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Abstract

Cross-species comparisons of genomes, transcriptomes and gene regulation are now feasible at 

unprecedented resolution and throughput, enabling the comparison of human and mouse biology 

at the molecular level. Insights have been gained into the degree of conservation between human 

and mouse at the level of not only gene expression, but also epigenetics and interindividual 

variation. However, a number of limitations exist, including incomplete transcriptome 

characterization and difficulties in identifying orthologous phenotypes and cell types, which are 

beginning to be addressed by emerging technologies. Ultimately, these comparisons will help 

identify the conditions under which the mouse is a suitable model of human physiology and 

disease and optimize the use of animal models.

For decades, the laboratory mouse (Mus Musculus) has been the preferred model organism 

for the study of human biology and diseases. Humans and mice share a very similar genetic 

background, and around 90% of both genomes can be partitioned into regions of conserved 

synteny1. Although other organisms, such as yeasts, worms and flies are excellent models 

for studying basic biological processes, mice are far better tools for probing the complex 

physiological systems that are shared among mammals.

Through years of experience2,3 and technological advances4 in the generation of mutated 

mouse strains, hundreds of mouse models are currently available to mimic many human 

diseases5, even those that are not naturally found in mice, such as cystic fibrosis and 

Alzheimer’s. Recently, the creation of mouse model has largely improved through the 

CRISPR-Cas9 technology (clustered regularly interspaced palindromic repeat and CRISPR-

associated endonuclease), which allows highly efficient genome editing by site- directed 

DNA endonucleases and can be performed directly on the zygotes, circumventing the need 

for a germline-competent embryonic stem cell line6. Mouse models are commonly used for 

research in diverse fields of biology (Box 1), ranging from neuro science and behavioural 

research to physiology and cancer research. The most recent official statistics from the 

European Committee7 report that just under 11.5 million laboratory animals were used in 

Europe in 2011, 61% of which were mice. A UK governmental report shows that 1.16 
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million mice were used in the United Kingdom in 2014, which equates to 60% of the 1.93 

million experimental procedures completed that year8, with usage reported to be consistently 

at a similar level from 2005 onwards.

It is unsurprising that the mouse is the most commonly used species for scientific purposes. 

Clinical trials, in particular, rely heavily on non-human organisms, before testing a drug on 

patients, as proven efficacy in in vivo preclinical studies is essential for a drug to enter 

further clinical phases. Nonetheless, drugs often fail along the phases of clinical trials; for 

instance, 40% of the drugs investigated between 2003 and 2011 did not proceed to the 

second phase of testing, and only 10.4% of drug candidates are likely to get FDA approval9. 

In cancer research, specifically, the average rate of successful translation from animal 

models to human clinical trials is less than 8%10, which mimics the difficulties in using mice 

as xenograft models of cancer11.

The above highlights that although many core biological processes and genetic elements are 

conserved between human and mouse, other biological features have diverged substantially, 

leading to phenotypic differences and poorly correlated physiological responses between 

species. Diverging features can be genomic differences (such as retrotransposition events, 

gene expansions or gene losses, genomic rearrangements, differences in coding and non-

coding sequences) or regulatory differences that affect gene expression and, ultimately, 

protein levels (such as alternative splicing, enhancer activity, structural elements such as 

chromatin domains, and post-translational modifications).

With the continuously decreasing cost and technical challenges of high-throughput 

sequencing technologies has come a growing effort to functionally characterize the human 

and mouse genomes, to identify what is shared and what has diverged between these two 

species. To this end, a series of large-scale projects has analysed a vast array of human and 

mouse samples, with the dual aim of understanding the principles of genomic regulation 

across different conditions and of comparing them between species. These projects include, 

but are not limited to, the Genotype-Tissue Expression (GTEx) project12, which aims to 

establish a resource database and associated tissue bank to study the relationship between 

genetic variation and gene expression in human tissues, as well as the Roadmap 

Epigenomics project13 and the Blueprint project14, which aim to build a public resource of 

human epigenomic data. Other projects that are collecting human and mouse data 

simultaneously include the FANTOM project15, which focuses mostly on Cap Analysis of 

Gene Expression (CAGE) profiles of human and mouse tissue and cell lines, and the human 

and mouse ENCODE projects16,17, the scope of which is to catalogue all functional 

elements in the human and mouse genomes, respectively.

Characterizing gene expression profiles across multiple samples and species is instrumental 

to determine to what extent the biology of a given organism can be extrapolated to another. 

Thus, this Review centres on presenting an overview of the main findings of comparative 

molecular studies between human and mouse, with a focus on comparative transcriptomics, 

and how these studies illuminate the cases and conditions under which mouse is a suitable 

model of human biology. We also discuss the limitation of current approaches, which 

include incomplete transcriptome characterization, and difficulties in identifying 
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homologous phenotypes and cell types, and how these can be addressed using emerging 

technologies.

1 Human and mouse genomes

As a reflection of its importance as a model organism, the mouse was, in the early 2000s, the 

second mammalian species to have its genome sequenced after human18–20. The most recent 

genome assemblies (GRC38) include 3.1 Gb and 2.7 Gb for human and mouse, respectively 

(Table 1), with the murine genome being 12% smaller than the human one. Around 90% of 

each genome can be partitioned into conserved syntenic regions, and 40% of the nucleotides 

in human can be aligned to mouse20. The remaining 60% of unalignable nucleotides might 

be attributed to lineage-specific deletion of repeated elements from the ancestral genome, 

nucleotide-level insertions and deletions and lineage- specific duplications20.

1.1 Protein-coding genes

According to the latest release of GENCODE annotation21 (v25, Ensembl86), which 

recently started to also curate the mouse genome22 (vM11, Ensembl86), the human genome 

encodes 58,037 genes, of which approximately one-third are protein-coding (19,950), and 

which yields 198,093 transcripts. By comparison, the mouse genome encodes 48,709 genes, 

of which about one half are protein-coding (22,018 genes), and yields 118,925 transcripts 

overall (Table 1). For both species, the current number of protein-coding genes is about 

10,000 genes lower than was estimated from early genome assembly drafts18,20.

The discrepancy in the total number of annotated genes between the two species is unlikely 

to reflect differences in underlying biology, and can be attributed mostly to the less advanced 

state of the mouse annotation. The number of protein-coding and long non-coding RNAs 

(lncRNAs) encoded in the human and mouse genomes is expected to be very similar, and 

differences in the total genome length do not result from differences in the number of genes, 

but probably from differences in the lengths of introns and intergenic space20 (Figure 1). 

Indeed, when including predicted gene models from RNA sequencing (RNA-seq) and 

CAGE data, the mouse annotation is expanded to a size that is similar to the human 

annotation23. There is a high degree of gene orthology between human and mouse: 80% of 

human and 72% of mouse protein-coding genes have a one-to-one orthologous relationship 

in the automatically derived Ensembl Compara24 (15,893) (Figure 1), a number which is 

highly similar to the 15,736 orthologous genes derived after extensive curation efforts by the 

ENCODE consortium25. The remaining 20-30% protein-coding genes are either in one-to-

many or many-to-many orthologous relationships, are members of gene families that have 

undergone species-specific expansions or reductions, or contain species-specific open 

reading frames (ORFs). These genes might contribute to human disease phenotypes and 

should therefore be taken into account when engineering mouse models20. For example, the 

human-specific gene saitohin (STH), which contains a single nucleotide polymorphism 

(Q7R) that is associated with susceptibility to several neurodegenerative diseases26, has no 

orthologous gene in mice.
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1.2 Long non-coding RNAs

Evidence for the importance of lncRNAs is continuously growing, and an increasing number 

of lncRNAs related to human diseases is discovered every year27–29. Identifying the possible 

mouse orthologues of human lncRNAs would greatly assist in the elucidation of their 

biological role.

