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Abstract

Chronic Respiratory Diseases (CRDs), such as Asthma and Chronic Obstructive Pulmonary

Disease (COPD), are leading causes of deaths worldwide. Although both Asthma and

COPD are not curable, they can be managed by close monitoring of symptoms to prevent

worsening of the condition. One key symptom that needs to be monitored is the occurrence

of wheezing sounds during breathing since its early identification could prevent serious

exacerbations. Since wheezing can happen randomly without warning, a long-term monitor-

ing system with automatic wheeze detection could be extremely helpful to manage these

respiratory diseases. This study evaluates the discriminatory ability of different types of fea-

ture used in previous related studies, with a total size of 105 individual features, for auto-

matic identification of wheezing sound during breathing. A linear classifier is used to

determine the best features for classification by evaluating several performance metrics,

including ranksum statistical test, area under the sensitivity-–specificity curve (AUC), F1

score, Matthews Correlation Coefficient (MCC), and relative computation time. Tonality

index attained the highest effect size, at 87.95%, and was found to be the feature with the

lowest p-value when ranksum significance test was performed. Third MFCC coefficient

achieved the highest AUC and average optimum F1 score at 0.8919 and 82.67% respec-

tively, while the highest average optimum MCC was obtained by the first coefficient of a 6th

order LPC. The best possible combination of two and three features for wheeze detection is

also studied. The study concludes with an analysis of the different trade-offs between accu-

racy, reliability, and computation requirements of the different features since these will be

highly useful for researchers when designing algorithms for automatic wheeze identification.

Introduction

Chronic Respiratory Diseases (CRDs) affect over 15% of the world population. It is estimated

that more than 235 million people suffer from asthma worldwide, with the disease causing in

excess off 300,000 deaths per year [1]. The prevalence of COPD is even higher with more than

250 million cases reported annually, further resulting in over 3 million deaths globally [2].

COPD is also predicted to become the third leading cause of deaths worldwide by 2030, just

behind ischaemic heart disease and cerebrovascular disease [3]. Furthermore, the economic
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impact of these respiratory diseases is also very high. As an illustration, in the UK they cost the

National Health Service approximately 3 and 2 million GBP, for asthma and COPD, respec-

tively [4].

Asthma and COPD can usually be characterized by symptoms such as wheezing, breathless-

ness, and coughing. The symptoms affect patients on a regular basis, and may become worse

when performing various physical activities [1, 2]. They are often worse at night time and early

mornings [1] causing sleep disruptions [5] and consequently reducing the quality of life of

those affected. The worsening of symptoms in CRDs is known as exacerbations. Exacerbations

can be life-threatening and can permanently alter respiratory system structures. In some coun-

tries, such as the UK, they are also one of the leading causes of emergency hospital admissions

[6]. It is thus important to detect these symptoms at an early stage to improve patients’ quality

of life as well as to reduce the number of deaths. Despite the high prevalence and detrimental

effects of CRDs, specifically asthma and COPD, they continue to be heavily under-diagnosed,

poorly managed, and often left untreated [1, 2]. Although both asthma and COPD are not cur-

able, they can be managed to reduce the associated risks or slow down the disease progression.

The monitoring and identification of early symptoms is critical for the management of

CRDs [7, 8]. One of the important symptoms that needs to be monitored is the occurrence of

wheezing sounds during breathing. Wheezes are a type of abnormal breathing sound which

usually has a high pitch lasting for more than 80ms [9]. A wheeze sound is described as a con-

tinuous whistling and sibilant sound superimposed on normal breathing. Wheezes are caused

by the narrowing of airways, which then causes airflow limitations [10]. In a clinical setting, a

doctor can perform conventional auscultation using a stethoscope to detect a wheezing sound.

However, auscultation usually needs to be performed in a quiet environment and ideally with

the patient in a still position, which restricts the duration and flexibility of monitoring. Fur-

ther, since the respiratory symptoms can occur at home, in public, or even at night-time, this

approach of using a stethoscope by a trained medical professional has got limited usability.

For day-to-day management and self-monitoring of CRDs, patients are often asked to

maintain logs of events and to note down any details of the symptoms they think they might

be experiencing. Although, this is considered to be a useful method for disease monitoring

[11], it requires the patient to manually input symptoms occurrences, which can be subjective

and is conditioned by patients compliance.

These issues could be alleviated by having a wearable system able to monitor respiratory

sounds continuously; and intelligent algorithms extracting information from the signals to flag

abnormalities. Automatic lung sound analysis, specifically for identification of wheezing

sounds, has long been of significant research interest. Studies reviewed in [12] developed algo-

rithms to discriminate between normal respiratory sounds and wheeze sounds. The different

studies used several features with different classifiers to automatically label different respira-

tory events in the algorithms. The discriminatory features used to differentiate between wheeze

and normal respiratory sound events are briefly discussed in the following.

Orjuela-Canon et al. [13] used MFCC as a feature vector, with length of 13 in an Artificial

Neural Network (ANN) classifier. The data for this study was obtained from an online

resource [14] which contains 4 crackle, 4 wheeze, and 5 normal breathing recordings. A first

order Butterworth high-pass filter with cut-off frequency of 7.5 Hz was used to remove DC

components followed by an eighth order Butterworth low-pass filter with cut-off frequency of

2.5 kHz, to bandlimit the signal. A Leave One Out Cross-Validation (LOOCV) method was

used, achieving a 100% recognition rate for wheezing sounds and 80% accuracy to detect nor-

mal breathing sounds. Bahoura in [15] found that Mel-Frequency Cepstral Coefficient

(MFCC) performed better for respiratory segments classification when compared to other fea-

tures including Linear Predictive Coding (LPC) [16] and features based on Wavelet transform
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[17]. The assessment was performed by comparing the performance of the features using

Gaussian Mixture Model (GMM), Multilayer Perceptron (MLP), and Vectorial Quantification

(VQ). The best performance was obtained by using 24 MFCC with GMM, achieving 97.2%

sensitivity and 94.2% specificity.

