolerance, 0.5 min; mass tolerance, 0.4 Da and 

maximum number of peaks, 5000. If peaks were found in fewer than five of the samples 

(17% of all samples), this feature was automatically discarded using a filter setting of 

MarkerView™. Using raw data, peak area integration was performed on each feature 

normalizing peak areas with that of the internal standard.

2.7.2. Targeted Scan—Extracted samples were injected into the LCMS to quantify the 

targeted FOCM metabolites. The link between FOCM and CRC as well as the data from the 

untargeted scan informed the some critical FOCM metabolites which were targeted. The 

acquired data was loaded into the MultiQuant 2.1 software (Sciex Applied Biosystems) 

setting peak options as follows: Gaussian smooth width, 2 points; retention time half 

window, 30 sec and minimum peak width, 3 points. The peak integration parameters had a 

40% noise percentage, 2 min baseline sub-window, and a 2-point peak splitting. Using 

plasma calibration curves, the level of each metabolite was quantified, normalizing analyte 

peak areas with that of the internal standard. The actual concentrations of the analytes were 

imported into MarkerView™ software for further statistical analysis.

2.8. Statistical analysis

All analyses were performed using the MarkerView™ and SAS 9.4 (SAS Institute Inc., 

Cary, NC) software. The data was log transformed and further normalized using Pareto 

normalization settings found in the software. Supervised PCA-DA was conducted on the 

samples and a Wilcoxon rank sum test was performed on the acquired data at 5% level of 

significance19. The kernel smoothing model was used to calculate the misclassification rate 

for the CRC cases and controls based on the assay 20. The features/ions that were 

significantly different in CRC cases and controls and had more than a 100-fold change in 

mean intensity for the groups were extracted. These molecular weights of these features 

were matched with Human Metabolome Database (HMDB; http://www.hmdb.ca) for 

identification of features of interest. The mass error window for the search was set to 0.2 Da, 

and the search results manually screened for endogenous metabolites. Features which did 

not match any endogenous database entry were not considered for further investigation. The 

positive false discovery rate (FDR) method was used to evaluate the significant features that 

were obtained by the exploratory untargeted approach21.

The plasma concentrations of FOCM analytes in the targeted scan were compared between 

the CRC cases and controls using a two-tailed Wilcoxon rank sum test. Further, clinically 

meaningful ratios of metabolites which may give an index of enzymatic activity were also 

generated and compared between the groups. The ratio of product to reactant metabolites 

was used to estimate the enzymatic function of some key enzymes in the FOCM. The polyp 

sample was added to the CRC cases to facilitate analysis. The analyte concentrations that 

were below the lower limit of quantitation (LLOQ) were substituted with the LLOQ for the 

analysis. Analyses were done with and without possible outlier sample analyte 

concentrations.
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3.0 Results

3.1. Data reduction and exploratory analyses

Principal Component Analysis (PCA) was used for initial unsupervised data exploration 

using the annotated peaks from LCMS and PCA with discriminant analysis (PCA-DA) was 

used for supervised analysis. In the case of both targeted and untargeted datasets, there were 

obviously better clustering of the groups in the supervised compared to the unsupervised 

analysis. However, controls were clearly clustered from the cases even in the unsupervised 

PCA.

Healthy controls (blue) were well clustered from the CRC cases (red) in the supervised 

analysis (PCA-DA) as shown in Figure 1 (and Supplementary Figure 1). In the unsupervised 

analysis of the targeted dataset, the first two principal components explained 41.6% of total 

variance while the first three principal components explained 51.1% of total variance 

showing how representative the PCA plot is of the original data. When a second stage DA 

produced plots with discriminants that explained 100% of the variation, for both targeted 

and untargeted.

Subsequently, a nonparametric discriminant analysis model was fitted to the principal 

components (PC) of the untargeted (first four PCs) and the targeted (first six PCs) using 

kernel smoothing to classify each data batch into CRC cases and controls. The models were 

validated by re-substitution and cross-validation approaches 20. Both batches of data 

(targeted and untargeted) produced similar misclassification rates (both total error rate and 

group error rates). The re-substitution approach yielded a misclassification error of 0% while 

that of cross-validation was 2.8%. Unlike the cross-validation approach, the re-substituted 

data are usually part of the model building in the re-substitution approach thereby decreasing 

the misclassification error.

Unlike the re-substitution, the leave-one-out cross-validation approach can be more reliable 

in evaluating the accuracy of predicting group membership of a sample by the classifying 

variables. The procedure is based on repeatedly withholding one sample at a time, and the 

complementary training set is used for the prediction error estimation. The misclassification 

or prediction error is calculated by the rate of misclassified samples when predicting for 

each sample using the training set. This procedure is repeated, leaving out each patient at a 

time until all patients have been classified and then averaging the prediction error rates over 

all the possible training sets.