Currently, there are 15,767 and 9,989 lncRNAs annotated by GENCODE in human and 

mouse, respectively21,22. The discrepancy, again, is a consequence of the less complete state 

of the mouse genome annotation. lncRNAs are usually expressed at a lower level than 

protein-coding genes and often in a very tissue-specific manner, which hinders their 

identification and leads to a requirement for additional resources to build a comprehensive 

annotation30,31. Finding orthologous relationships and conservation estimates for lncRNAs 

is also more challenging as their sequence is less conserved than that of protein-coding 

genes30 and not constrained by amino-acid translation. In fact, the definition itself of 

lncRNA orthology is not as clear as for protein-coding genes and has so far been considered 

a combination of sequence and/or functional conservation and synteny 32. Whereas RNA 

secondary structure might be useful to identify short non-coding RNAs and their degree of 

conservation, only few lncRNAs identified thus far have distinct structural domains as 

defined in Rfam33,34. Thus, current catalogues of orthologous lncRNAs are still highly 

incomplete and inaccurate34, and the development of methods to identify lncRNA orthology 

constitutes an active field of investigation.

A number of studies in the past few years have attempted to identify novel lncRNAs in mice 

and other species and identify their orthologs in humans23,35–37. Although the gene sets may 

vary amongst the different studies, they produce a consistent estimate of approximately 

1,000–2,000 orthologous lncRNAs between human and mouse. Necsulea et al.36 report the 

highest number of human-mouse orthologous lncRNAs (2,720), based on sequence 

similarity of both novel and annotated transcripts, whereas Washietl et al.37 identify 1,100 

orthologous lncRNAs based on genome-wide chain alignments. Pervouchine et al.23 

reported 851 lncRNAs orthologs on the basis of a mixed approach including both genome 

alignments and sequence homology. A more recent study, which includes the information on 

syntenic blocks to call the orthology, reports 1,587 human-mouse orthologous lncRNAs38. 

However, the overlap between these studies is quite low: Pervouchine and colleagues23 

reported that only 189 orthologous lncRNAs are in common between their study and that of 

Necsulea et al.36. In all of these studies, orthologous lncRNAs represent only a small 

fraction of all annotated lncRNAs in both species, especially when compared to protein-

coding genes.

About 5,000 lncRNA transcripts are in antisense orientation with respect to protein-coding 

genes in both mouse and human39, and antisense transcription is known to have a role in the 

regulation of expression of the sense gene in a number of cases40. For example, an antisense 

transcript of the tumour suppressor gene CDKN1A recruits a regulatory complex that 

induces trimethylation of Lys27 of histone H3 (H3K27me3) to suppress the sense promoter 

region40. Although antisense transcription is largely present in both species, the proportion 

of orthologous sense–antisense pairs relative to all sense–antisense pairs is low (less than 
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20%, around 1,000 pairs23,39), suggesting low conservation of antisense transcription, and 

consequently of the corresponding biology.

1.3 Small non-coding RNAs

Compared to protein-coding and long non-coding RNAs, small non-coding RNAs, which 

include microRNAs (miRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs) and 

small nucleolar RNAs (snoRNAs), have received less attention in comparative 

transcriptomics studies, partially because they are more difficult to monitor, with analyses 

limited to only a handful of tissues, such as brain, liver, kidney, heart and testis41–44. Small 

non-coding RNAs are known to be involved in the regulation of RNA processing, expression 

and translation45,46, and there is growing evidence of their involvement in human diseases29. 

For example, alterations in miRNA expression can lead to several diseases, ranging from 

immune-related diseases, such as multiple sclerosis, to neurodegenerative diseases, such as 

Parkinson’s disease47, and cancer48. Thus, the use of specific mouse models to understand 

the mechanisms of small non-coding RNA involvement in diseases will certainly be 

beneficial49. For example, obese mice deficient in miR-375 developed severe insulin-

deficient diabetes, suggesting that miR-375 is essential for mediating metabolic stress49.

Currently, almost 3,000 and 2,000 miRNAs are annotated in the human and mouse genome, 

respectively50 (Table 1). However, only a small fraction (300 miRNAs) of them has a 

defined ortholog in the other species51.

tRNAs have a peculiar secondary structure that allows them to recognize mRNA codons by 

pairing to their anticodon and to carry an amino acid cognate to the tRNA52. Because of 

codon degeneracy for the 21 amino acids (including selenocysteine), multiple anticodons are 

related to the same amino acid (tRNAs isoacceptors). Human and mouse share 46 

isoacceptors43. The number of predicted tRNA genes is similar between human and mouse 

(631 and 471 tRNA genes, respectively, Table 1)53, as is the number of tRNA genes detected 

in human and mouse liver (223 and 224 tRNA genes, respectively)43. Although tRNA 

expression is conserved between the two species at the isotype level (tRNA isoacceptors 

related to the same amino acid), 34% of mouse tRNA genes cannot be aligned to human 

homologues, and only 79 tRNA genes are commonly expressed in liver samples43, which 

suggests a certain degree of divergence in the evolution of tRNA genes.

snRNAs are essential elements of the spliceosome, and their expression levels are overall 

conserved between human and mouse44. snoRNAs contribute to biochemically modify 

specific sites of ribosomal RNA, tRNA and snRNA45. Of the 944 and 1,508 annotated 

human and mouse snoRNA genes21, respectively (Table 1), at least 208 are conserved 

between the two species44. Of these, 63 snoRNA genes (30%) have distinct expression 

profiles44, which indicates that the regulation of snoRNA genes has diverged considerably 

between the two species.

Further studies will certainly improve our understanding of the regulatory role and evolution 

of these RNA families, and hopefully of their involvement in diseases. Particularly relevant 

will be the understanding of the conservation between human and mouse of the relationship 

between the precursor long RNA molecules and the small functional RNA products. This, in 
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particular, would extend the possibility of therapeutic interventions along the entire 

molecular path involved in the synthesis of small RNA molecules.

2 Conservation of transcriptomes

Similarities in the gene sets between two species do not necessarily reflect transcriptomic 

similarities, as the expression pattern of a gene across tissues and conditions can be very 

different across species. With the development of microarray technologies, and subsequently 

of RNA-seq, which enable the genome-wide survey of the transcriptional activity of genes, 

there has been much interest in understanding to what extent the patterns of gene expression 

and splicing (Box 2) have been globally conserved between human and mouse.

2.1 Microarray studies

Most of the early microarray studies focused primarily on the expression of orthologous 

protein-coding genes in a variety of homologous tissues, such as brain, heart, muscle and 

liver. Under the assumption that mouse is a good model of human biology, one would expect 

higher similarity of gene expression in homologous organs between the species, than in 

different organs from the same species54. In other words, human liver would have an 

expression profile resembling that of mouse liver more than that of the human heart.