Oweis et al. [18] used 32 averaged power spectrum features with an ANN and reported an

accuracy of 98.6% when performing abnormal and normal breathing sound classification,

including wheeze events. Using a similar set of features with a multi layer perceptron and

incremental supervised neural network for classification, [19] reported a 98% accuracy for

abnormal sound classification. Mendes et al. [20] evaluated musical features to detect wheeze

in respiratory sound segment. Result of this study was based on the average ten repetitions of

10-fold cross-validation on 24 recordings. The best performance was achieved by using Ran-

dom Forest at sensitivity of 92.7% and specificity of 90.9%. Wisniewski and Zielinski in [21]

introduced two features based on MPEG standard, Tonality Index (TI) and Audio Spectral

Envelope (ASE) for the detection of wheezes in respiratory sound. A total of 260 respiratory

recordings of 128ms each were used in this study, where 130 of them contain wheezes. A

10-fold cross-validation was used with Support Vector Machine (SVM) classifier, achieving

Area Under Curve (AUC) performance of 0.951 for ASE and 0.905 for TI.

Aydore et al. [22] employed kurtosis, Renyi entropy, quartile frequency ratios, and Mean

Crossing Irregularity (MCI) to differentiate between wheezing and non-wheezing episodes in

breath sounds. The classifier used was Fischer Discriminant Analysis and the performance

reported was 93.5% success rate in discriminating between 492 respiratory episodes. To differ-

entiate between monophonic and polyphonic wheezes, MCI and multiple quartile frequency

ratios were used in a study by Ulukaya et al. [23]. The classification methods used were k-Near-

est Neighbour, SVM, and Naive Bayesian. It was found that k-Nearest Neighbour performed

the best classification with this feature set, with an overall accuracy of 75.78% using a LOOCV

scheme. Oletic et al. [24] used LPC error ratio as the main feature for wheeze classification. A

total of 62 wheeze and 140 normal respiratory events were used in this study. Using a simple

threshold classifier, 90.29% accuracy was achieved in differentiating between normal and

wheezing sounds. Entropy features were used by Liu et al. [25] to discriminate between

wheeze, stridor, crackle, and normal recordings. In this work, the entropy of each recording

was extracted, following which, three features were computed from the extracted entropy.

These features were then compared against a set of thresholds for classification of different

sounds. On 45 recordings, this resulted in a detection accuracy of 70% for wheezes and 99%

for normal lung sounds. Finally, Chamberlain et al. [26] used a power ratio in a specific fre-

quency band to determine whether or not a recording, obtained using a custom stethoscope,

contained wheeze sounds. The proposed power ratio feature was extracted as a ratio between

maximum power in the 250-800 Hz frequency band and the mean power in the 60-900 Hz fre-

quency band. Subsequently a SVM was used to determine if the recording contained wheezes.

This resulted in a maximum recognition accuracy of 86%.

The studies reviewed above reported algorithms with high accuracy for wheeze and normal

sound classification. However, the use of complex classification techniques such as neural net-

works as well as the use of multiple computationally-expensive features would limit their use

in a long-term portable battery-powered symptom monitoring device. This is because such a

system would have a restricted power budget. The use of a small battery in such devices would

limit their computational power, if they were intended to operate over long periods of time.

In this paper, we review the different types of features used in previous related studies, indi-

vidually, with a total size of 105 individual features, using a simple linear threshold to evaluate

their ability to distinguish between wheeze and normal respiratory events. The objective of this

paper is to benchmark the performance of features individually with a particular view to
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application within resource-constrained and portable battery-powered devices. This is impor-

tant since complex classification methods with multiple features may not be suitable for many

applications. Section Materials and methods first presents the description of features reviewed

in this study, followed by details of the data used for analysis. In Section Results, the perfor-

mance metrics that are used in this study are introduced, followed by detailed results of the

classification performance for each feature. This section also discusses the optimum combina-

tion of features which results in the best performance for the detection of wheezing sounds, as

well as the relative computation time requirements for different features. Finally, Section Dis-

cussion discusses the key observations in this study and provides insight into the suitability of

different features for various applications and use cases.

Materials and methods

To assess and compare the performance of different features to distinguish between wheeze

and normal respiratory events, a comprehensive review of the existing works in literature was

performed. The review focused mainly on studies which carried out classification between

wheeze and normal respiratory events. Based on this, a number of different features were

selected, with the inclusion criteria being that enough details about a feature were available for

its implementation to discriminate between wheeze and normal respiratory events using a

simple linear threshold. The details about the selected features, preprocessing stages, and clas-

sification, are discussed in this section.

Features for wheeze classification

The features extracted for this study were selected from the works discussed in Section Intro-

duction. Additionally, other time and spectral features, commonly used for audio processing

were also considered for comparison. This resulted in a feature vector with a total size of 105

individual features, that are listed in Table 1.

Averaged power spectrum. Averaged Power Spectrum was used in [18, 19] to create a

feature vector of 32 coefficients, for classification using an ANN. The power spectrum of an

event was computed and averaged to reduce the size of features into 32 different frequency

bands between 0 Hz to 1950 Hz.

Wavelet transform. Features derived from continuous wavelet transform were used in

[17] for classification of lung sounds using ANN. A decomposition of the signal using

Table 1. List of features extracted for evaluation.

Features Extracted Size

Averaged PSD 32

Wavelet transform 20

MFCC 13

LPC coefficients 8

Percentile frequency ratio 4

Entropy-based 4

Power ratio 1

ASE flux 1

Tonality index 1

Mean crossing irregularity 1

Other time and spectral features 20

https://doi.org/10.1371/journal.pone.0213659.t001
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Daubechies with 4 vanishing moments was performed. The features were then extracted by

taking the absolute mean, average power, and standard deviation of the coefficients in each

sub-band, also the ratio of absolute mean of coefficients in adjacent sub-bands.

Mel frequency cepstral coefficients. MFCC are a set of coefficients which represent signal

spectrum, and are defined as the Discrete Cosine transformed logarithm of a signal spectrum.

MFCC was used in [13, 15] to distinguish between normal and respiratory sounds, including

wheezes. Thirteen coefficients, MFCC-1 to MFCC-13, representative of a respiratory event

were extracted from the whole event as feature vector, including the zeroth order. The number

of filters in the filter-bank was set to 26 to obtain more detail on the mel-scale spectrum where

the filter edges are a function of the sampling frequency.

