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Abstract

Research on the cognitive neuroscience of aging has identified myriad neurocognitive processes 

that are affected by the aging process, with a focus on identifying neural correlates of cognitive 

function in aging. The present study aimed to test whether inter-network connectivity among 6 

cognitive networks is sensitive to age-related changes in neural efficiency and cognitive 

functioning. A factor analytic connectivity approach was used to model network interactions 

during 11 cognitive tasks grouped into 4 primary cognitive domains: vocabulary, perceptual speed, 

fluid reasoning, and episodic memory. Results showed that both age and task domain were related 

to inter-network connectivity, and that some of the connections among the networks were 

associated with performance on the in-scanner tasks. These findings demonstrate that inter-

network connectivity among several cognitive networks is not only affected by aging and task 

demands, but also shows a relationship with task performance. As such, future studies examining 

inter-network connectivity in aging should consider multiple networks, and multiple task 

conditions, in order to better measure dynamic patterns of network flexibility over the course of 

cognitive aging.

Studies of the cognitive neuroscience of aging have consistently found deleterious effects of 

aging on cognitive status and neural integrity and efficiency (C. L. Grady, 2008; Hedden & 
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Gabrieli, 2004). Over the course of adulthood, there exists a gradual decline in memory 

function, executive function, working memory, and attentional resources, and a concomitant 

progression of neural degeneration, resulting in thinner cortex, white matter loss, and 

patterns of hyper- and hypo-recruitment of brain regions. As such, a primary focus of 

research in this field has centered on identifying neural correlates of cognitive function in 

older adulthood. Recent studies have combined multiple behavioral and imaging modalities 

in order to investigate cognitive decline in aging, and have found myriad neural metrics that 

may predict cognitive function in the context of aging (Hedden et al., 2016).

Recently neuroimaging research on cognitive aging has begun to utilize functional 

connectivity analyses to measure network-scale differences in neural recruitment between 

age groups. Of particular note is the emphasis placed on a neural network known as the 

default mode network (DMN), which is thought to be engaged primarily during rest and 

mind-wandering thought (Dosenbach et al., 2007; F. Esposito et al., 2006; Greicius, Supekar, 

Menon, & Dougherty, 2009; Laird et al., 2009). While this network has traditionally been 

studied during resting state functional magnetic resonance imaging (fMRI) scans, recent 

studies have examined how this network is engaged during a cognitive task, and have found 

that it “decouples” from task-related networks during performance of a task, such that 

correlated activity between a task-relevant network and the task-irrelevant DMN drops 

considerably in the presence of a task (Fox et al., 2005; C. L. Grady et al., 2010; Prakash, 

Heo, Voss, Patterson, & Kramer, 2012; Sala-Llonch et al., 2012). This network-based 

approach to fMRI analysis has gained traction within special populations, such as older 

adults with and without neurodegenerative disease, as it allows examination of complex 

large-scale networks known to be structurally affected by brain aging and dementia 

(Fujiyama et al., 2016; Hirsiger et al., 2016; Jones et al., 2015; Liu et al., 2015; Suckling et 

al., 2015). Importantly, unlike younger adults, older adults do not show the same degree of 

anti-correlation between the DMN and task-specific networks, and this lack of anti-

correlation between networks negatively correlates with performance on the task (Miller et 

al., 2008; Prakash et al., 2012). These findings suggest that this relatively greater 

connectivity between these two networks may underlie age-related differences in task 

performance.

While this type of connectivity research has primarily focused on the DMN and executive 

function-related task networks (Damoiseaux, 2017; C. L. Grady et al., 2010; Prakash et al., 

2012; Uddin, Kelly, Biswal, Castellanos, & Milham, 2009), more recent studies have 

broadened their study of inter-network connectivity to examine network interactions across 

multiple cognitive networks. Specifically, interactions between the DMN and the Dorsal 

Attention Network (DAN) have shown to be modulated by age and cognitive state (Amer, 

Anderson, Campbell, Hasher, & Grady, 2016; Damoiseaux, 2017; Dixon et al., 2017; R. 

Esposito et al., 2018; Spreng, Stevens, Viviano, & Schacter, 2016), and this interaction may 

be further coordinated by the frontoparietal control (FP) network (Avelar-Pereira, Bäckman, 

Wåhlin, Nyberg, & Salami, 2017; C. Grady, Sarraf, Saverino, & Campbell, 2016; Spreng, 

Sepulcre, Turner, Stevens, & Schacter, 2013). Additionally, another study found the salience 

network to be critically involved in coordinating the DMN and central executive networks, 

and found that this pattern was significantly disrupted in individuals with Mild Cognitive 

Impairment (MCI) (Chand, Wu, Hajjar, & Qiu, 2017).
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In this vein, several studies have attempted to expand this study of internetwork connectivity 

to the whole brain by examining system segregation or internetwork connectivity across 

many neural networks. Most of these studies have utilized resting state fMRI data to show 

that older adults overall show greater between-network connections than younger adults 

(Chan, Park, Savalia, Petersen, & Wig, 2014; Ferreira et al., 2016; Geerligs, Maurits, 

Renken, & Lorist, 2014; Geerligs, Renken, Saliasi, Maurits, & Lorist, 2015; King et al., 

2017), and generally show less segregated/modular network organization (Geerligs et al., 

2015; Song et al., 2014). Further, some of these studies found a relationship between 

internetwork connectivity or segregation and performance on cognitive tasks (Chan et al., 

2014; Geerligs et al., 2014; King et al., 2017), suggesting that this internetwork connectivity 

may underlie some of the variability in cognitive performance in the context of aging. 