3.2. Putative biomarkers from untargeted approach

We selected 1000 monoisotopic positive ion masses after running a Wilcoxon rank sum test 

on the 5000 extracted features. The log (p-values) and the log (fold change) of the all the 

extracted features are represented in the volcano plot (Figure 2). Feature selection was 

conducted to select the best predictors for CRC screening and possibly, diagnosis. If a 

feature which is greater than 100 Da showed a significant difference between CRC patients 

and controls assessed by satisfactory p-value (p-values less than 0.05) and a fold change 

greater than 100, the feature was chosen for further identification through matching in the 

metabolome database annotation. The features that matched an endogenous compound were 
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considered as a putative biomarker for pathway analysis. A total of 225 features fitted the 

selection criteria for identification in the database. Table 2 presents the 30 candidate features 

(putative biomarkers) that successfully matched endogenous human metabolome compounds 

in the database. Some of the putative biomarkers that differentiated between CRC patients 

and healthy controls were involved in one-carbon metabolism,. Using the positive FDR of 

5%, the likely biomarkers with strong signals were identified (Table 2). Due to the 

exploratory nature of this untargeted approach, the targeted approach was performed as a 

confirmatory analysis with guidance from the complementary untargeted approach. The 

metabolites for the targeted analysis were decided based on the fact that most of the 

significant features in the untargeted analysis were linked to the FOCM and scientific 

literature supports the links between FOCM and CRC.

3.3. Targeted metabolites

FOCM metabolites levels between the CRC cases and controls are summarized in Table 3. 

Statistical significance was revealed using a Wilcoxon rank test demonstrating patients with 

CRC had significantly higher plasma concentrations of THF, 5MTHF, PA and PL compared 

to healthy controls (Figure 3). However, the plasma concentrations of B2, FA, SAM as well 

as methylation capacity (defined by SAM/SAH ratio), FA/THF ratio and FA/5MTHF ratio 

were significantly higher in the controls instead. The trend in the distribution of folate 

metabolites showed proportionally more plasma reduced folates in cases but rather, more 

plasma folic acid in controls (Figures 4). These trends in results did not differ after 

excluding the possible outliers in the analysis.

4.0 Discussion

CRC is the third leading cause of cancer deaths, causing about 150,000 deaths annually. 

Most of these deaths are from patients who diagnosed with late stages of CRC. A blood-

based biomarker will be a critical tool in identifying patients who are at risk or in the early 

stages of the disease. The ability to identify disease at early stages will reduce CRC-related 

deaths. This study presents an approach that has yielded some putative biomarkers that may 

be useful to screen for CRC.

The combined power of metabolomics and LCMS make it feasible to phenotype patients 

with CRC and healthy controls to compare their metabolites for biomarker exploration. The 

untargeted approach has shown the power to explore the metabolites that differentiate 

between CRC cases and controls. However, the approach presents another challenge with the 

identification of the differentiating metabolites as putative biomarkers. Although database 

matching can be used to make an informed guess on the metabolite’s identity, the approach 

leaves an uncertainty gap that must be bridged subsequently with targeted identification 

approaches. The targeted metabolomics approach, however, focuses on the main metabolic 

pathway(s) that may have an underlying molecular mechanism to explain the development 

and progression of the disease. In this study, the differentiating metabolites for CRC 

obtained from the untargeted scan guided our focus on the FOCM pathway where we 

selected key metabolites for the targeted analysis.
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The FOCM pathway is the primary biological cycle that controls transmethylation and DNA 

nucleotide synthesis. Both pathways are altered significantly in CRC 22, 23. The use of this 

approach to probe the FOCM pathway holds promise for the discovery of individual 

biomarkers 24 and novel drug targets for drug development. In this pilot study using a 

limited number of samples, we have demonstrated that plasma metabolomics analysis has 

the capability of clustering CRC cases from controls.

The analysis of the data from the pilot study reveal differences in the plasma FOCM 

metabolite levels of CRC cases and controls. The trends in observation seem similar to the 

‘methyl trapping’ phenomenon that occur during a defect, deficiency or downregulation of a 

required enzyme or metabolite which prevents the methyl groups being transferred in the 

transmethylation reaction process. FOCM is one of the critical homeostatic biochemical 

processes that modulates the transmethylation, transsulfuration, and nucleotide synthesis 

cycles. Whenever there is an alteration in any of these cyles, the cells respond in a way that 

reflects in the phenotypic metabolite concentration in plasma.