Linear predictive coding. LPC is a time domain estimator of a signal based on linear

combination of previous samples weighted with LPC coefficients [16, 24]. The coefficients and

the prediction error of a 6th order LPC were used as a feature vector in [16]. The features were

obtained from 51.2 ms segments of each event with 12.8 ms overlap. In [16], the event classifi-

cation label was obtained by using majority vote of the segment classification. LPC coef-1 to

LPC coef-5 correspond to the second to sixth coefficients of the lpc filter, with the 6th order

error as the other feature. The prediction error energy of LPC was used in [24] for classifica-

tion between wheeze and normal respiratory sounds. The feature used in [24] was the E(0)/E(4)

ratio, where E(k) represents the prediction error energy of order k.
Percentile frequency ratios. Percentile frequency ratios were used as features in [22, 23]

for lung sound classification. Percentile frequency fx is defined as a frequency where the power

of a signal reaches the x percentile of the total power. Four different ratios were used: f25/f75,

f25/f90, f50/f75, and f50/f90.

Entropy-based. Entropy, as a feature, is a measure of how the signal frequency peaks are

distributed in time. Three features based on this definition of entropy were used to discrimi-

nate between signal containing adventitious sounds and a normal signal [25]. The first feature

Ed was the difference between the maximum and minimum value of the entropy of a signal

across time. The ratio Er between the maximum and minimum entropy across time was the

second feature, while the third feature used was the mean of the entropy across time Em. Classi-

fication between wheeze and normal respiratory segments was performed in [22] by using an

entropy-based feature, which was Renyi entropy. Renyi entropy is a generalisation of Shannon

entropy defined asHðXÞ ¼ 1

1� a
logð

Pn
i¼1
piaÞ. In the study, the time-series respiratory segments

were regarded as a random variable X, where the constant α was set to two.

Power ratio. The study in [26], aiming to differentiate between wheeze and normal respi-

ratory sounds, used a power ratio in specific frequency bands as a feature. The power ratio was

computed by comparing the maximum peak in the 250-800 Hz range, with the mean power

between 60-900 Hz. The labeling of breathing sounds was then done by comparing the ratio to

a threshold.

Audio spectral envelope flux. ASE was used as feature vector in [21] to discriminate

between wheezes and normal respiratory sounds. ASE was based on its description in MPEG-

7 standard [27]. Isolated sound events were segmented into frames with 32 ms width and 8 ms

shift. Features were first extracted separately for each segment, which were then averaged to

represent a single event.

Tonality index. Similar to ASE, TI was used as feature vector in [21] to discriminate

between wheezes and normal respiratory sounds. TI feature extraction was based on its

description in MPEG-2 previously. Isolated sound events were segmented into frames with 32

ms width and 8 ms shift. Features were first extracted separately for each segment, which were

then averaged to represent a single event.
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Mean crossing irregularity. MCI was used in [23] and defined as the mean normalised

standard deviation of the mean crossing intervals. These intervals were first calculated by

subtracting the mean of an event and finding the intervals between the zero crossing indices.

The intervals were then regarded as a random variable X with mean E(X) and standard devia-

tion
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXÞ

p
.

Other time and spectral features. Musical [20] and other time and spectral features,

commonly used in audio signal processing, were also extracted for comparison. These

included frequency roll-off (85%, 90%, and 95%), frequency quartiles, root mean square

(RMS) energy of the time series, spectral brightness, spectral irregularity, spectral kurtosis,

spectral skewness, spectral crest factor, spectral centroid, spectral decrease, spectral flatness,

spectral slope, spectral spread, zero crossing rate (ZCR), standard deviation (STD) and band

power. The spectral features mentioned above were extracted by using a modified periodo-

gram with Kaiser window of length 38.

Data collection

For this study, a total of 38 different recordings were obtained from multiple repositories [14,

28–30] and books supplements [31, 32]. Based on the description of each recording provided

by the source, the database collected consisted of sounds captured from the trachea, anterior,

and posterior chest; using either a stethoscope or microphone. Out of the 38 total recordings,

28 recordings contained wheeze sounds. These were collected from patients with different

pathologies, including asthma, bronchitis, COPD, and croup. Additionally, the normal respi-

ratory sounds used in this study included tracheal and vesicular sounds. Age was not consid-

ered as a relevant variable in this study since not all of the recordings provided this

information. However, this was not considered to be a major limitation because according to

literature, the variations caused by age difference in automatic auscultation is too small to be

clinically relevant [33], and in addition, the definition and description of wheezes also is not

age-related [9, 34]. Each respiratory event was manually extracted and annotated from the

recordings based on the description provided by the specific data source as ground truth. A

total of 425 respiratory events were isolated across all recordings, of which 223 were labeled as

wheezes, while the remaining 202 were labeled as normal respiratory sounds. Of these record-

ings, a random patient-independent partition of training and test set with a proportion of 50%

each were created to evaluate the performance of the features individually.

Data preprocessing

Since the recordings were obtained using different equipment under also different conditions,

they needed to be preprocessed to have the same fundamental characteristics in the acoustic

data of respiratory sounds. As shown in Fig 1, a band-pass filter was used to filter out sounds

below 150 Hz since these might have contained heart sounds, and DC offsets; and to prevent

aliasing on frequencies above 2000 Hz. The band-pass filter was implemented in MATLAB as

a fifth-order Butterworth filter to make the frequency response in the pass-band flat so that the

Fig 1. Block diagram for preprocessing steps.

https://doi.org/10.1371/journal.pone.0213659.g001
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filter did not affect the important respiratory information. All events collected were then

resampled to 8000 Hz, as information on the respiratory sounds is bandlimited up to 2000 Hz

only [35]; and processing at the lowest possible sampling frequency would reduce unnecessary

computation. Amplitude scaling was performed on each event so that all samples had values

between -1 and 1 without changing their mean and variance. This was performed to compen-

sate for the intensity difference of data collected from different sources while preserving the

important statistical parameters of the respiratory sounds.