However, while these larger-scale network studies provide critical information about whole-

brain network connectivity across the adult lifespan, only one of the studies mentioned 

above examined functional connectivity during performance of a cognitive task (Geerligs et 

al., 2014). While some of the other studies make extensions to cognitive performance 

outside of the scanner, or relate resting state connectivity data to BOLD activation during 

cognitive tasks (Chan, Alhazmi, Park, Savalia, & Wig, 2017), none of the other studies 

examine internetwork connectivity across the whole brain during a cognitive challenge.

Thus, in order to bridge the findings from studies examining connectivity among a few 

networks during a cognitive task and those from studies examining internetwork 

connectivity across the whole brain at rest, the present study examined between-network 

connectivity across 6 cognitive networks (DMN, DAN, FP, cingulo-opercular, salience, and 

memory) during 11 cognitive tasks corresponding to 4 primary cognitive domains 

(vocabulary, perceptual speed, fluid reasoning, and episodic memory). Based on prior 

studies showing reductions in network decoupling during cognitive task performance, and 

generally greater connectivity between networks in aging, the hypotheses in the present 

study were as follows: (1) between-network connectivity patterns among these predefined 

cognitive networks will be affected by both task type and participant age, and (2) 

connectivity between specific pairs of cognitive networks will account for significant 

variability in task performance. Since task-relevance of networks will be in some ways 

determined by task domain, we expect patterns of inter-network connectivity to differ by 

domain. For example, while the DMN and memory networks may be irrelevant for FLUID 

and SPEED tasks, they may be relevant for VOCAB and MEM tasks, suggesting that 

patterns of interactions with these networks will likely be affected by task domain. On the 

other hand, networks such as the fronto-parietal network and cingulo-opercular network may 

be more broadly implicated in executive control, and thus might be more generally relevant 

during all cognitive tasks. Further, the salience network has been implicated as one that 

might coordinate correlated activity between task-relevant and task-irrelevant networks, and 

thus its task-relevance may not be as likely to differ by task type.

Regarding hypothesis 1, we expect that connectivity between task-relevant and task-

irrelevant networks will be weaker than connectivity from task-relevant networks to other 

task-relevant networks. Since past studies on inter-network connectivity during a cognitive 

task have primarily used executive function tasks, these studies have found that task-relevant 

networks (i.e., FP, DAN) tend to show negative correlations with task-irrelevant networks 
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(frequently the DMN) during a task, and that aging disrupts this pattern (Amer et al., 2016; 

Avelar-Pereira et al., 2017; Damoiseaux, 2017; Dixon et al., 2017; R. Esposito et al., 2018; 

Fox et al., 2005; C. Grady et al., 2016; C. L. Grady et al., 2010; Prakash et al., 2012; Sala-

Llonch et al., 2012; Spreng et al., 2013; Spreng et al., 2016). As such, the task-specific 

hypotheses of the present study are as follows: (1) during FLUID and SPEED tasks, 

connections between task-relevant (FP, DAN, CO) and task-irrelevant (DMN) will be 

reduced and connections among task-relevant networks will be increased; and (2) during 

VOCAB and MEM tasks, there will be fewer differences in connections between networks, 

since the DMN and memory networks (considered task-irrelevant in FLUID/SPEED tasks) 

may in these tasks be task-relevant and implicated in mnemonic processing.

Methods

Sample.

The sample for the present study came from participants who completed the baseline visit 

for the Reference Ability Neural Network (RANN) study (N = 426) (Stern et al., 2014). All 

participants were native English speakers, right-handed, free of MRI contraindications, and 

read at a fourth grade reading level or above. Screening was performed prior to enrollment in 

order to ensure that no participants had any psychological or medical conditions that could 

affect cognitive function, and that older adults did not meet criteria for dementia or MCI at 

baseline. Age was trichotomized to enable testing of moderation by age, resulting in 3 age 

groups: young adults (YA; age 20–39, n = 118), middle-aged adults (MA; age 40–60, n = 

131), and older adults (OA; age 61+, n = 177).

For the present analyses, the following additional inclusion criteria were established: 

completion of all 11 in-scanner tasks (N=338; YA n=96, MA n=110, OA n=132), and less 

than 30% motion artifact data removal (scrubbing; Parkes, Fulcher, Yucel, & Fornito, 2018; 

Power, Barnes, Snyder, Schlaggar, & Petersen, 2012) within each of the four domain 

timeseries (N=312; YA n=96, MA n=103, OA n=113). Further, one additional inclusion 

criteria concerned appropriate fit of the planned models, and is detailed further alongside the 

analysis methodology described below. As a result, the balanced sample utilized in the 

analyses below was comprised of 142 (YA n=45, MA n=49, OA n=48) healthy adults 

between the ages of 20 and 80 (mean = 50.75, SD = 17.335) who met all inclusion criteria.

In-Scanner Cognitive Tasks.

The cognitive variables included in this study are comprised of their performance on tasks 

completed during the fMRI scan. The in-scanner tasks were designed to measure 

performance within each of the four reference abilities: vocabulary (VOCAB: synonyms and 

antonyms), perceptual speed (SPEED: digit symbol, letter comparison, pattern comparison), 

fluid reasoning (FLUID: paper folding, matrix reasoning, and letter sets), and episodic 

memory (MEMORY: logical memory, word order, and paired associates) (for further 

information on tasks please see Razlighi, Habeck, Barulli, & Stern, 2017; Stern et al., 2014). 