The relationship of transcriptomes from multiple RNA samples is usually visually rep 

resented using methods related to hierarchical clustering. In this approach, samples are given 

as the leaves of a dendrogram that is built on the basis of a given similarity measure between 

transcriptomes. This measure is usually the Euclidean distance between individual gene 

expression levels or the correlation coefficient across all genes between samples (FIG. 2). 

Alternative methods to visualize transcriptome relationships include dimensionality 

reduction techniques, such as principle component analysis (PCA 55), multidimensional 

scaling (MDS56), or the more recently developed t-distributed Stochastic Neighbor 

Embedding (t-SNE57). These approaches project samples onto a two-dimensional (2D) or 

3D space, where their distance is related to overall transcriptome similarity (FIG. 2e-g).

These statistical methods are heavily dependent on the quality of the input data, how much 

variation there is between and within samples and how the values are distributed. Indeed, the 

importance of proper filtering and normalization prior to secondary analysis has been very 

much stressed for microarray data, which are known to be subject to several technical biases. 

Studies that emphasize proper use of normalization methods report a high conservation of 

expression between human and mouse tissues54,58, such as brain, muscle, liver, kidney, lung 

and spleen, after correcting for array-specific differences in expression. By contrast, 

inaccurate normalization — for instance, failing to account for species specific systematic 

bias in signal intensity values in microarray probe sets — has been shown to spuriously 

exacerbate differences between species59,60.

It is still under debate whether these results, supporting transcriptional conservation between 

humans and mice, but obtained in a limited number of samples, are generally applicable to 

any type of samples and to the whole transcriptome. For example, although induction and 

repression of major transcriptional regulators of erythropoiesis are conserved between 
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mouse and human, significant transcriptional divergence between the two species has been 

detected at the transcriptome level61. Many transcriptional differences were also reported at 

the level of the immune and inflammatory response. These might be explained by cis-

regulatory differences. For instance, although the macrophage response to 

lipopolysaccharide (LPS) is overall conserved between the two species, differential sets of 

genes are activated and repressed in mouse and human, a transcriptional plasticity that might 

be conferred by TATA-enriched and CpG island-depleted promoters62. By contrast, 

intraspecies differences in macrophage transcriptional response to glucocorticoid seem to be 

associated with gain and losses of glucocorticoid response elements63. In another study, it 

was shown that mouse transcriptional responses to different inflammatory stresses, including 

trauma, burns and endotoxemia, correlate poorly with the human ones, even though human 

transcriptional responses to different inflammatory stresses correlated well with each 

other64. This finding raised the serious question whether mouse is a good clinical model to 

study such conditions. This conclusion was challenged by a reanalysis of the same data that 

was restricted to a smaller set of genes with changes in expression levels that were 

conserved between human and mouse65. However, it has been noted that this approach 

introduces a bias in the results, and that the low percentage of genes with conserved changes 

in expression (12%) may itself be indicative of poor reproducibility of the human response 

in mice66,67.

2.2 RNA-seq studies

The introduction of RNA-seq technology prompted more comparative transcriptomics 

studies at a deeper resolution and including larger numbers of species, since RNA-seq does 

not depend on first fabricating a species-specific spotted microarray (see68 and69 for 

reviews). Advantages of RNA-seq over microarray technology include its greater sensitivity, 

broader range of detection from lowly to higlhy expressed genes, and that it allows for 

annotation-independent detection of RNA abundances70.

The Mouse ENCODE consortium71 has been collecting around one hundred RNA-seq 

datasets for a range of mouse tissue and cell types, to create a comprehensive reference for 

future studies17. The profiled samples included almost 30 tissues, from adult mice and brain, 

nervous system, limbs and liver from embryos, as well as mouse cell lines, such as 

embryonic stem cells, murine erythroleukemia cells (MEL), and mouse lymphoma cells 

(CH12). Depending on the sample, they were collected and sequenced at different centres, 

and at least 2 replicates were sequenced for each sample. As in the case of microarray, 

clustering of mouse and human gene expression profiles from homologous tissues strongly 

depended on the normalization method applied17. However, as human data from comparable 

experimental conditions is not available (the bulk of human ENCODE transcriptome data 

was obtained in cell lines16 whereas the mouse data were obtained from primary tissues), it 

is hard to disentangle the gene expression variation attributable to the species from that 

resulting from other biological factors or technical effects17. Simultaneous analysis of the 

human and mouse RNA data uncovered a large fraction of orthologous protein-coding genes 

(about 50%) with fairly constrained expression inde pendent from the sampled cell type in 

both human and mouse23. Analysis of human and mouse gene expression from a more 

homogeneous experimental setting, where samples are collected, processed and sequenced 
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similarly at the same centre, however, argued that different conclusions can be drawn 

depending on which organs are profiled: organs with more distinct signatures of tissue-

specific genes, such as brain, testis, heart, liver and kidney showed strong conservation 

between the two species72–75. By contrast, a study that also included organs expressing 

fewer tissue-specific genes72, such as fat and stomach, showed that transcriptional patterns 

are overall different between human and mouse, separating the species more than the organs. 

This conclusion led to another highly charged debate, suggesting that other factors and 

biases, such as sequencing site, time of sequencing and the sequencing instrument used, 

need to be taken into account when undertaking comparative transcriptomics76.

The analysis of additional vertebrate species at different phylogenetic distances to human 

and mouse, such as macaque, chimpanzee, opossum, platypus and chicken, affirmed the 

original conclusion that transcriptional patterns are more similar between orthologous organs 

of different species than between different organs from the same species77,78,79. These 

studies, however, were again based on organs expressing the largest numbers of organ-

specific genes.

Taken together, these studies suggest that the question of whether mouse is overall a suitable 

model of human biology, based on transcriptome comparisons, is ill-posed. These works 

implicitly assume an average behaviour for genes, ignoring that each gene has a 

characteristic pattern of expression variation across species and organs (FIG. 1). This pattern 

has been recently investigated both between human and mouse17 and across multiple 

species80 (FIG. 2). In both studies linear models were used to decom pose the variation of 

gene expression in a set of homologous adult tissues across human and mouse only or across 

multiple mammals, including human and mouse, and chicken. Each gene exhibits its own 

pattern of variation across tissues and species. For example, the expression of the 

uromodulin gene (UMOD) is variable across tissues, but stable between human and mouse 

as it shows kidney-specific expression in both species17. By contrast, the gene encoding for 

the calcium-binding and coiled-coil domain-containing protein 2 (CALCOCO2) has a 

relatively constant expression across tissues in human, whereas is not detected in adult 

tissues in mouse, albeit it is expressed during embryonic developement17,81, thus having 

more variation across species. Thus, a subset of genes was identified that varies a lot across 

tissues, but little across species, leading to tissue-dominated clustering, whereas another 

subset of genes varies a lot across species, but little across tissues, leading to a species-

dominated clustering 82(FIG. 2c). Vertebrate (mouse) models of human biology may be 

particularly appropriate for the genes in the former set83. Remarkably, these genes are more 

likely to be associated with diseases than are genes whose expression varies predominantly 

across species 82.

2.3 IncRNA expression conservation

Most of the large-scale comparative studies of gene expression have been centred on 

orthologous protein-coding genes. Only in the last decade have comparative surveys of non-

coding transcriptomes emerged, owing to the continuous expansion of lncRNA 

annotation21,22. Overall, orthologous lncRNAs between human and mouse have conserved 

levels of expression23,35. However, clustering analysis and PCA based on lncRNAs show 
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more rapid evolution of expression patterns compared to protein-coding genes36. In addition, 

the breadth of expression is conserved not only between human and mouse but also in other 

mammals: ubiquitously expressed lncRNAs in human are ubiquitous across all species 

analysed, and tissue-specific lncRNAs in human are tissue-specific in all species35,37. 