Linear classification for single feature

The discriminatory ability of each feature was evaluated by using a simple linear classifier to

differentiate between wheeze and normal respiratory sounds. Fig 2 shows the different stages

of the evaluation method, where each respiratory event is first preprocessed before the feature

extraction stage. All the features in the training set were normalized to have values between

a = −1 and b = 1. Each feature x was scaled following Eq (1), where x0 is the resultant scaled fea-

ture, ranging from a to b.

x0 ¼ aþ
ðb � aÞðx � minðxÞÞ
maxðxÞ � minðxÞ

ð1Þ

The scaled features were then compared individually against a varied threshold to deter-

mine whether the respiratory sound contained wheezes or not.

To scale the test set, the same equation in (1) was used, but the maximummax(x) and mini-

mummin(x) values, as scaling factors, were obtained from the training set. This was done to

prevent the statistical information of the test set from leaking to the classification model. Fol-

lowing this, five-fold cross-validation on the training set was used to find an optimum thresh-

old for the classifier. The performance of each feature was then measured from the test set

using this optimum threshold.

Fig 2. Flowchart for classification of wheeze and normal respiratory sounds using single feature.

https://doi.org/10.1371/journal.pone.0213659.g002
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Logistic regression model for multiple features

While the use of single features have the advantage of hugely reducing the computational

load, in many applications a number of different features may have to be used to improve the

classification performance. Hence, to evaluate the combination of features best suited to dis-

criminate between wheezing and normal respiratory sounds, a binary logistic regression

model was used to observe the trade off between performance and number of features used.

The flowchart of the classification using a logistic regression model can be seen in Fig 3.

The preprocessing, feature extraction, and feature scaling steps were the same as when a

simple linear threshold was used (see previous section). The logistic regression model was

trained on the scaled training set. The performance was then measured on the test set, where

up to three features were used in combination. A sequential feature selection procedure was

also performed using logistic regression, by iteratively adding the new feature to a feature vec-

tor to find the combination and number of features that increased the performance of the

classifier.

This section presents the performance of each feature individually in discriminating

between wheezing and normal breath sounds. It also shows a comparison of the features by

optimizing for different objectives. The specific performance metrics used in this study are

first described, followed by a detailed assessment of each feature when used in a single-feature

linear classifier. This is then followed by a discussion of the best possible combination of fea-

tures that can be used to improve the classification performance.

Fig 3. Flowchart for classification of wheeze and normal respiratory sounds using combination of features.

https://doi.org/10.1371/journal.pone.0213659.g003
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Results

Performance metrics

The discriminatory ability of each feature was assessed by evaluating different performance

metrics from the classification results in the test data set. These metrics include Sensitivity

(SE), Specificity (SP), Positive Predictive Value (PPV), and Negative Predictive Value (NPV).

These are described below.

SE ¼
TP

TPþ FN
ð2Þ

SP ¼
TN

TN þ FP
ð3Þ

PPV ¼
TP

TP þ FP
ð4Þ

NPV ¼
TN

TN þ FN
ð5Þ

In these equations, TP (True Positive) represents the number of wheeze sounds correctly

labeled, TN (True Negative) is the number of correctly labeled normal respiratory sounds, FP

(False Positive) is the number of normal sounds mislabeled as wheezes, and FN (False Nega-

tive) is the number of wheezes which were incorrectly labeled as normal. These measures are

in turn used to compute further performance metrics to compare the classification result of

each feature. These metrics include the AUC of a Receiver Operating Characteristic (ROC)

curve, the F1 score, and the Matthews Correlation Coefficient (MCC).

Feature characterization using AUC

To quantify the classification performance of each feature at different detection thresholds, the

ROC curves, as a function of sensitivity against specificity, were plotted, by sweeping the detec-

tion threshold of the linear classifier. This step was repeated for each feature separately, using

all recordings in the database. The AUC for each feature gives an indication of which feature

has a higher discriminatory ability.

Fig 4 shows the ROC curves for the features with the highest values of AUC. These values

are also shown in Table 2. It can be seen from these that the third MFCC coefficient resulted in

the highest AUC followed by the first 6th order LPC coefficient and tonality index. The AUC

then drops for other features, showing that these three features have the highest discriminatory

abilities when both sensitivity and specificity are taken into account.

The optimum threshold on a ROC curve is the point closest to (0,1) on the curve. For

MFCC-3 which achieved the highest AUC, this point is achieved at sensitivity and specificity

values of 83.86% and 81.19% respectively. The closest distance to the optimum point in the

ROC curve is however achieved by the first coefficient of LPC, at 82.06% sensitivity and

84.16% specificity, shown in Fig 4 along the ROC of the feature. The sensitivity and specificity

at optimum thresholds of the features with highest AUC are shown in Table 3. However, it is

important to note that a ROC curve represents the trade off between sensitivity and specificity

and a different point on the curve may be selected if either of these is more important in any

given application.
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Feature characterization using F1 score

The F1 score is a metric representing the weighted harmonic mean of sensitivity and the PPV.

It is computed as shown in Eq (6). Unlike the AUC, the F1 score is used to determine the

trade-off between sensitivity and PPV.

F1 ¼
2ðSEÞðPPVÞ
SEþ PPV

¼
2ðTPÞ

2ðTPÞ þ FPþ FN
ð6Þ

In order to determine the optimum threshold for each feature to obtain the highest

F1-score, the training dataset was used with five-fold cross-validation. This threshold was then

used on the test set to compute the sensitivity and PPV, and subsequently the F1 score, individ-

ually for each feature. This process was repeated 100 times in order to further randomise the

training and test dataset partition. The optimum thresholds and corresponding F1 score values

on the test dataset for the highest performing features are shown in Table 4 as the average of

the different repetitions. It can be seen that the top three features with highest average F1 score

Table 2. AUC comparison of best performing features on all dataset using linear classifier.