In the vocabulary domain, the synonyms and antonyms tasks required participants to select a 

synonym/antonym (respectively) for a selected word from among four different options 

displayed on the same screen (15 trials per task). In the speed domain, the digit symbol task 
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required participants to examine a digit-symbol code table and determine whether a digit-

symbol pair on the sample screen was correct (90 trials), and the letter and pattern 

comparison tasks required participants to view a pair of strings of letters or figures 

comprised of varying numbers of lines (respectively) presented simultaneously and indicate 

whether or not they were identical (60 trials per task). In the fluid domain, the paper folding 

task required participants to select from five images one that represented the pattern of holes 

that would result from a set of folds in a piece of paper through which a hole is punched, the 

matrix reasoning task required participants to recognize a pattern from a series of pictures 

and identify the last missing piece of the pattern from among eight options, and the letter 

sets task required participants to identify which of a series of five sets of letters violated a 

rule expressed by the other four sets (7–18 self-paced trials for each FLUID task). In the 

memory domain, the logical memory task required participants to read a story one or two 

sentences at a time and then answer detailed four-choice multiple choice questions about the 

story (2 stories; 10 questions per story), the word order task required participants to view a 

series of twelve words then later indicate which of four words immediately followed a probe 

word (10 probe trials), and the paired associates task required participants to view six pairs 

of words then indicate which of four options was originally paired with the probe word (2 

lists of pairs; 6 probe trials per list). One task, the Picture Naming task from the VOCAB 

reference ability, was not included in the present analyses due to excessive in-scanner 

motion from participants speaking their responses aloud during the scanned task. 

Performance on VOCAB, FLUID, and MEMORY tasks is measured by number of correct 

responses, while performance on SPEED tasks is measured by average correct reaction time. 

In order to appropriately compare performance across these four domains, behavioral data 

were z-scored such that each domain score represents standardized deviation from the mean 

domain score of the entire set of subjects – positive values represent behavioral performance 

(accuracy or reaction time) values above the normal mean, while negative values represent 

behavioral performance values below the normal mean. As such, for VOCAB, FLUID, and 

MEMORY tasks, positive z-scores reflect performance that is better (higher accuracy) than 

the mean, while for SPEED tasks, negative z-scores reflect performance that is better (faster) 

than the mean.

fMRI Scan Parameters.

The present study collected fMRI scans during the in-scanner tasks mentioned above. All 

participants completed these scans on a 3.0T Philips Achieva Magnet over the course of two 

2-hour MR imaging sessions. T1-weighted images of the whole brain were acquired for each 

subject with a Magnetization Prepared Rapid Gradient Echo (MPRAGE) sequence with the 

following parameters: TE/TR: 3/6.5 ms; Field of view: 256 mm; Flip angle: 8°; In-plane 

resolution: 256×256 voxels; Slice thickness/gap: 1/0 mm; Slices: 180. fMRI blood oxygen 

level-dependent (BOLD) scans were collected during each of the 11 in-scanner tasks 

mentioned above with the following parameters: TE/TR: 20/2000 ms; Field of view: 

240mm; Flip angle: 72°; In-plane resolution: 112×112 voxels; Slice thickness/gap: 3/0 mm; 

Slices: 41.
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fMRI Data Processing.

Images were preprocessed using an in-house developed native space method (Razlighi et al., 

2014). Briefly, slice-timing correction was performed using the FSL slicetimer tool. We then 

used mcflirt (motion correction tool in the FSL package; Jenkinson, Beckmann, Behrens, 

Woolrich, & Smith, 2012) to register all volumes to a reference image (Jenkinson, Bannister, 

Brady, & Smith, 2002). The reference image was generated by registering (6 df, 256 bins 

mutual information, and Sinc interpolation) all volumes to the middle volume and averaging 

them. We then used the method described in Power et al. (2012) to calculate frame-wise 

displacement (FWD) from the six motion parameters and root mean square difference 

(RMSD) of the BOLD percentage signal in the consecutive volumes for each subject. To be 

conservative, we lowered the threshold of our RMSD to 0.3% (it was originally suggested to 

be 0.5%.). RMSD was computed on the motion-corrected volumes before temporal filtering. 

The contaminated volumes were detected by the criteria FWD > 0.5 mm or RMSD > 0.3%. 

Identified contaminated volumes were replaced with new volumes generated by linear 

interpolation of adjacent volumes. Volume replacement was done before band-pass filtering 

(Carp, 2013). The motion-corrected signals were passed through a band-pass filter with the 

cut-off frequencies of 0.01 and 0.09 Hz. We used flsmaths–bptf to do the filtering in this 

study (Jenkinson et al. 2012). Finally, we residualized the motion-corrected, scrubbed, and 

temporally filtered volumes by regressing out the FWD, RMSD, left and right hemisphere 

white matter, and lateral ventricular signals (Birn, Diamond, Smith, & Bandettini, 2006).

T1 image segmentation were done using FreeSurfer (Dale, Fischl, & Sereno, 1999; Fischl et 

al., 2002; Fischl et al., 2004) and visually checked for any inaccuracies. In the event that we 

observed any inaccuracy in the FreeSurfer segmentation, we made corrections using the 

FreeSurfer provided guidelines for troubleshooting data. The coordinates of the 264 putative 

functional nodes derived from a brain-wide graph described by Power and colleagues (2011) 

were then transferred to each subject’s T1 space via non-linear registration of the subject’s 

structural scan to the MNI template using the ANTS software package. A spherical mask 

with 10 mm radius, centered at each transferred coordinate was generated and intersected 

with the FreeSurfer gray-matter mask to obtained the ROI mask for the 264 functional 

nodes. An intermodal, intra-subject, rigid-body registration of fMRI reference image and T1 

scan was performed with FLIRT with 6 degrees of freedom, normalized mutual information 

as the cost function (Jenkinson & Smith, 2001), and used to transfer all ROI masks from T1 

space to fMRI space. These transferred ROI masks were used to average all the voxels 

within each mask to obtain a single fMRI time-series for each node.