The methyl trapping hypothesis has existed for over four decades 25. Methyl trapping is a 

feedback mechanism in which low SAM levels stimulate MTHFR activity, thereby 

promoting 5MTHF formation to support the methylation reactions. However, if methionine 

synthase (MS) activity is low, due to cofactor deficiency or MS inhibition, this preferential 

5MTHF formation is counterproductive,Figure as 5MTHF becomes pooled metabolically. 

The 5MTHF can proceed only into the forward reaction with MS to produce more THF and 

its derivatives which are used for nucleotide synthesis. This same reaction generates METH 

in situ from HCY, which is toxic when it accumulates. During oxidative stress conditions 

like the microenvironment of cancer cells, redox enzymes like MS are easily inhibited 26 

because MS is locked up in the oxidized state awaiting re-activation by Methionine Synthase 

Reductase. During oxidative stress, the need for glutathione to neutralize reactive oxidative 

species may also activate the transsulfuration pathway by upregulating the expression of 

cystathionine beta- synthase 27. The transsulfuration pathway activation uses up the HCY at 

the expense of the transmethylation leading to methyl trapping.

In this study, the cases showed median plasma MMA concentrations higher than the upper 

reference limit of 290nM, signifying vitamin B12 deficiency 18. The significantly higher 

5MTHF levels (p= 0.002) and vitamin B12 deficiency observed in the plasma of CRC cases 

confirm this methyl trapping phenomenon in CRC. The trapped methyl donor 

consequentially affects the generation of SAM, thereby decreasing the methylation capacity 

of the system, leading possibly to global hypomethylation. In CRC samples, the results 

indicate significantly lower SAM (p= 0.011) and SAM/SAH ratio (methylation capacity, p= 

0.018) but a significantly higher THF plasma levels (p<0.0001) due to a better FA-THF 

conversion (p<0.0001). Such a high conversion is also expected to compensate for the block 

in THF regeneration from the 5MTHF-MTR-THF route. Also, the significantly higher 

plasma levels of THF in CRC patients may be linked to the fast-replicating CRC cells 

requiring THF to transfer methyl groups into the nucleotide biosynthesis and cell division. 

The low SAM levels resulting from impaired methionine regeneration may upregulate the 

activity of methylene tetrahydrofolate reductase (MTHFR) resulting in increased utilization 

of cofactors like vitamin B2 which is significantly reduced in CRC cases.
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The total folates, as well as the proportions of folate metabolite, also revealed an interesting 

trend in the two groups. Total folates and the proportions of reduced folates (THF and 

5MTHF) were significantly higher in cases than controls. The reverse trend was observed for 

the level or proportion of folic acid. Folic acid is known to be one of the feedback regulatory 

metabolites of the FOCM inhibiting DHFR and MTHFR when it accumulates28–31. This 

regulatory switch modulates how much of reduced folates join the cycle, but it seems to be 

less efficient in the CRC cases thereby shuttling more reduced folates for DNA synthesis or 

methylation. In the CRC cases, the DNA synthesis is the preferred pathway due to the block 

in the methylation of HCY due to the vitamin B12 deficiency. However, this may provide the 

needed DNA bases for the high proliferation of tumor cells but aberrant methylation to drive 

the disease to advance stages in the cases.

Converse to expectation is the plasma levels of HCY which is not significantly different in 

CRC cases and controls. HCY is expected to be higher in CRC samples because it is known 

to be associated with risk of cancer 32, 33. However, the highly inflammatory environment 

associated with CRC may have driven excess HCY through the cysteine-glutathione 

pathway. Because B6 catalyzes HCY conversions, the significantly higher metabolites of B6 

like PL and PA (p=0.02 and 0.003 respectively) may be resulting from this biochemical 

conversion of HCY.

In the present study, we have identified sets of plasma metabolites including 5MTHF, THF, 

FA, B2, PA, PL, SAM, SAH and MMA that are altered in CRC and thus may be used as 

biomarkers for CRC screening. The misclassification error rate of models developed in this 

pilot study based on these metabolites is 2.8% which may present a reliable screening assay 

as an alternative to colonoscopy. The convenience and minimal invasion of blood-based 

assays make them highly needed in population-based CRC screening. Subsequent 

epidemiology study involving about 3000 participants (CRC cases and their sibling controls) 

is being conducted to validate the preliminary results of this research. This study will also 

map the metabolites to the various genes that are related to the CRC.