However, these results might be influenced by the relatively low number of orthologous 

lncRNAs (less than 10% of all annotated lncRNAs) compared with orthologous protein-

coding genes (75%). Most lncRNAs appear to be testis-specific in both species35,37, 

especially the less conserved ones36. This is hypothetically related to a more permissive 

chromatin conformation during spermatogenesis84, which could potentially contribute to the 

rapid evolution of testis transcriptomes. Therefore, organ-specific evolutionary rates of gene 

expression must be considered when evaluating whether the mouse transcriptome is a good 

model of the human transcriptome.

2.4 Expression and sequence conservation

A key question in understanding the evolution of gene expression is how it is related to the 

evolution of sequences and whether conservation of gene expression is reflected in sequence 

constraints. Overall, average gene expression levels correlate well between human and 

mouse, such that highly expressed genes in humans tend to be highly expressed in mice85,86, 

even when very heterogeneous samples, such as cell lines and tissues, are considered23. 

Conservation of gene expression is to some extent reflected by sequence conservation in the 

gene body85,87. Promoter sequences, however, have diverged more than gene body 

sequences between mouse and human86. Depending on the method in which promoter 

sequence conservation is quantified -global or local sequence alignments or preserved 

presence of TF binding motifs - only a slight correlation between promoter conservation and 

gene expression conservation is observed86. Gene expression is predominantly conserved, 

even if the sequence of regulatory regions has diverged88,89. This might be due to 

compensatory mechanisms, for instance, two different transcription factors (TFs) in the two 

species acting on the expression of the same gene might activate it at comparable levels 

despite binding to two different regions90.

3 Comparative gene regulation

Over the past 5 years, comparative studies have tried to move beyond characterizations of 

differences in gene expression levels within and between species to studying variation in 

regulatory mechanisms91. However, the combinatorial complexity of gene regulatory factors 

(for example, histone modifications and TFs), the use of different sample types (tissues or 

cell lines), and the difficulties in associating specific regulatory regions with the regulated 

genes (which may be distal) make it extremely challenging to reach a comprehensive 

genome-wide map of regulatory elements. Most comparative experiments between human 

and mouse have been confined to a handful of TFs in a few cell types92–96. Nonetheless, 

these studies have revealed principles of cis-regulation which have subsequently been 

confirmed by larger studies. The Mouse ENCODE consortium has been collecting 

chromatin immunoprecipitation followed by sequencing (ChIP-seq) data for histone 

modifications and TF binding sites, DNAse-seq data for chromatin accessibility sites and 

replication timing data for chromatin domains for hundreds of different mouse tissue and 
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cell types17. Although chromatin states inferred from histone modifications97 and chromatin 

domains were highly similar between the two species, patterns of TF binding, as measured 

by ChIP-seq and inferred from DNase I hypersensitive sites (‘footprints’), were more 

diverged with only 22% TF footprints conserved17.

3.1 TF binding

The primary consensus sequence motif for orthologous TFs is virtually the same in human 

and mouse92,98, but secondary motifs often differ99. Of the 4 human secondary motifs with 

the strongest enrichment in the peaks inferred from TF ChIP-seq experiments, only some, if 

any, have a conserved sequence with mouse secondary motifs98. As secondary motifs often 

represent the consensus motifs for other TFs, the identity of associated factors might be 

lineage-specific98. Thus, the most commonly used motifs in one species may have binding 

capacity in the other species, with the caveat that the presence of the motif alone is not 

indicative of actual binding. Depending on the sample and the TF, between half and two-

thirds of the binding sites in one species can be aligned to a homologous sequence in the 

other species98,100,101 and widely share the same relative distance to the transcription start 

site (TSS)98. Yet, only 10-20% of the TF-bound sites in one species are also bound in the 

other species98,102.

Species-specific binding sites may arise from species-specific innovations or losses (FIG. 1). 

Novel TF binding sites and enhancers can arise from transposition of repeated 

elements17,95,103 or by DNA exaptation104. Surprisingly, it has been shown that up to 40% 

of binding sites for the TF CCAAT/enhancer-binding protein alpha (CEBPA) that have no 

binding in human but are present in mouse have an unchanged sequence 94 By contrast, the 

loss of TF binding occupancy in aligned regions is, in about 50% of cases, compensated by 

another binding motif within 10 kb94, so the main regulatory circuits of gene regulatory 

networks are maintained. Indeed, tissue and cell type specific gene regulatory networks of 

TFs in mouse, inferred from genomic DNase I footprints, are highly similar to the networks 

in human homologous tissues and cell types, with more than 40% conserved TF-to-TF 

regulatory connections105. This finding suggests that conservation of functional regulatory 

circuitry is considerably greater than indicated by sequence conservation alone105,106 (FIG. 

1). In addition, TF binding sites in one species are often repurposed in other species; it has 

been computed that 48% and 57% of homologous sites are bound in the other species for 

human and mouse, respectively, such that a sequence is bound either by the same TF in a 

different cell type or by different TFs in the same cell type100. Furthermore, binding sites 

with non-conserved occupancy tend to be more tissue-specific and are usually in a non-

permissive chromatin state in the species where they are inactive98.

Taken together these findings suggest that although the relationships between TFs and their 

targets are conserved between human and mouse, the activity of specific regulatory DNA 

elements, such as enhancers and promoters, in one species cannot be inferred from sequence 

homology and consensus motifs in the other species alone. This is also the case for many 

lncRNAs, which show species-specific expression even if located in regions of conserved 

synteny38. In fact, only functional validation experiments can confirm the reliability of 

cross-species-predicted TF binding sites107. Screening strategies have been developed for 
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testing the in vivo activity of enhancers using transgenic mouse embryos, which also allows 

the assessment of their tissue specificity108. Over the years, a database has been assembled 

containing the results for almost 3,000 tested enhancers that are orthologous between human 

and mouse109, as a freely available resource for the scientific community.

3.2 Inferring human SNP causality from mouse regulatory regions

Ultimately, enhancers and TF binding sites in mouse can be a good proxy to find functional 

genomic regions implicated in human traits, for instance, genome-wide association studies 

(GWAS) single nucleotide polymorphisms (SNPs)110. Specifically, if a human variant 

identified in a human GWAS study can be mapped to an orthologous region within the 

mouse genome, its overlap with functional elements in mouse, such as enhancers, can be 

investigated. Promisingly, more than 4,000 SNPs from human GWAS studies have been 

mapped uniquely onto the mouse genome 17. As an encouraging example, SNPs associated 

with traits related to liver function (such as HDL cholesterol levels and alcohol dependence) 

in humans reside in liver-specific enhancers in mouse 17. Similarly, SNPs associated with 

traits related to urate levels in humans reside in kidney-specific enhancers in mouse17. Thus, 

mouse can be a useful model to gain better insights into the causality of SNPs identified in 

human GWAS.