Functional connectivity timeseries data were then extracted from each of the 264 coordinate-

based ROIs within each participant’s preprocessed fMRI task scans. Six networks were pre-

selected for analysis based on their role in cognitive processes identified in previous studies, 

and as outlined by the Power et al. (2011) coordinate system: fronto-parietal network (FP; 

25 ROIs), cingulo-opercular network (CO; 14 ROIs), DAN (11 ROIs), memory network 

(MEM; 5 ROIs), salience network (SAL; 18 ROIs), and DMN (58 ROIs). Timeseries data 

were then concatenated by domain, yielding 4 sets of timeseries data that were modeled 

separately as blocked designs: VOCAB (concatenated synonyms and antonyms data; 388 

volumes, SPEED (concatenated digit symbol, letter comparison, and pattern comparison 
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data; 595 volumes), FLUID (concatenated paper folding, matrix reasoning, and letter sets 

data; 1290 volumes), and MEM (concatenated logical memory, word order, and paired 

associates data; 517 volumes).

Analytic Methodology.

In order to model network-level timeseries interactions, a factor analytic functional 

connectivity methodology was utilized. Data were analyzed in R using a structural equation 

modeling approach, Model-Implied Instrumental Variable estimtation (Bollen, 1996, 2001), 

appropriate for high-dimensional data (MIIVsem; https://cran.r-project.org/

package=MIIVsem, Fisher, Bollen, Gates, & Rönkkö, 2017). This approach is designed for 

robust estimation of high-dimensional structural equation models and has recently been 

extended to handle individual-level multivariate timeseries data (Fisher, Bollen, & Gates, In 

Press). Furthermore, this approach allows for the estimation of variance and covariance 

parameters of network timeseries along with bootstrap standard errors. Each individual’s 

ROI-level timeseries data from the 131 ROIs reflecting the networks selected above was 

loaded onto the corresponding predefined network latent factors, resulting in a 6-factor 

model estimated at the subject level, where the primary outcome measure was correlations 

between the 6 network factors (see Figure 1). This approach is not only a robust technique 

for modeling repeated measures at the participant level, but also represents a more flexible 

method for modeling network-level timeseries data in that it does not impose group-level 

assumptions on the contributions of each ROI with respect to network function. Thus, ROIs 

are allowed to freely load on the latent network factors, allowing participants to differ in the 

respective contributions of each ROI in the predefined networks, and reducing the effect of 

any outliers on network timeseries estimation. This analysis was performed separately for 

each cognitive domain of interest: VOCAB, SPEED, FLUID, and MEM, resulting in 4 

correlation matrices of size 6×6 for each participant. Individual-level correlation coefficients 

between latent network factors for each of the 4 domains were then z-transformed and 

exported to SPSS for MANOVA and correlational analyses. The additional inclusion 

criterion referenced above was valid estimation of the pre-specified factor structure: in order 

to be included in the analyses, each participant had to have valid data for the estimation of 

the factor structure and correlations among factors. While variability in network architecture 

that deviates from the pre-specified criteria may be critical to examine, it was beyond the 

scope of the present analyses, and thus only participants whose network structure fit the 

structure that was pre-specified based on empirically defined network structures were 

included. Thus, after the data were exported to SPSS, all participants who had errors related 

to computation of latent factor variance appear during factor structure estimation were 

removed in order to ensure that only participants with valid estimation of the proposed factor 

structure were included in the analyses.

In order to explore the effects of specific connection (within-subjects: i.e., FP-DMN), 

cognitive domain (within-subjects: VOCAB, SPEED, FLUID, and MEM), age (between-

subjects: YA, MA, and OA), and their interactions on inter-network correlations, 

multivariate analyses of variance were conducted. Follow-up Spearman correlational 

analyses were then conducted to test for any relationship between inter-network connectivity 

and task performance. Due to the exploratory nature of this analysis, a Spearman 
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correlational approach was utilized over a Pearson correlational approach in order to test for 

robust monotonic relationships between connectivity and task performance without making 

any assumptions about the linearity of this relationship (i.e., Geerligs et al., 2014; Geerligs et 

al., 2015). In the first set of correlational analyses, Spearman correlational tests were 

conducted across the entire age range. Next, similar to previous studies assessing the 

relationship between functional connectivity and cognitive/behavioral outcomes (Chan et al., 

2014; Ferreira et al., 2016; Geerligs et al., 2015), partial Spearman correlational tests were 

conducted with respect to age in order to remove any pure effect of age on both task 

performance and functional connectivity. Finally, Spearman correlational tests were 

conducted within each of the three age groups in order to examine whether these 

relationships remained stable across the three age groups.

Results

Participants.

Demographic characteristics of participants in the present study are summarized in Table 1. 

In order to test whether this sub-sample of the data set was in any way biased, independent 

sample t-tests were performed to ensure no group differences between excluded and 

included participants on Age (p = 0.091), Education (p = 0.311), Gender (p = 0.820), Race 

(p = 0.168), Ethnicity (p = 0.716), NART IQ (p = 0.070), and SPEED (p = 0.124) and MEM 

(p = 0.265) task performance; however, included participants tended to have higher scores 

on VOCAB (p = 0.040) and FLUID (p = 0.008) tasks. Further, chi-square tests were run for 

each inclusion/exclusion step in order to ensure that exclusion of participants was not biased 

by age group. Chi-square tests for each exclusion step showed that at enrollment there were 

more OAs than MAs or YAs (p=0.001), more OAs were excluded for not having balanced 

fMRI task data (p=0.002) and greater than 30% scrubbing (p<.001), however there was no 

bias in number of participants excluded for improper estimation of factor structure 

(p=0.383). Thus, more OAs were excluded for not completing all 11 in-scanner tasks and for 

having more data scrubbed, however participant drop-out was similar for proper estimation 

of factor structure.