4.1 Limitations of the study

The study was limited by lack of information on the treatment regimens or supplementation 

status of the cases selection. These limitations affected the conclusions because: (1) 

difference could reflect a response to disease and not a precursor to diseases (e.g. reverse 

causation); (2) difference could reflect a response to treatment, because the cases may have 

initiated treatment; (3) difference could reflect an age difference (or any other difference in 

samples – i.e unmeasured confounders). However, the samples from patients with ages at the 

extremities (age greater than 78 or less than 30) in the age distribution were excluded to 

make the median age of the two groups not significant. A total of six controls and three 

cases were excluded by this criterion. The clustering patterns in the supervised and the 

unsupervised analysis were not altered after repeating the analysis with groups whose 

median ages were not significantly different.
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5.0 Conclusions

In this study, a metabolomics approach was established and used for the first time to classify 

CRC cases and controls. Using exploratory pattern recognition and statistical analysis, we 

identified nine putative biomarkers that can be used to clearly separate CRC cases from 

controls. This study not only helps to reveal the alteration of FOCM to be related to the CRC 

development but also, putative biomarkers that may be further developed as an alternative 

screening approach, thereby reducing CRC-related deaths.
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Figure 1: 
PCA-DA plots showing the clustering the CRC cases (red) from the Controls (blue) using 

either (a&c) untargeted scan or (b&d) targeted scan. The left pane (a&b) shows the loadings 

of the plasma samples while the right (c&d) shows the loadings of the features/ metabolites.
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Figure 2: 
Volcano plot of controls versus CRC cases showing the log[p-values] against the log[fold 

change] of mean intensity of features in the two groups. All logarithms have the base of 10. 

The features that are significantly higher by at least 100- fold in CRC cases are shown in red 

triangles and those significantly higher by at least 100-fold in controls are shown in blue 

circles..
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Figure 3: 
Box plots showing the plasma concentrations of: (a) THF; (b) 5MTHF; (c) FA; (d) B2; (e) 

4PA and (f) PL in CRC cases and controls.
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Figure 4. 
Box plots showing: (a) plasma concentration of SAM; (b) Methylation capacity; (c) plasma 

concentration of MMA; (d) ratio of FA to THF conversion [indicative of DHFR activity]; (e) 

Folate distribution and (f) normalized folate distribution compared in CRC cases and 

controls.
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Table 1:

Demographic characteristics of plasma sample donors

Cases (n=26) Controls (n=10) p-value

Age mean (SD) 64 (13) 41(16) 0.001

Male 50% 50%

Tumor stage

   Polyp 1 (4%)

   Stage 1 2 (8%)

   Stage 2 7 (27%)

   Stage 3 6 (23%)

   Stage 4 10 (38%)
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Table 3:

Comparison of the plasma FOCM metabolites levels in CRC cases and controls using the median and the 

interquartile range (IQR)

Metabolite/ Ratio of metabolites

Controls (n=10) CRC Cases (n=26) p-value**

Median IQR Median IQR

5MTHF (nM) 7.43 4.62 23.17 51.25 0.001*

B2 (nM) 3.91 1.19 1.20 - 0.002*

CYSTH (nM) 303.20 937.36 261.36 365.84 0.447

FA (nM) 12.74 5.07 9.71 2.77 0.009*

FMN (nM) 1.97 2.14 1.00 7.43 0.575

HCY (uM) 9.58 3.40 8.62 5.25 0.621

METH (uM) 29.83 17.23 24.50 15.82 0.230

MMA (nM) 239.80 55.60 394.00 228.10 <0.001*

PA (nM) 3.30 - 12.33 48.23 0.002

PL (nM) 92.98 59.02 152.72 208.55 0.020*

SAH (nM) 2.53 7.10 7.54 14.68 0.126

SAM (nM) 580.88 762.71 88.26 478.00 0.011*

THF (nM) 1.44 0.88 5.53 7.11 <0.001*

Total folates (nM) 23.07 4.17 40.06 57.40 <0.001*

5MTHF/folates 0.34 0.19 0.61 0.35 0.005*

5MTHF/THF 5.78 6.27 5.94 9.82 0.832

FA/5MTHF 1.61 1.39 0.35 0.45 <0.001*

FA/folates 0.55 0.19 0.21 0.16 <0.001*

FA/THF 9.59 5.22 1.54 1.62 <0.001*

HCY/CYSTH 29.98 54.36 38.73 80.92 0.289

HCY/METH 0.37 0.20 0.36 0.39 0.437

SAM/SAH 286.90 444.65 7.90 149.40 0.018*

THF/folates 0.06 0.03 0.12 0.19 0.009*

**
Wilcoxon rank sum test was used to analyze the significant difference between the cases and controls

*
Significant difference between median of cases and controls (p-value<0.05)
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