Feature Name AUC

MFCC-3 0.8919

LPC coef-1 0.8708

Tonality index 0.8659

LPC coef-2 0.8557

Averaged PSD-17 0.8423

Spectral irregularity 0.8354

WT coef STD-1 0.8327

WT coef energy-1 0.8323

Averaged PSD-16 0.8300

LPC coef-3 0.8211

Spectral brightness 0.8153

95% freq roll-off 0.8147

https://doi.org/10.1371/journal.pone.0213659.t002

Fig 4. ROC of features with the highest AUC.

https://doi.org/10.1371/journal.pone.0213659.g004
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are MFCC-3, LPC coef-1 and, tonality index respectively. Since the F1 Score does not take

specificity into account, the first one of these have significantly lower specificity values despite

being ranked highly for their sensitivity and PPV.

Feature characterization using MCC

MCC is a metric that is used to compare the balanced performance of the features, as it takes

into account both the true and false positives and negatives. It is computed as shown in Eq (7).

MCC ¼
ðTPÞðTNÞ � ðFPÞðFNÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞ

p ð7Þ

MCC has a range between -1 and +1, where the -1 represents total disagreement between

the classifier and ground truth, while +1 indicates a perfect performance. Similar to the deter-

mination of the F1 score, the MCC values were computed for each feature separately, by first

determining the optimum threshold on the same training data as before, and then using this

threshold with the test dataset to find the MCC value. The thresholds and average MCC values

for the best performing features are shown in Table 5. The top features in this case are LPC

coef-1, tonality index, and MFCC-3. Since MCC takes into account all the true and false

Table 3. Comparison of optimum ROC points of features with the highest AUC.

Feature Name SE SP Dist. to (0,1) Threshold

MFCC-3 0.8386 0.8119 0.2479 > 0.0520

LPC coefficient-1 0.8206 0.8416 0.2393 > −0.1760

Tonality index 0.7848 0.8515 0.2615 < 0.7600

LPC coefficient-2 0.7623 0.8020 0.3094 < −0.1300

Averaged PSD-17 0.7265 0.8416 0.3161 < −0.9880

Spectral irregularity 0.7578 0.7822 0.3257 > −0.7020

WT coef STD-1 0.7578 0.7822 0.3257 < −0.7230

WT coef energy-1 0.7668 0.7673 0.3294 < −0.9510

Averaged PSD-16 0.7713 0.7723 0.3227 < −0.9800

LPC coef-3 0.6906 0.8119 0.3621 > 0.6660

Spectral brightness 0.7803 0.7673 0.3200 < −0.9120

95% freq roll-off 0.7668 0.7475 0.3437 < −0.2860

https://doi.org/10.1371/journal.pone.0213659.t003

Table 4. Classification result using optimum F1 score threshold on the Test-Set.

Feature Name SE SP PPV NPV Threshold F1 Score

MFCC-3 0.9097 ± 0.0850 0.6811 ± 0.1114 0.7628 ± 0.0478 0.8834 ± 0.0888 > −0.1409 ± 0.0969 0.8267 ± 0.0452

LPC coef-1 0.8027 ± 0.0924 0.8128 ± 0.1413 0.8359 ± 0.0881 0.7993 ± 0.0844 > −0.1990 ± 0.1163 0.8122 ± 0.0594

Tonality index 0.7657 ± 0.0915 0.8366 ± 0.0914 0.8477 ± 0.0676 0.7677 ± 0.0870 < 0.7556 ± 0.0363 0.7976 ± 0.0431

Spectral irregularity 0.8214 ± 0.0776 0.6174 ± 0.1198 0.7022 ± 0.0881 0.7644 ± 0.0894 > −0.7907 ± 0.0624 0.7495 ± 0.0381

LPC coef-2 0.8084 ± 0.1573 0.6414 ± 0.1923 0.7290 ± 0.0997 0.7846 ± 0.1236 < 0.0525 ± 0.2180 0.7491 ± 0.0729

WT coef mean-5 0.9327 ± 0.0608 0.3897 ± 0.1487 0.6291 ± 0.0609 0.8423 ± 0.1291 > −0.9154 ± 0.0339 0.7485 ± 0.0458

WT coef STD-5 0.9200 ± 0.0815 0.3910 ± 0.1593 0.6274 ± 0.0646 0.8227 ± 0.1450 > −0.8945 ± 0.0490 0.7416 ± 0.0503

WT coef energy-5 0.9145 ± 0.0956 0.4027 ± 0.1599 0.6318 ± 0.0678 0.8189 ± 0.1457 > −0.9890 ± 0.0278 0.7409 ± 0.0587

90% freq roll-off 0.8657 ± 0.1080 0.4887 ± 0.1896 0.6583 ± 0.0768 0.8008 ± 0.1553 < 0.1024 ± 0.2834 0.7401 ± 0.0492

Spectral brightness 0.8202 ± 0.1205 0.5657 ± 0.2256 0.6903 ± 0.0998 0.7715 ± 0.1269 < −0.6789 ± 0.3939 0.7369 ± 0.0533

95% freq roll-off 0.8377 ± 0.1270 0.5312 ± 0.2068 0.6745 ± 0.0863 0.7864 ± 0.1458 < −0.0306 ± 0.2682 0.7355 ± 0.0507

WT coef STD-4 0.8124 ± 0.1169 0.5415 ± 0.2130 0.6746 ± 0.0975 0.7324 ± 0.1492 > −0.6403 ± 0.1480 0.7245 ± 0.0513

https://doi.org/10.1371/journal.pone.0213659.t004
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positives and negatives, the higher ranked features achieve a relatively more balanced perfor-

mance, compared to those ranked using other metrics.

Features distribution

The separation in the feature space between wheezing and normal respiratory sounds was

studied in terms of the Distance Between Medians (DBM), as a percentage of Overall Visible

Spread (OVS). Fig 5 represents this visually, as box plots of the features with highest DBM/

OVS ratios. The corresponding values are listed in Table 6. In this case, LPC coefficient-2 has

the highest ratio, followed by LPC coefficient-3 and spectral spread. All box plots shown in

Fig 5 have a difference in median values between wheeze and normal breath sounds. However,

there are features with overlapping quantiles such as the LPC coef-3 an spectral spread in

Fig 5b and 5c respectively. A more ideal feature distribution would have less overlapping quan-

tiles, such as in LPC coef-2 and MFCC-3 in Fig 5a and 5f respectively.