Further, in order to examine this effect of age on scrubbing across all 338 participants with 

balanced fMRI task data, a 3 (age group: YA, MA, OA) × 4 (task domain: VOCAB, SPEED, 

FLUID, MEM) MANOVA was used to probe the effects of age and domain on percent 

scrubbing. Results showed that there was a main effect of age (F2,335=14.081, p<.001) and a 

main effect of domain (F3,1005=18.595, p<.001) but no interaction between domain and age 

(F6,1005=1.646, p=0.131). The main effect of age showed that older adults (M=9.530%) had 

more data scrubbed than both younger (M=3.741%; p<.001) and middle-aged (M=5.906%; 

p=0.003) participants. Further, more older (n=19) and middle-aged (n=7) adults were 

excluded for having greater than 30% scrubbing on any given task domain than younger 

adults (n=0). The main effect of domain showed that FLUID (M=8.420%) tasks had more 

data scrubbed than VOCAB (M=5.762%, p<.001), SPEED (M=5.990%, p<.001), or MEM 

(M=6.655%, p<.001) tasks. However, of note is that FLUID tasks were the longest task 

scans of the two scan sessions, so this greater proportional amount of motion during these 

tasks could be partly due to longer acquisition times.
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MANOVA Results.

Inter-network correlation values were analyzed in a MANOVA to assess the independent and 

interactive effects of participant age (between-participants), task domain (within-

participants), and network pairing (within-participants) on inter-network correlations during 

performance of the in-scanner tasks. Thus, the primary interactions of interest were between 

age and network pairing, domain and network pairing, and the three-way interaction, as 

these would suggest that between-network correlations are affected by participant age, task 

domain, or both. Means for each connection for the aforementioned two-way interactions are 

depicted in figures 2 (age × connection) and 3 (domain × connection), and represent 

summaries of the data used for the MANOVA analyses reported below. The values depicted 

are the mean correlation between two specific networks for each age group (Figure 2) or task 

domain (Figure 3).

A 3 (age group: YA, MA, and OA) × 4 (domain: VOCAB, SPEED, FLUID, and MEM) × 15 

(inter-network connection) MANOVA revealed a significant main effect of domain (F3,417 = 

8.577, p<.001), a main effect of connection (F14,1946 = 84.563, p<.001), an interaction 

between connection and age group (F28,1946 = 4.024, p<.001), and an interaction between 

domain and connection (F42,5838 = 12.309, p<.001). The main effect of age (F2,139 = 0.116, 

p = 0.891), and the interactions between domain and age group (F6,417 = 0.626, p = 0.710), 

and domain, connection, and age group (F84,5754 = 1.185, p = 0.120) were not significant. 

Post-hoc analyses of the interactions between connection and age (see Table 2; Figure 2), 

and connection and domain (see Table 3; Figure 3) showed a significant effect of age and 

domain on inter-network connection strength across many inter-network connections. In the 

interaction between age and connection, OAs showed greater correlations between MEM-FP 

and FP-SAL than YAs, while YAs showed greater correlations between CO-SAL, MEM-

DMN, and SAL-DMN than OAs (see Table 2; Figure 2). In the interaction between domain 

and connection, only 2 connections did not show a significant effect of domain on the 

correlations between networks: MEM-SAL and SAL-DMN. The 13 remaining connections 

showed some alteration in correlation strength depending upon task domain – for example, 

the DAN-FP connection showed significantly greater connectivity during tasks of fluid 

reasoning than tasks from any other domains (and greater connectivity during memory tasks 

than vocabulary tasks; see Table 3; Figure 3).

Task Performance Correlations.

In order to assess any relationships between task performance and inter-network 

connectivity during the task, Spearman correlational analyses were conducted. Full 

correlation tables are presented for each of the three correlational analyses presented here 

(see Tables 4–6), however only results that survive multiple comparisons correction using 

the Benjamini-Hochberg procedure across all correlations analyzed (60 per analysis – 15 

connections × 4 domains) are discussed here. In the first set of results, Spearman 

correlational tests were conducted across the entire age range. Results showed that FLUID 

task performance was negatively correlated with DAN-MEM connectivity, such that better 

performance on FLUID tasks was associated with less correlated BOLD signal between 

DAN and MEM networks (see Table 4; r139=−0.312, p<.001). In the second set of results, 

partial Spearman correlational tests were conducted with respect to age in order to remove 
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any pure effect of age on both task performance and functional connectivity. After removing 

the effect of age from these relationships, the correlation between FLUID performance and 

DAN-MEM connectivity remained significant (see Table 5; r139=−0.285, p=0.001). In the 

third set of results, Spearman correlational tests were conducted within each age group in 

order to examine whether these relationships remained stable across the three age groups. 

Results from this analysis showed that across the three age groups, the only correlation that 

survived FDR correction was a negative relationship between VOCAB task performance and 

FP-DMN connectivity in YA (see Table 6; r45=−0.483, p=0.001).

Discussion

Results from the present study show that patterns of inter-network connectivity during task 

performance are modulated by age and task domain. Specifically, age may particularly affect 

connectivity directed from the memory and salience networks, such that older adults show 

greater connectivity between the memory network and a task-relevant network (FP), altered 

connectivity directed from the salience network to task-relevant networks (CO and FP), and 

reduced connectivity from memory and salience networks to the DMN. However, the present 

set of results did not replicate findings from previous studies showing reduced anti-

correlation between the DMN and FP in older adults (Miller et al., 2008; Prakash et al., 

2012) – in the interaction between age and connection, there was no effect of age on 

connectivity between these two networks. That being said, when examining means for the 

connection by domain interaction within each age group, some interesting trends emerged 

which may suggest that the effect of age on FP-DMN connectivity only exists during 

specific types of tasks (specifically, speed tasks). While this 3-way interaction was not 

significant, its p-value of 0.120 in the MANOVA analyses could suggest that we were 

simply underpowered to detect this complex effect (see Figure 4). Thus while we failed to 

replicate that result here, it could be due to our inclusion of tasks tapping into multiple 

cognitive domains, rather than focusing on connectivity during one specific cognitive task. 

Specifically, if only the SPEED domain is modeled, there is a significant difference between 

older and younger adults in FP-DMN connectivity; however, given the scope of analyses in 

the present study we were unable to detect this small of an effect (see Figure 4; SPEED). As 

such, while this connection may be affected by aging in working memory, executive 

function, or processing speed tasks, it may not be a critically age-sensitive connection across 

all cognitive domains.