4 Intraspecies expression variation

Between 4 and 5 million SNPs differentiate each person from the human reference 

genome111 and a conservative estimate postulates that the genomes of any two individuals 

differ by at least 0.5%112. How this variation affects molecular features, such as gene 

expression, and ultimately phenotypes, is currently a topic of active research, especially 

within consortium-led projects like the Geuvadis113, the GTEx114, and others. For instance, 

the GTEx project (http://gtexportal.org) identified 199,362 mutations that affected the 

expression of 27,159 genes in at least one of 44 human tissues (release V6p). The major 

stratification of variation within the human species is at the level of populations. The 

concept of interindividual variation in laboratory mice is less straightforward, since the Mus 
musculus species have multiple layers of stratification due to human intervention. 

Laboratory strains can be classified into classical inbred strains and wild-derived strains115, 

with the former being characterized by at least 98.6% homozygous loci in each 

individual116. Classical inbred strains are mosaics of a handful of haplotypes derived from 

mice generated from wild subspecies117, with more than 90% of their genetic background 

coming from M. m. domesticus115,118.

To quantify the genetic variation between strains, the Mouse Genomes Project sequenced 

and catalogued a number of classical inbred and wild-derived strains119. Variation within the 

reference genome strain is negligible as it is virtually indistinguishable from the sequencing 

error rate120. Also the variation between mice of the same strain, but created from different 

centres, is very low (fewer than 10,000 SNPs119), although phenotypic differences in 

behaviour have been reported, due both to subtle genetic differences between substrains and 

to environmental factors, such as the order of testing and inter-test interval121,122. Interstrain 

variation, however, is more pronounced, with around 4-5 million SNPs between the mouse 
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reference genome and any other classical inbred strain119,123; considering that these SNPs 

are limited to the 85% of uniquely mappable genomic sequences and that the mouse genome 

size is smaller than that of human, this variation is higher than interindividual variation 

amongst humans. Finally, the mouse reference genome differs from other wild-derived 

strains by at least 17 million SNPs, with the exception of strains derived from M. m. 
domesticus119.

In analogy to genetic variation, there is relatively little variation in terms of gene expression 

both between classical inbred strains124–126 and within the same strain127 in different 

tissues. These differences in gene expression are not necessarily related to the diverse 

genetic background, as many environmental factors (for example, progressive removal of 

littermates from the cage) can temporarily alter the gene expression profiles of individual 

mice127. Thus, it is very important to select a proper mouse population to understand mouse 

intraspecific variation, possibly from outbred wild-caught mice, and compare it to human. 

The Mouse Phenome Database, which originally integrated phenotype data from 40 inbred 

strains, has recently started to introduce data from the Collaborative Cross and Diversity 

Outbred mice128. These mice present extensive genetic variation from eight founder inbred 

strains, and a variety of molecular data is collected from them to understand the impact of 

genotypic diversity in mice129. This approach recently led to the identification of 4,188 

mouse expression QTLs (eQTLs) 130: the identification of causal variants in mice can help 

tailoring mouse models with specific mutations for human-relevant phenotypes inserted into 

a defined genetic background., However, this will require a comprehensive mapping of 

eQTLs from one species to the other, which is still lacking, to the best of our knowledge, 

although significant overlap of orthologous genes affected by eQTLs in CD4+ T cells from 

healthy humans and from a panel of the most common inbred mouse strains has been 

reported126.

The use of inbred strains to uncover relationships between genotype and gene expression is 

more suited to experiments on allele-specific expression than comparative transcriptomes. In 

hybrid mice generated from two distinct inbred strains, maternal and paternal genotypes can 

be readily tracked. In fact, with more than 450 inbred strains116, carefully annotated by the 

Jackson Laboratory5 (http://www.informatics.jax.org), RNA production from only one allele 

can be easily detected and compared across multiple tissues119,131.

5 Cellular complexity of mammalian organs

A vast proportion of transcriptomics studies in human and mouse, especially the 

comparative ones, has been focused on profiling gene expression at the organ or tissue level. 

Thus, organs have been regarded as the functional units of organisms, each one with its own 

distinct transcriptional pattern. However, organs are composed of an organized mixture of 

different cell types, whose concerted genomic activity establishes the proper functioning of 

the organ as a whole. Currently, it is unknown how many different cell types compose 

mammalian organisms. So far, more than 400 human cell types have been classified132, 

based on multiple criteria including morphology and biochemistry. The diverse composition 

and relative proportion of cell types within an organ can be a potential source of unwanted 

variation in gene expression between organs and between species133 (Figure 3). In fact, 
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theoretically, even two distinct samples from the same biopsy, but from different histological 

sections, can exhibit distinct gene expression profiles, due to the diversity in cell type 

composition. For example, clustering analysis have revealed that populations of human and 

mouse primary cells of a given type have distinctive expression profiles134,135. Therefore, it 

is extremely important to deconvolute qualitatively and quantitatively which cell populations 

contribute to the global expression patterns of organs136.

Most transcriptomics studies on mammalian primary cells are based on meta-analyses, 

largely of microarray data from disparate sources, which, despite the use of normalization 

methods, carries technical noise and reduced sensitivity. The FANTOM consortium released 

the largest organized atlas of promoter (and gene) expression data15 in hundreds of human 

and mouse primary cells and tissues. However, a systematic comparative analysis between 

the two species, including a large panel of cell types and conditions, is still lacking at the 

resolution of cell populations. Such an analysis could shed light on cell-type-specific 

differences between human and mouse that are masked by the average behaviour of whole 

organs. For instance, two genes that are expressed in the alpha cells and beta cells of 

pancreatic islets, GC (encoding group-specific component (vitamin D binding protein)) and 

DLK1 (encoding delta like non-canonical Notch ligand 1), have opposite cell-specific 

expression in human and mouse137.

Expression data from purified populations of primary cells provide higher resolution than 

whole-tissue transcriptomes, being robust to stochastic variability between cells138. Recent 

advancements in single-cell technologies139,140, such as single-cell RNA-seq, enable 

researchers to obtain gene expression data for rare cell types — the signals of which are 

usually masked at the population level — to identify novel cell types with previously 

unknown markers, and to characterize cell differentiation stages141. Due to noticeable 

experimental challenges in disaggregating solid tissues, especially of human samples, most 

single-cell RNA-seq research has focused on mouse solid tissues, including brain142, lung143 

and intestine 144, although a small number of studies have analysed human samples from 

pancreatic islets137, brain145 and blood146,147. In this regard, the Human Cell Atlas 

consortium (https://www.humancellatlas.org/) is being formed to create comprehensive 

reference maps of all human cells using multiple molecular assays, including RNA-seq. 

Additionally, single-cell RNA-seq has been applied to investigate RNA dynamics over time, 

especially in the early stages of life. For example, more than 1,000 single cells from the 

mouse epiblast were collected in a study from early gastrulation at embryonic day 6.5 to day 

7.75 to investigate mesodermal lineage differentiation towards the hematopoietic system148, 

just days after fertilization 148,149.

Despite the growing bulk of projects employing single-cell RNA-seq, as with cell population 

data, very few compare human and mouse single-cell expression. One complication may be 

the intrinsic difficulty of obtaining comparable samples from homologous organs or 

identifying homologous dynamic processes. A recent study compared the genetic 

programmes of human and mouse early embryos, in the developmental stages between 

oocytes and morula150. The authors observed that while global gene expression profiles 

were conserved, the actual developmental timing of expression differed between the two 

species151. Ultimately, comparing human and mouse transcriptomes at the single-cell level 
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will help to identify previously undescribed conserved cell types, overcome the biases of 

different cell type composition and help to understand conserved and diverged elements of 

temporal dynamics. Albeit promising, this will require the development of specific 

computational methods that deal with the complexity of single-cell data and integrate it with 

the additional dimension of cross-species comparison.