Features ranksum

The Wilcoxon’s ranksum test was used to measure the values distribution of the all the fea-

tures. This is a nonparametric test of null hypothesis considering that a value randomly

selected from one group when compared to a value randomly selected from the other group

would have equal probability of being higher or lower. In this study, ranksum test was per-

formed on the features extracted from the first breath event from each recording. The test

results can be seen in Table 7, where features with the highest effect size are listed. The effect

size of the ranksum test was measured by using the common language effect size definition

[36]. Compared to other features, tonality index obtained the highest effect size. The highest

effect size was found to be 0.8795. This represents the ratio of all possible pairs of wheeze and

normal groups which reject the null hypothesis. The lowest p-value was also achieved by this

feature, representing the highest significance compared to other features.

Computation time of features

In certain time-critical or real-time applications, the computation time of features is an impor-

tant constraint. This is heavily dependent on the processor speed and architecture. However, a

relative comparison can still be made by computing all the features on the same processor.

When considering different domains, time-domain features can be extracted fastest as they do

Table 5. Classification result using optimum MCC threshold on the Test-Set.

Feature Name SE SP PPV NPV Threshold MCC

LPC coef-1 0.7378 ± 0.0965 0.8828 ± 0.0844 0.8825 ± 0.0672 0.7602 ± 0.0778 > −0.0918 ± 0.0902 0.6312 ± 0.0929

Tonality Index 0.6971 ± 0.0892 0.9143 ± 0.0545 0.9083 ± 0.0426 0.7358 ± 0.0780 < 0.7031 ± 0.0391 0.6269 ± 0.0727

MFCC-3 0.8630 ± 0.1223 0.7119 ± 0.1294 0.7777 ± 0.0529 0.8482 ± 0.0981 > −0.0818 ± 0.1238 0.5989 ± 0.0995

f25/f90 0.5695 ± 0.0830 0.9474 ± 0.0468 0.9292 ± 0.0572 0.6681 ± 0.0786 > 0.7388 ± 0.0633 0.5548 ± 0.0715

f25/f75 0.5141 ± 0.0773 0.9730 ± 0.0290 0.9572 ± 0.0425 0.6465 ± 0.0794 > 0.5459 ± 0.0435 0.5414 ± 0.0772

LPC coef-2 0.6664 ± 0.1345 0.8477 ± 0.1697 0.8563 ± 0.1161 0.7095 ± 0.0934 < −0.2752 ± 0.1849 0.5383 ± 0.1254

f50/f90 0.5217 ± 0.0829 0.9606 ± 0.0422 0.9397 ± 0.0532 0.6475 ± 0.0791 > 0.4959 ± 0.0664 0.5312 ± 0.0861

f50/f75 0.4807 ± 0.0773 0.9802 ± 0.0260 0.9657 ± 0.0432 0.6332 ± 0.0771 > 0.2774 ± 0.0349 0.5244 ± 0.0816

LPC coef-3 0.6284 ± 0.1366 0.8401 ± 0.1792 0.8443 ± 0.1213 0.6813 ± 0.0977 > 0.6948 ± 0.1897 0.4949 ± 0.1445

Entropy ratio 0.8863 ± 0.1488 0.3328 ± 0.3790 0.6313 ± 0.1467 0.7264 ± 0.0949 < −0.2803 ± 0.8446 0.4946 ± 0.0945

Spectral irregularity 0.6689 ± 0.1220 0.8011 ± 0.1084 0.8002 ± 0.0863 0.6949 ± 0.0844 > −0.6162 ± 0.1354 0.4816 ± 0.0605

Spectral brightness 0.6755 ± 0.1720 0.7539 ± 0.1748 0.7809 ± 0.0996 0.6942 ± 0.0997 < −0.9088 ± 0.0768 0.4491 ± 0.1207

https://doi.org/10.1371/journal.pone.0213659.t005
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not require any domain transformation. This is not the case for cepstral, spectral, and wavelet

domain features. To transform from time to cepstral domain, a Discrete Cosine Transform

(DCT) is required, while for spectral domain, a modified periodogram or some other form of

transformation is needed.

Fig 5. Box Plot of (a) LPC coef-2, (b) LPC coef-3, (c) Spectral spread, (d) LPC coef-1, (e) ASE flux, (f) MFCC-3, (g) f25/f90, (h) Averaged PSD-9, (i) f50/

f90, (j) LPC 6th order error, (k) WT coef mean-2, and (l) f25/f75 which represent features with best Distance Between Median (DBM) and Overall Visible

Spread (OVS) ratios.

https://doi.org/10.1371/journal.pone.0213659.g005
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To illustrate the differences in computation time between features, the average time needed

to extract a feature from data of average length of 829.1 ms was determined. This average was

computed based on a simulation run of 100 iterations and the times reported were rounded to

the nearest 0.1 μs. All the computations were performed on a standard Desktop Computer

with an Intel Core i7-4790 CPU 3.6GHz 3.6GHz, with 16.0 GB of RAM, running MATLAB

version 2017a. The results for the fastest feature in each domain are shown in Table 8.

Optimal combination of features

In certain applications, the accuracy and reliability provided by one feature for detection of

wheezes is not enough. These applications necessitate the use of a combination of multiple fea-

tures to achieve the desired performance. However, the top features may not give the most

optimum performance when used together. It is therefore important to determine which fea-

tures work together in combination to achieve the best performance. To evaluate the combina-

tion of features best suited to discriminate between wheeze and normal respiratory sounds, a

binary logistic regression model is used. The accuracy of this classifier is ascertained in the test

dataset, using both F1 score and MCC metrics, in all possible combinations of two and three

features.

Table 6. Features with highest ratio of DBM and OVS.

Feature Name DBM/OVS Ratio

LPC coef-2 0.6314

LPC coef-3 0.6311

Spectral spread 0.5610

LPC coef-1 0.5607

ASE Flux 0.5520

MFCC-3 0.5244

f25/f90 0.5155

Averaged PSD-9 0.4940

f50/f90 0.4736

LPC 6th order error 0.4692

WT coef mean-2 0.4670

f25/f75 0.4599

https://doi.org/10.1371/journal.pone.0213659.t006

Table 7. Features with highest effect size using ranksum test.