Further, the present study also did not provide evidence for a generally more connected brain 

in the context of aging. Specifically, the main effect of age was not significant, suggesting 

that within this sample and during these tasks, older adults do not show overall greater 

connectivity across these networks relative to younger adults. Several past studies examining 

functional connectivity in the context of aging found that, generally speaking, older adults 

show more between-network connections than younger adults (Chan et al., 2014; Geerligs et 

al., 2014; King et al., 2017), a more positively-connected brain graph (Ferreira et al., 2016), 

and reduced segregation/modularity of brain systems (Geerligs et al., 2015; Song et al., 

2014). However, all but one (Geerligs et al., 2014) of these studies utilized resting state 

fMRI data to probe such effects, and one of the studies similarly found patterns of inter-

network connectivity that either increased or decreased with age (Geerligs et al., 2015). 
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Thus, the present study may not lie in contrast to these findings, but may instead represent a 

novel approach for modeling and investigating the effect of age on inter-network 

connectivity.

We also found that connection strength between networks differed by the type of task being 

performed during the scan. From a broader perspective, these connectivity patterns appear to 

cluster such that certain tasks have more similar connectivity patterns between networks 

(i.e., vocab and speed, vocab and memory, and fluid and memory), while other tasks have 

largely dissimilar connectivity patterns between networks (i.e., speed and memory, speed 

and fluid, and vocab and fluid). This finding suggests that cognitive networks do modulate 

their connections to other networks based on cognitive task domain. While past studies on 

resting state connectivity suggest its utility in revealing age-related differences in network 

function, structure, and organization (Damoiseaux, 2017; Damoiseaux et al., 2008; Dennis & 

Thompson, 2014; R. Esposito et al., 2018; Hedden et al., 2016; Spreng et al., 2016), they 

may not fully represent how connectivity might change in the presence of a cognitive 

challenge. Though changes in network structure or activation were outside of the scope of 

the present analyses, our results show how predefined, cognitively relevant networks may 

alter their relationships to each other in response to the demands of the task.

We also found that two inter-network connections showed a direct correlation with behavior: 

greater connectivity between the dorsal attention network and the memory network was 

associated with poorer FLUID performance across the whole sample (and after controlling 

for participant age), and greater connectivity between the frontoparietal network and DMN 

was associated with poorer performance on VOCAB tasks. While implicating different 

networks and tasks, these results somewhat mirror findings from previous studies showing 

differential connectivity patterns between older and younger adults that can be linked to 

differences in task performance (Miller et al., 2008; Prakash et al., 2012). Further, one 

interesting trend evident in the correlational analyses conducted separately within each age 

group is the difference in the relationship between FP-DMN and VOCAB task performance 

based on age group. While the negative relationship between FP-DMN connectivity and 

VOCAB performance was only significant for the younger adults in the sample after 

correcting for multiple comparisons, the fact that this relationship is positively related to 

VOCAB performance in older adults is a novel and unexpected finding (see Table 6). While 

previous studies found that FP-DMN connectivity was consistently associated with poorer 

performance on executive function tasks (Damoiseaux, 2017; C. L. Grady et al., 2010; 

Prakash et al., 2012; Uddin et al., 2009), this study found a similar relationship with 

VOCAB task performance in younger adults (and marginally so in middle adulthood), but 

found the opposite relationship with task performance in older adults. One potential effect 

that might influence this relationship is the superior performance on VOCAB tasks by older 

adults – it could be that these tasks are easier for older adults than they are for younger 

adults, and thus this relationship between FP-DMN connectivity and task performance 

(frequently found to be a negative relationship in executive function tasks) simply reflects 

processing difficulty during the task. However, this finding of a positive relationship 

between FP-DMN connectivity and task performance in older adults was an unexpected 

finding in this study, and thus interpretation of its meaning is purely speculative. By linking 
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these connectivity patterns to task performance, this study adds to existing literature in 

identifying brain-based metrics that are directly linked to cognitive outcomes.

Limitations and Future Directions.

One limitation of the present study is the number of participants whose data were not usable 

in the context of the present analyses. While the balanced design, stringent scrubbing 

criteria, and appropriateness of factor structure fit allowed for a robust set of data for 

analysis, they also resulted in significant data loss. That being said, one advantage of this 

method is that errors are produced if the predefined network structure is not an appropriate 

fit for the data. While past studies have conducted analyses by parcellating correlation 

matrices based on predefined network organization, there is no validation as to whether these 

ROI network memberships are appropriate for each individual included in the analyses. The 

present study, therefore, excluded roughly 54% of all valid data (sample size after scrubbing 

exclusion criteria=312; sample size of final analyses=142), however the data that were 

included are data that we know fit the predefined network parcellation scheme. Had the 

analysis included these individuals (as it would have if we had examined connectivity using 

a standard correlational/graph theoretical approach), it would have included participants 

whose connectivity patterns may not have been appropriately modeled based on the 

predefined networks, thus potentially weakening the results. However, excluding these 

individuals also considerably reduced the power of the current study, which in turn might 

limit the generalizability of the findings presented here. While this may somewhat limit the 

strength of the conclusions of the present study, the within-subjects design of the analyses 

somewhat assuages concerns about the strength of the effect of task domain on the observed 

connectivity patterns.

One additional aspect of the study that may have limited the strength of the results is the fact 

that an externally-derived network parcellation scheme was utilized for defining network 

membership of ROIs in the present analyses (Power et al., 2011). This parcellation scheme 

was based on network organization at rest, however the authors cross-validated its networks 

with task activation-based data in order to determine cognitive relevance of networks, and to 

validate spatial distributions. As such, one strength of utilizing this parcellation system is 

that it was not derived based on the present data, and thus the present results are not simply 

an artefact of double-dipping (Kriegeskorte, Simmons, Bellgowan, & Baker, 2009). 