6 Conclusions and perspectives

The rise of next-generation sequencing technologies in the past years has considerably 

advanced the field of comparative genomics, transcriptomics and epigenomics.

These approaches are particularly important to study the evolution of gene regulation in 

model organisms, to gain deeper insights into the degree of their conservation with human at 

the molecular level, and how this conservation correlates with conservation at the phenotypic 

level. Ultimately, this knowledge can help to understand to what extent a given animal model 

is suitable for the study of a specific biological process or condition.

A considerable amount of work, including efforts from international consortium projects 

such as mouse ENCODE17 and FANTOM15, has been centred on the laboratory mouse 

owing to its indisputable relevance as a model for human biology and diseases. Emerging 

from this wealth of data is a complex picture that underlies the difficulties associated with 

mapping the conservation of transcriptional patterns to the conservation of phenotypic traits. 

At the root of the problem is the difficulty of matching phenotypes across species, and 

therefore of quantifying phenotypic differences between species, which can then be 

correlated to transcriptional differences. This is even the case for apparently straightforward 

phenotypes, such as those affecting individual tissues, organs or anatomical sites. Indeed, 

tissues are complex structures composed of many primary cell types, and it is unclear 

whether equivalent cell types remain orthologous, to what extent the relative abundances of 

the populations of these cells types have been conserved among the species, or whether the 

tissue sample sectioned in the different species retains the same underlying tissue 

substructure.

Moreover, gene expression is affected by an almost unlimited number of biological factors, 

including sex152, age153, circadian rhythms (that is, recent research suggests that about half 

of all mammalian genes are subject to circadian regulation154), ischemic time and RNA 

integrity155 or environmental factors. Many of these biological factors are very difficult to 

control, even when analysing apparently orthologous tissues. If, for instance, the biological 

age or the time of day at which the tissues have been collected differs between species, this 

may artificially exaggerate transcriptional differences, beyond those that can be uniquely 

attributed to the species.

This problem may be exacerbated in the case of more complex phenotypes, such as 

developmental or differentiation processes, response to external stimuli or insults, behaviour 

or systemic diseases. Hence, because it is technically very difficult to identify orthologous 

phenotypes, transcriptomes monitored in different species will likely overestimate the true 

interspecies transcriptional differences.
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Single-cell genomics may contribute to addressing some of these issues. The unbiased 

identification of populations of cells sharing a similar phenotype could help to match these 

populations across species (that is, by using orthologous specific markers). In addition, new 

methodologies are emerging that preserve spatial information about the tissue context or 

subcellular localization of analysed nucleic acids156. Although spatial transcriptomics is still 

in its early days157,158, it carries the promise of revolutionizing the way multicellular 

complexes, such as organs, are studied and might reveal new insights into the conservation 

of how these complexes are organized between human and mouse.

This should lead to biologically more meaningful transcriptome comparisons.

By contrast, most comparative transcriptome studies have focused on the patterns of gene 

expression of protein-coding genes, that is, on the genomic elements most strongly 

conserved across species. However, lncRNAs, as well as other non-coding transcriptional 

elements, such as small RNAs, pseudogenes, repetitive elements and others, are emerging as 

important players in the biology of organisms. These elements are less conserved across 

species than protein-coding genes, and orthology is difficult to determine or simply does not 

exist. Generally, they are poorly characterized from the transcriptional standpoint. As the 

expression patterns of the non-coding transcriptome are known to be more species-specific 

than those of protein-coding genes30, transcriptional comparisons based on the latter (the 

vast majority, so far) are likely to overestimate interspecies similarities. Not accounting for 

this non-coding transcription may partially underlie the poor extrapolability of some mouse 

models. Remarkably, although the prevalent view is still that proteins are the main effectors 

of biological function, a comprehensive proteomics comparison between human and mouse 

is still lacking, with available studies being so far limited to a few specific samples159.

Increasing the number of transcriptomic elements monitored, as well as that of orthologous 

conditions and phenotypes will in practice generate a large (almost infinite) data matrix160, 

in which rows can be seen as conditions and columns as genomic elements (such as genes, 

transcripts and other transcriptional elements, but also epigenomic elements, such as TF 

binding sites or histone modifications), with a third dimension representing the species, and 

a fourth dimension representing dynamic processes (FIG. 4). The matrix is currently quite 

sparse, even if considering only human and mouse. For instance, there is little comparative 

data about transcriptional changes associated with processes occurring over time, such as 

differentiation and development161,162, or with cellular and organismic responses to external 

stimuli. Indeed, there is some evidence that inducible genes might be responsible for gene 

expression divergence between species63, although such genes are more challenging to be 

identified because similar perturbations need to be applied on homologous systems. This 

could be especially important for clinical studies, for example, to study the time of 

physiological responses to drugs or the progression of a disease. The deconvolution of such 

a data matrix, which is certainly challenging from the analytical standpoint, will contribute 

to understanding the transcriptome determinants underlying phenotypic similarities and 

differences between species. While still far from such a goal, data currently available, which 

we have reviewed here, strongly suggest that the question of whether mouse is overall a 

good model of human biology is an ill-posed question that does not have a binary answer. It 
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clearly depends on the phenotype of interest, the genes involved in the phenotype and the 

tissues and organs in which these genes are expressed.

In the era of precision medicine, each individual may come to have his or her genome 

sequenced, and possibly be subjected to multiple genomics assays analysing different 

anatomical sites and at different life stages. Thus, we can envision that human-mouse 

comparisons will eventually be done on a person-by-person basis, and customized mouse 

models might be generated that are tailored to an individual. Understanding what part of 

mouse biology (or of the biology of any model organism) can be extrapolated to humans, 

and under which circumstances, is of crucial importance not only for improving therapeutic 

interventions, but also to optimize the use of animal models and decrease the economical 

and ethical costs associated with animal research. We caution that as many factors as 

possible should be matched when mouse models are used to study human physiology or 

disease67.
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Glossary

Synteny
Preserved genomic order and orientation of genes or other elements between species

Xenograft models of cancer
Are created when cancerous tissue from a patient’s primary tumor is implanted directly into 

an immunodeficient mouse

Cap Analysis of Gene Expression (CAGE) profiles
In CAGE short (˜20 nucleotide) sequence tags originating from the 5’ end of full-length 

mRNAs are sequenced to identify transcription events on a genome-wide scale

Orthologous
Pertains to homologous genes in different species that have evolved from a common 

ancestral gene by speciation

GENCODE annotation
The GENCODE project produces high quality reference gene annotation and experimental 

validation for human and mouse genomes

Long non-coding RNAs (lncRNAs)
Non-protein coding transcripts longer than 200 nucleotides. This somewhat arbitrary limit 

distinguishes llncRNAs from small regulatory RNAs

MicroRNAs (miRNAs)
Derived from primary transcripts with features similar to mRNAs that are enzymatically 

processed to their mature length of 21-24 nucleotides by Drosha and Dicer enzymes