Feature Name Ranksum p-value Effect Size

Tonality Index 891 2.9902E-06 0.8795

LPC coef-2 861 3.7751E-05 0.8348

f25/f90 963 5.1789E-05 0.8289

LPC coef-1 963 5.1789E-05 0.8289

Spectral irregularity 962 5.6003E-05 0.8274

f50/f90 961 6.0541E-05 0.8259

MFCC-3 959 7.0681E-05 0.8229

LPC coef-3 951 1.2964E-04 0.8110

Averaged PSD-16 841 1.7423E-04 0.8051

Averaged PSD-17 835 2.6887E-04 0.7961

Spectral flatness 830 3.8260E-04 0.7887

Averaged PSD-18 824 5.7813E-04 0.7798

https://doi.org/10.1371/journal.pone.0213659.t007
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Tables 9 and 10 show the best average performance when two features are used for classifi-

cation. It can be observed from Table 9 that the combination of tonality index and spectral

slope achieved the highest F1 score. This is a 4.56% increase in F1 score value compared to

when only tonality index was used. Similarly, the addition of the spectral slope feature to the

tonality index feature increased the MCC from 0.5790 to 0.7161. This is shown in Table 10.

It is also important to take into account the additional time and complexity needed when

adding more features. The addition of spectral slope to tonality index in Table 9, while increas-

ing the F1 score by 4.56%, needed 2.025 ms of average processing time which means a 1.64 ms

addition to extracting tonality index alone. Combining MFCC-1 and MFCC-3 on the other

hand, which achieved the second best F1 score in Table 9, needed only 1.4987 ms on average.

Addition of either spectral slope or MFCC-1 to tonality index improved the MCC to 0.7161 or

0.7154 respectively. The additional time for the feature extraction for this improvement was

1.64 ms and 1.4987 ms, representing a 426% and 389% increase respectively.

The addition of a third feature into the feature set can further improve the performance of

the LRM classifier. The best performing features, when used in combination of three, are

shown in Tables 11 and 12, as optimized using the highest F1 score and MCC respectively. In

this case, the highest F1 score was achieved by the combination of MFCC-3, tonality index,

and ZCR features at 87.18%. Further, in comparison with the combination of tonality index

and spectral slope, which achieved the highest F1 score for two features (Table 9), an improve-

ment of 1.4% was obtained with the addition of MFCC-3. When using MCC to determine the

best combination of features, the combination of tonality index, spectral slope, and averaged

PSD-17, resulted in the highest performance. Note that the first two features in this case were

Table 8. Features with fastest average computation time in each domain.

Domain Feature Time (ms)

Time RMS 0.0102

Spectral Tonality index 0.3850

Cepstral MFCC 1.4987

Wavelet WT coef energy 1.5847

https://doi.org/10.1371/journal.pone.0213659.t008

Table 9. F1 score of the best pairs of features for wheeze and normal sound classification using logistic regression

on the Test-Set.

First Feature Second Feature F1 Score

Tonality index Spectral slope 0.8319

MFCC-3 MFCC-1 0.8165

MFCC-3 Spectral slope 0.8154

Tonality index MFCC-1 0.8152

MFCC-3 RMS 0.8133

MFCC-3 Averaged PSD-2 0.8112

MFCC-3 Entropy mean 0.8108

Entropy difference Spectral Irregularity 0.8099

MFCC-3 Spectral Irregularity 0.8089

MFCC-10 Spectral Irregularity 0.8080

MFCC-3 Entropy ratio 0.8078

MFCC-3 Spectral skewness 0.8049

Tonality index - 0.7863

MFCC-3 - 0.7786

https://doi.org/10.1371/journal.pone.0213659.t009
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the same as those in Table 10 (best combination when two features are used), and the addition

of averaged PSD-17 improved the MCC significantly from 0.7161 to 0.7267.

It is clear that the addition of features helps to improve the classification accuracy, but there

comes a point when introducing a new feature has very little impact in performance and may

in fact have a detrimental effect on classification accuracy. Hence, to further evaluate the effect

of increasing feature vector size on the classification performance, a sequential feature selec-

tion method was used to evaluate the F1 score and MCC of the LRM classifier. The effect of

additional features on performance, when optimized using F1 score and MCC is shown in Figs

6 and 7 respectively. An overall improvement in F1 score can be observed in Fig 6 when up to

twenty features were combined. Improvement of the MCC shown in Fig 7 was observed up to

the point when a feature vector of length eleven was used. The addition of other features

beyond this point did not improve the performance of the classifier. The performance of the

classifier on test dataset was actually reduced when further features were added. This was

Table 10. MCC of the best pairs of features for wheeze and normal sound classification using logistic regression

on the Test-Set.

First Feature Second Feature MCC

Tonality index Spectral slope 0.7161

Tonality index MFCC-1 0.7154

Tonality index Entropy ratio 0.7142

Spectral slope f25/f90 0.7053

MFCC-1 MFCC-2 0.6981

Entropy difference Spectral Irregularity 0.6933

Tonality index MFCC-8 0.6849

Spectral crest factor Spectral Irregularity 0.6849

Spectral slope MFCC-2 0.6823

Tonality index Averaged PSD-7 0.6822

Tonality index Renyi entropy 0.6811

Tonality index MFCC-11 0.6788

Tonality index - 0.5790

f25/f90 - 0.5420

https://doi.org/10.1371/journal.pone.0213659.t010

Table 11. F1 score of the best three features vectors for wheeze and normal sound classification using logistic

regression on the Test-Set.

First Feature Second Feature Third Feature F1 Score

MFCC-3 Tonality index ZCR 0.8718

MFCC-3 Tonality index RMS 0.8596

MFCC-3 WT coef STD-4 WT coef mean-4 0.8595

MFCC-3 Tonality index Spectral slope 0.8533

MFCC-3 Tonality index Entropy ratio 0.8533

MFCC-3 Entropy ratio Spectral Irregularity 0.8485

Tonality index Spectral slope Spectral kurtosis 0.8479

Tonality index Spectral slope Spectral flatness 0.8462

MFCC-3 Entropy ratio Entropy mean 0.8458

Tonality index STD Spectral slope 0.8451

Tonality index Spectral crest factor Spectral slope 0.8447

MFCC-3 WT coef mean ratio-4 ZCR 0.8438

https://doi.org/10.1371/journal.pone.0213659.t011
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possibly caused by over-fitting problems in the model, as the new features may not be adding

any more information to the test dataset.