However, it is also possible that this network parcellation scheme may not represent an ideal 

fit for task-based connectivity data since it was derived during rest in an external sample, or 

that it may not be appropriate for participants in the present study as evidenced by the 

number of subjects excluded for not exhibiting good model fit. Given that the present study 

examined connectivity across a wide range of ages (20–80) and across 4 cognitive domains 

(VOCAB, SPEED, FLUID, and MEM), using an external network parcellation in the present 

analyses was crucial to avoid using a network parcellation that was biased by participant age 

or cognitive domain. While it would have been possible to derive separate network 

parcellations for each cognitive domain in younger adults, then utilize these across all 

participants, this would have resulted in differential network structure for each cognitive 

domain (and, by definition, poorer fit for older adults), which would have made network-

based comparisons across the 4 domains inappropriate. Thus, while the results may have 
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been slightly weakened by using this external network parcellation, it was necessary in order 

to appropriately test the hypotheses of the present study.

Further, a difference was found in VOCAB and FLUID task performance between those 

participants who were included and those who were excluded from the present analyses. 

While task performance was not included as inclusion/exclusion criteria for these analyses, 

the subsample of individuals who met eligibility for these analyses tended to do better on 

these tasks. However, given that these included and excluded participants did not differ 

based on age, education, and NART IQ, this difference may not be representative of a 

systematic bias in the subsample of included participants.

Another limitation is the difference in NART IQ between older and younger/middle-aged 

participants. While sampling was conducted in an unbiased, randomized way, this unequal 

distribution emerged, such that older adults tended to have higher verbal IQ than younger 

adults. This is consistent with previous studies reporting preserved or improved vocabulary/

semantic memory in the context of healthy aging (Verhaeghen, 2003), which may be 

reflective of accrued verbal experience over adulthood, a cohort effect, or participation bias 

in that older adults with better cognitive functioning or more educational experience may be 

more likely to want to participate in cognitive aging studies, or some combination of the 

two. While these sources of bias are impossible to disentangle in the present study, this may 

be a general limitation of most cross-sectional studies of cognitive aging.

Conclusions.

Results from the present study suggest that in the context of aging, inter-network 

connectivity among a set of cognitive networks may be modulated by both age and cognitive 

process being employed. Further, some of the differences in connectivity patterns based on 

age may also represent inefficient patterns of network recruitment, resulting in poorer 

behavioral performance as a result of this network inefficiency.
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Figure 1. 
Factor Analytic connectivity analysis pipeline.
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Figure 2. 
Between-network correlation coefficients for the interaction between age and connection. 

Asterisks represent significance of age difference at each connection.
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Figure 3. 
Between-network correlation coefficients for the interaction between task domain and 

connection. Asterisks represent significance of domain difference at each connection.
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Figure 4. 
Between-network correlation coefficients for the nonsignificant interaction between age and 

connection within each domain.
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Table 1

Demographic characteristics of the sample by age group: Young Adults (YA; age 20–39), Middle Adulthood 

(MA; age 40–60), and Older Adults (OA; age 61–80).

YA MA OA Overall
Test Statistic

(p-value)

N 45 49 48 142 n/a

Age (SD) 29.73 (5.127) 50.69 (5.864) 70.50 (4.524) 50.75 (17.335) F2,139=711.735 (<.001)
1

Education (SD) 16.16 (1.731) 15.71 (1.947) 16.90 (2.769) 16.25 (2.242) F2,139=3.554 (0.031)
2

NART IQ (SD) 114.81 (8.279) 115.93 (8.301) 121.66 (6.222) 117.54 (8.165) F2,134=10.598 (<.001)
3

% Female 61.4 49.0 57.5 55.7 χ2
2=1.527 (0.466)

VOCAB −0.252 (0.846) 0.146 (0.122) 0.466 (0.792) 0.126 (0.875) F2,138=8.582 (<.001)
4

SPEED −0.660 (0.690) −0.043 (0.712) 0.371 (0.748) −0.085 (0.825) F2,134=22.713 (<.001)
1

FLUID 0.480 (0.740) 0.093 (0.748) −0.053 (0.740) 0.166 (0.770) F2,136=6.198 (0.003)
5

MEM 0.406 (0.667) 0.053 (0.594) −0.239 (0.631) 0.068 (0.678) F2,135=11.813 (<.001)
5

1
All three groups significantly differ (p<.05; Tukey HSD)

2
OA>MA (p<.05; Tukey HSD)

3
OA>MA and YA (p<.05; Tukey HSD)

4
OA>YA

5
YA>MA and OA (p<.05; Tukey HSD)

Note: NART=National Adult Reading Test. Bolded test statistics indicate those that are significant, and bolded group-level means highlight values 
that significantly differ by group.
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Table 2

MANOVA results for post-hoc analyses of the interaction between age group (Young Adult or YA; Middle 

Adulthood or MA, and Older Adult or OA) and connection (df between=2, df within = 139 for all statistics 

reported). Contrasts are represented in columns 4–6 by the mean difference in z-transformed correlation 

coefficients between groups (p-value in parentheses).