Transfer RNAs (tRNAs)
Adaptor RNA molecules (long 76-90 nucleotides) which serve as the physical link between 

the mRNA and the amino acid sequence of proteins, by carrying an amino acid to the 

ribosome as directed by the codon in a messenger RNA

Small nuclear RNAs (snRNAs) and small nucleolar RNAs (snoRNAs)
Classes of short non-coding RNAs (100-200 nt) that have important regulatory roles in 

nuclear ribonucleoprotein complexes

Homologues
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A pair of genes that descended from a common ancestral gene

Hierarchical clustering
A statistical method in which objects (for example, gene expression profiles for different 

individuals or tissue samples) are grouped into a hierarchy, which is visualized in a 

dendrogram. Objects close to each other in the hierarchy, measured by tracing the branch 

heights, are also close by some measure of distance — for example, between gene 

expression profiles. Individuals or samples with similar expression profiles will be close 

together in terms of branch lengths

Euclidean distance
The Euclidean distance between points p and q is the length of the line segment connecting 

them in a multi-dimensional space In gene expression analysis, p and q are usually vectors 

of expression values in two samples/conditions

Dimensionality reduction techniques
Reduce multidimensional data to a minimal number of dimensions for visualization by 

identifying those dimensions that capture the most important information underlying the 

data structure

Principal Component Analysis (PCA)
Orthogonal linear transformation that transforms the original data to a new coordinate 

system such that the greatest variance of the projected data comes to lie on the first 

coordinate (called the first principal component), the second greatest variance on the second 

coordinate, and so on

Multidimensional Scaling (MDS)
Technique used to display the information contained in a distance matrix, which aims to 

place each object in N-dimensional space such that the between-object distances are 

preserved as well as possible

t-distributed Stochastic Neighbor Embedding (t-SNE)
Nonlinear dimensionality reduction technique based on the probability distribution over 

pairs of high-dimensional objects which are embedded into a space of two or three 

dimensions. Similar objects are modeled by nearby points and dissimilar objects are 

modeled by distant points

Normalization
Methods used to adjust measurements so that they can be appropriately compared among 

samples. For example, in microarray analysis, methods such as quantile normalization 

manipulate common characteristics of the data

Chromatin domains
Functionally distinct chromosomal regions, which confer structural organization to 

eukaryotic genomes, representing regulatory units for gene expression and chromosome 

behavior

DNA exaptation
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The shift in the function of a DNA sequence during evolution

Allele-specific expression
Expression variation between the two haplotypes of a diploid individual distinguished by 

heterozygous sites

Ischemic time
In the case of organ donors, the time elapsed between the r donor death and the organ 

extraction

Pseudogenes
Segments of DNA that originate from functional genes, but have lost at least some of the 

ability of the parent gene in terms of expression or coding potential

Precision medicine
Emerging approach for disease treatment and prevention that takes into account individual 

variability in genes, environment, and lifestyle for each person

Expression QTL (eQTL)
Genomic locus that contribute to variation in expression levels of mRNAs
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Box1 - Mice as models for diseases

Since the early days of mouse research, mice have been engineered to generate models 

for a variety of human diseases and conditions163. The Jackson Laboratory has generated 

more than 5,000 mouse models with different genotypes for almost 1,500 human 

diseases5. Their range of application is very broad, including neurological and muscular 

disorders, genetic illnesses, behavioural and cognitive abilities, response to viruses and 

cancer research.

Genetic mouse models of neurodegenerative disorders, such as Alzheimer’s disease 

(Online Mendelian Inheritance in Man (OMIM https://www.omim.org/)) 104300)164 and 

Parkinson’s disease (OMIM 168600)165, which recapitulate the essential features of each 

disease, have significantly advanced our understanding of the molecular basis of disease 

progression. However, their translational impact remains limited, as neurodegenerative 

human diseases are heterogeneous in both pathological and clinical (or behavioral) 

domains and the non-hereditary causes (affecting the majority of the cases) are 

unknown166.

As another example, several mouse models for Down syndrome (also known as trisomy 

21, OMIM 190685) have been generated based on the homology of the human 

chromosome 21 and the mouse chromosomes 10, 16 and 17 167. These models exhibit 

many of the behavioural, learning and physiological defects associated with the 

syndrome in humans, and as such have proved useful to test therapies that rescue these 

alterations168.

As mice can be housed in small and controlled spaces, very manageable behavioural tests 

have been creatively devised to reproduce major human behavioural patterns. Examples 

of applications of behavioural tests include studies of anxiety169,170, substance abuse and 

addiction171, and diet172.

Despite acknowledged discrepancies between the human and murine immune systems173, 

mouse models exist to also investigate viral infections and limit the ethical and practical 

costs of primate research. For instance, humanized mice derived from the combination of 

transplantation of human fetal pluripotent hematopoietic stem cells with surgical 

engraftment of human fetal thymic tissue (BLT mice) have been used to study many 

aspects of HIV infection, including prevention, transmission and therapies174. Similarly, 

human hepatocytes are transplanted into immunodeficient mice to develop humanized 

chimeric mice, which enable the study of viral replication and cellular changes caused by 

the human hepatitis viruses175.

Finally, mice have also been widely used for the research of very complex multifactorial 

conditions, such as autism176 and ageing177, where it is crucial to be able to account for 

one individual factor at a time. Among complex diseases, cancer research is certainly 

prompting the development of several mouse models to study the relationship between 

mutations and tumour biology178.

However, current limitations of mouse models are well known 179. The use of mice to 

study the intricacies of human cancer pathogenesis, for example, is limited by many 
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species differences, including cell duplication time, lifespan and cancer susceptibility180, 

amongst others. Other examples include mouse models of cystic fibrosis (CF; OMIM 

219700), a hereditary lung disease caused by a mutation in the gene encoding the 

membrane protein CFTR. Although these have proven useful to discover ways to correct 

this defect181, CF mouse models have a limited ability to recapitulate spontaneous lung 

disease182. Similarly, mouse models for the progressive muscle-wasting disorder 

Duchenne muscular dystrophy (DMD; OMIM 310200), that is, mdx mice, have been 

engineered to study potential gene therapies, but a caveat is that they show only minimal 

clinical symptoms183. Alternative animal models are being investigated to potentiate 

translational research, and larger mammalian species, such as pigs, ferrets and dogs, are 

proving beneficial to scale up initial results obtained in mouse models182,183.
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Box2 - Splicing

Splicing is the mechanism through which exons and introns of genes are processed into 

mature coding and non-coding transcripts. Different combinations of exonic and intronic 

sequences can be arranged through alternative splicing to expand the range of processed 

isoforms from a relatively limited pool of genes.

Exon structure and splicing are very similar between humans and mice, in terms of 

number and order of exons per gene, exon length, precise boundaries and 

sequence184,185. The exact number of orthologous exons is heavily dependent on the 

genome assemblies, the annotation status and on the set of analysed genes: the mouse 

ENCODE consortium has annotated over 150,000 orthologous internal exons17, a 

noticeable increase compared to the 2,000 exons186 identified in the earliest reports right 

after publication of the first complete mouse genome draft. Although alternatively spliced 

exons with low proportion of inclusion tend to be more species-specific184, exon 

inclusion levels are overall highly correlated between the two species even across very 

distant sample types23 (see the figure, part a). Indeed, alternative splicing was shown to 

be less evolutionarily conserved than gene expression in comparative studies including 

multiple species and organs78,187.