Discussion

This paper evaluated the performance of different features for automated detection of wheezes

from respiratory sounds. The top performing features were determined using different objec-

tive functions and performance metrics. The rational for doing this was that the best feature is

usually different in various applications and is heavily dependent on a number of constraints

resulting in a number of trade-offs. For example, features with better F1 score would be more

useful when the trade-off between sensitivity and number of false positives is important. Simi-

larly, a higher MCC value for a feature generally represents a more balanced overall

performance.

The top three features when optimized using the AUC and F1 score were MFCC-3, LPC

coef-1, and tonality index. Using MCC as the metric, LPC coef-1 came out on top together

Table 12. MCC of the best three features vectors for wheeze and normal sound classification using logistic regres-

sion on the Test-Set.

First Feature Second Feature Third Feature MCC

Tonality index Spectral slope Averaged PSD-17 0.7267

Tonality index Spectral slope WT coef mean ratio-1 0.7246

Tonality index MFCC-3 ZCR 0.7201

Tonality index Spectral slope Spectral crest factor 0.7199

Tonality index Spectral slope MFCC-5 0.7190

Tonality index Spectral slope Spectral flatness 0.7169

Tonality index Spectral slope Averaged PSD-18 0.7154

Tonality index Spectral slope STD 0.7154

MFCC-10 Spectral slope f25/f90 0.7126

Tonality index MFCC-1 Entropy ratio 0.7120

WT coef energy-5 MFCC-3 Spectral irregularity 0.7120

Tonality index Spectral slope Averaged PSD-11 0.7115

https://doi.org/10.1371/journal.pone.0213659.t012

Fig 6. Effect of feature vector length on F1 Score of LRM.

https://doi.org/10.1371/journal.pone.0213659.g006
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with tonality index and MFCC-3 features. The fastest feature to compute was the RMS energy

but this resulted in poor classification performance, with F1 Score of 0.7018 and MCC of

0.3373. MFCC-3, LPC coef-1, and tonality index achieved better performance in all three dif-

ferent metrics, AUC, F1 score, and MCC, compared to other features. This could be explained

by the randomness of normal respiratory sounds when compared to wheezes. Tonality index

measures the unpredictability of a spectrum [21]. Similarly, LPC coef-1 correspond to how

well a previous sample in predicting the current sample, while MFCC measures how a cosine

function with certain periodicity can be fitted to the log spectrum of the signal. In this study,

the computation time comparison was made by measuring the average time for extracting

each feature individually. In future work, it may be useful to expand on this and look at the

their computational complexity and storage requirements for efficient real-time implementa-

tion. Different optimisation methods may also be used such as implementing the algorithm in

fixed-point arithmetic which may reduce computational burden in extracting features. How-

ever, it is important to note that these would also be dependent on the hardware architecture

chosen for any such implementation.

Compared to other features, LPC coef-2 was shown to have the highest DBM/OVS ratio.

Ranksum hypothesis test was performed on all features, with tonality index achieving the low-

est p-value with highest effect size. This represents the highest significance, as can be seen in

Table 7. A total of 87.95% of all possible pairs of features, from wheeze and from normal respi-

ratory sounds support the hypothesis that the features extracted from wheezes have higher

value than when extracted from normal respiratory sounds.

Fig 7. Effect of feature vector length on MCC of LRM.

https://doi.org/10.1371/journal.pone.0213659.g007
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Combinations of features were also evaluated using a logistic regression classifier. Logistic

regression models were built with all possible pairs of feature combinations. The best perfor-

mance was obtained when tonality index was paired with spectral slope feature, achieving the

highest F1 Score. When three features were combined, the highest F1 Score, 87.18%, was

obtained by combining MFCC-3, tonality index, and ZCR. The results and features were dif-

ferent when MCC was used to find the optimal threshold. This reinforces the fact that multiple

metrics are needed to characterize the performance of each feature and the metric used must

be carefully selected by evaluating the requirements of any given application.

The classifier used to evaluate the features in this study is very simple since the purpose is to

demonstrate the discriminatory capabilities of individual features. This is useful for small, bat-

tery-powered, low-resource devices designed for long term use. In these cases, it is desirable to

reduce the computational requirements by using simpler classifiers with minimum number of

features. This also helps to reduce power consumption and extend the system battery life. In

applications where computational requirements are not severely limited, the overall classifica-

tion performance can nevertheless be improved using more advanced classifiers such as sup-

port vector machines or artificial neural networks together with a combination of several

features.

Automatic detection of wheezing sounds is needed as part of symptom monitoring in man-

agement of CRDs, specifically in asthma and COPD. The ability to discriminate between

wheezing and normal respiratory sounds using a simple method would be beneficial especially

when continuous monitoring using devices with limited power-budget is needed. The use of a

single feature and a simple linear threshold classifier would help to reduce the computational

burden, thus prolonging the usability of the monitoring device. By reducing complexity, a

monitoring device could also be developed that is smaller in size, lighter in weight, and easier

to use.

Conclusion

This paper has presented a comprehensive evaluation of the discriminatory abilities of differ-

ent types of time, spectral, wavelet, and cepstral features with a total size of 105 for automatic

identification of wheezes in breathing. It has been demonstrated that certain individual fea-

tures (MFCC, tonality index) are much more accurate in detection of wheezes. However their

computation requirements are higher than those of simpler time-domain features. In addition,

it has also been shown that while the use of multiple features does increase the classification

accuracy in some cases, the gain in performance becomes very limited after a certain number

of features. While the classifier used in this work is very simple, the use of other more complex

classifiers such as support vector machines, artificial neural networks, etc. may help to increase

the classification performance at the added cost of computational complexity. Thus, it is

important to take all the competing requirements into account when selecting a feature for

wheeze detection in different applications. The results presented in this paper will provide

highly useful insights to address these requirements for the development of wheeze detection

algorithms.
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