Connection F-value p-value YA vs. MA YA vs. OA MA vs. OA

CO-DMN .202 .817 n/a n/a n/a

CO-MEM 2.635 .075 n/a n/a n/a

CO-FP 1.685 .189 n/a n/a n/a

CO-SAL 3.119 .047 0.131 (0.277) 0.212 (0.038) 0.081 (0.597)

MEM-DMN 9.671 <.001 0.124 (0.251) 0.337 (<.001) 0.214 (0.016)

MEM-FP 7.351 .001 −0.044 (0.764) −0.228 (0.001) −0.184 (0.010)

MEM-SAL .737 .481 n/a n/a n/a

FP-SAL 5.742 .004 −0.133 (0.312) −0.309 (0.003) −0.176 (0.126)

FP-DMN .472 .625 n/a n/a n/a

SAL-DMN 5.914 .003 0.119 (0.344) 0.292 (0.002) 0.173 (0.101)

DAN-CO .458 .634 n/a n/a n/a

DAN-MEM .798 .452 n/a n/a n/a

DAN-FP 1.767 .175 n/a n/a n/a

DAN-SAL 2.720 .069 n/a n/a n/a

DAN-DMN 1.201 .304 n/a n/a n/a

Note: CO=Cingulo-Opercular Network, DMN=Default Mode Network, MEM=Memory Network, FP=Fronto-Parietal Network, SAL=Salience 
Network, DAN=Dorsal Attention Network. Bolded values reflect mean differences that are statistically significant.
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Table 4

Correlation table for Spearman correlation coefficient (p-values in parentheses; significant correlations bolded) 

for the relationship between task performance in each domain (VOCAB=Vocabulary, SPEED=Perceptual 

Speed, FLUID=Fluid Reasoning, MEM=Episodic Memory) and each internetwork connection.

VOCAB SPEED FLUID MEM

CO-DMN 0.033 (0.701) 0.022 (0.798) −0.096 (0.263) −0.004 (0.962)

CO-MEM 0.078 (0.359) −0.047 (0.587) −0.070 (0.410) 0.024 (0.781)

CO-FP −0.021 (0.804) 0.086 (0.319) −0.096 (0.259) 0.064 (0.459)

CO-SAL 0.017 (0.841) −0.152 (0.076) 0.073 (0.395) −0.018 (0.835)

MEM-DMN 0.048 (0.571) 0.070 (0.419) 0.229 (0.007) 0.212 (0.013)

MEM-FP −0.014 (0.869) 0.063 (0.465) −0.171 (0.044) −0.165 (0.053)

MEM-SAL 0.172 (0.041) 0.090 (0.293) −0.004 (0.963) 0.068 (0.429)

FP-SAL −0.139 (0.099) 0.085 (0.323) −0.220 (0.009) −0.040 (0.644)

FP-DMN −0.151 (0.074) 0.076 (0.379) −0.189 (0.026) 0.056 (0.516)

SAL-DMN 0.227 (0.007) −0.014 (0.868) 0.156 (0.067) 0.055 (0.523)

DAttn-CO 0.120 (0.156) −0.039 (0.654) −0.001 (0.993) 0.019 (0.822)

DAttn-MEM 0.120 (0.158) −0.093 (0.280) −0.312 (<.001)* −0.115 (0.178)

DAttn-FP 0.104 (0.218) 0.086 (0.319) 0.201 (0.018) −0.050 (0.560)

DAttn-SAL −0.075 (0.376) 0.042 (0.629) −0.219 (0.010) 0.077 (0.370)

DAttn-DMN 0.062 (0.468) −0.015 (0.862) −0.177 (0.037) 0.114 (0.182)

Note: CO=Cingulo-Opercular Network, DMN=Default Mode Network, MEM=Memory Network, FP=Fronto-Parietal Network, SAL=Salience 
Network, DAN=Dorsal Attention Network. Bolded correlation coefficients represent those that are significant at p<.05; correlation coefficients with 
an asterisk represent those that survive multiple comparison correction.
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Table 5

Correlation table for Spearman correlation coefficient (p-values in parentheses; significant correlations bolded) 

for the relationship between task performance in each domain (VOCAB=Vocabulary, SPEED=Perceptual 

Speed, FLUID=Fluid Reasoning, MEM=Episodic Memory) and each internetwork connection after 

controlling for participant age.

VOCAB SPEED FLUID MEM

CO-DMN 0.009 (0.919) −0.022 (0.802) −0.100 (0.250) −0.056 (0.521)

CO-MEM 0.007 (0.934) −0.131 (0.132) 0.004 (0.962) 0.080 (0.361)

CO-FP 0.004 (0.961) 0.045 (0.609) −0.033 (0.709) 0.110 (0.206)

CO-SAL 0.078 (0.374) −0.113 (0.194) −0.003 (0.975) −0.094 (0.282)

MEM-DMN 0.075 (0.388) 0.175 (0.044) 0.177 (0.042) 0.102 (0.242)

MEM-FP −0.054 (0.540) −0.080 (0.361) −0.183 (0.035) −0.094 (0.280)

MEM-SAL 0.127 (0.146) 0.079 (0.365) 0.069 (0.431) 0.094 (0.282)

FP-SAL −0.164 (0.059) −0.081 (0.352) −0.163 (0.060) 0.038 (0.666)

FP-DMN −0.148 (0.088) −0.036 (0.684) −0.162 (0.062) 0.003 (0.975)

SAL-DMN 0.251 (0.004) 0.114 (0.191) 0.124 (0.153) −0.056 (0.523)

DAttn-CO 0.131 (0.132) 0.050 (0.568) −0.025 (0.777) −0.024 (0.786)

DAttn-MEM 0.102 (0.244) −0.069 (0.431) −0.285 (0.001)* −0.064 (0.465)

DAttn-FP −0.031 (0.726) 0.007 (0.937) 0.251 (0.004) −0.036 (0.680)

DAttn-SAL −0.086 (0.327) 0.056 (0.520) −0.211 (0.015) 0.155 (0.075)

DAttn-DMN 0.062 (0.477) 0.052 (0.555) −0.156 (0.073) 0.032 (0.712)

Note: CO=Cingulo-Opercular Network, DMN=Default Mode Network, MEM=Memory Network, FP=Fronto-Parietal Network, SAL=Salience 
Network, DAN=Dorsal Attention Network. Bolded correlation coefficients represent those that are significant at p<.05; correlation coefficients with 
an asterisk represent those that survive multiple comparison correction.
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