However, comparative analyses of exon inclusion are usually limited to a few hundred 

conserved exons78,187 and are tied to local splicing events, not considering the whole 

isoform structure. Determining orthology at the isoform level, for complete gene 

structures of exons and introns, is particularly challenging, due to the presence of non-

coding exons, which have less sequence constraints than coding sequences, and to the 

redundancy of exonic elements between multiple isoforms of the same gene188. Novel 

transcriptomic sequencing strategies, for example, synthetic long-read sequencing189 and 

single-molecule long-read sequencing190, enable detection of full-length transcripts and 

preserve the relationship between distant exons (see the figure, part b). These techniques, 

possibly coupled with targeted approaches for lowly abundant loci, will improve the 

accuracy of isoform detection and might provide new insights on the conservation of 

isoform usage and of its regulation across species.
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Databases

Ensembl Compara http://www.ensembl.org/info/genome/compara/index.html

Rfam http://rfam.xfam.org

VISTA Enhancer Browser https://enhancer.lbl.gov

OMIM https://www.omim.org

GTEx project http://www.gtexportal.org

Gencode http://www.gencodegenes.org
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Key points

• Mouse is the most widely used model organism to study human disease, but 

often mouse biology cannot be extrapolated to human. A deep comparison of 

mouse and human physiology at the molecular level is essential for 

understanding under which circumstances mouse can be a good model of 

human biology and for creating better mouse models.

• Advances in next generation sequencing technologies fostered genome-wide 

annotation of functional DNA elements enabling extensive comparison of 

human and mouse genomes.

• At the transcriptional level human and mouse gene expression profiles are 

overall conserved, although the degree of conservation varies depending on 

the tissues and the genes that are compared. Therefore the question whether 

the human and mouse transcriptomes cluster preferentially by tissue/organ or 

by species does not have an answer overall, and it will depend specifically on 

the genes being considered.

• Conservation of expression is not a direct consequence of conservation in 

regulatory sequences, including promoters and enhancers. Although gene 

regulatory networks are overall preserved between human and mouse, 

transcription binding sites are often not conserved.

• Interindividual genetic variation can affect human gene expression, but such 

variation cannot be modelled in inbred strains of laboratory mice because 

their genetic variation is small compared to the human population. An 

expansion of the current studies on the relationship between genetic variation 

and gene expression in outbred mice might provide helpful insights to 

understand the same relationship in humans.

• New emerging technologies, such single-cell genomics and spatial 

transcriptomics, and time-series experiments will improve the annotation of 

human and mouse genomes, refine the current definitions of homologous cell 

types, as well as of homologous (molecular) phenotypes and ultimately help 

scientists to identify which mouse models are the most appropriate to address 

a given biological question.
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Figure 1. Homology of human and mouse genes and genomic elements. Orthologous genes 
between human and mouse can be identified based on sequence homology of coding exons.
Orthologous genes tend to have conserved exonic structure and exon lengths, but introns are 

generally shorter in mouse. There is some degree of conservation of alternative splicing 

patterns (Box 2), but species specific splicing events exist (green gene). Orthologous genes 

may have conserved expression profiles between the two species (green) or diverged 

expression (orange). The bar chart represents expression levels of the genes in different 

organs. Genes with homologous sequence within the same species are called paralogous. 

Paralogous genes may originate from gene duplication events and their exonic structure, 

sequence and expression may diverge with evolutionary time. Promoter sequences (upstream 

from genes) are less conserved than gene body sequences. Regulatory motifs may differ 

although regulatory networks may be conserved. Orthologous genomic regions (and 

elements) can be identified through whole genome alignments (pink). However, some 

elements cannot be aligned to the other species (different shades of grey), or can map in 

multiple locations (brown). Finally, some genomic regions can be aligned, but their function 

may not be conserved (blue).
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Figure 2. Simplified clustering of human and mouse tissue samples and variance decomposition 
of gene expression.
Samples can be clustered based on their transcriptional profiles. If a human organ (for 

example, liver or heart) has a more similar gene expression profile to the homologous mouse 

organ than to another human organ, the clustering is organ-dominated (a). Vice versa, if 

human organs have more similar gene expression profiles between each other than compared 

to their homologous mouse organs, the clustering is species-dominated (b). The variation of 

expression for each gene can be decomposed into the most contributing factors, in this case 

species and organs (c). Genes are distributed in a continuous way along these proportions of 

variation. Nonetheless, genes at the extremes of this distribution can be identified as genes 

with proportionally higher variation across species and lower across organs (orange) and 

genes with proportionally higher variation across species and lower across organs (green). If 

only the expression of one or the other set of genes is used for clustering, genes with 

proportionally higher variation across species or organs lead to a more species-dominated 

clustering, or organ-dominated clustering, respectively. d∣ Hierarchical clustering based on 

real gene expression data from different organs across mammals and chicken, performed 

with the entire set of orthologous genes across species, reveal organ-dominated clustering82. 

Distances between samples can be visually represented also on a 2-D space through several 

dimensionality reduction techniques, such tSNE (e, same input as d, perplexity=4, 

iterations=1000), MDS (f, same input as d, euclidean distance) and PCA82 (g).
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Figure 3. Cellular composition of human (a) and mouse (b) pancreatic islets.
Humans and mice have a different composition of pancreatic islets of Langerhans. Insulin-

producing beta cells make up to 80% of mouse islets, whereas they constitute only up to 

50% of the human islets. By contrast, glucagon-producing alpha cells compose up to 40% of 

the human islets. Fluorescent-stained images are taken from133. The expression of a given 

gene may appear different when the whole anatomical structure is profiled, whereas what 

actually changes is the relative abundance of cells of different types expressing that gene, 

and not the expression of a gene in a particular cell type.
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Figure 4. Multidimensional complexity of omics-layers integration across species.
Four-dimensional matrix illustrating possible experimental combinations of genomics 

features profiled in different sample types, across species and in dynamic conditions. 

Colored triangles represent combinations of factors for which experiments are already 

available. This information is just figurative and might not reflect the current status of 

published experiments across all public or private databases. This figure is adapted from160.
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Table 1.
Summary statistics of human and mouse genomes and gene sets.

Annotation counts are retrieved from the Gencode website (http://www.gencodegenes.org/, v25 for human and 

vM11 for mouse). The number of microRNAs is obtained from miRBase v2150. The number of tRNAs is 

obtained from GtRNAdb53. The number of protein-coding orthologues is taken from Ensembl Compara24 

(v86), while the numbers of orthologous long non-coding RNAs were obtained from different sources23,36–38.

Human
(GRCh38)

Mouse
(GRCm38)

Genome size (nt) 3,088,269,832 2,725,521,370

Unplaced scaffolds (nt) 11,464,317 5,334,105

Number of chromosomes 22 + X +Y 19 + X + Y

Chain alignments (nt) 2,735,135,097 2,465,275,732

Number of genes 58,037 48,709

Number of transcripts 198,093 118,925

Protein-coding

 - genes 19,950 22,018

 - 1 to 1 orthologs 15,893

 - transcripts 80,087 52,382

Long non-coding RNAs

 - genes 15,767 9,989

 - orthologs 2,720 [36], 1,587 [38], 1,100 [37], 851 [23]

 - transcripts 27,692 13,904

Pseudogenes 14,650 10,096

Small RNAs 7,258 6,110

 - miRNAs [42] 2,588 1,915

 - snRNAs 1,900 1,383

 - snoRNAs 944 1,508

 - tRNAs [46] 631 471
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