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Abstract

Heart failure with preserved ejection fraction (HFpEF) is a complex syndrome with an 

increasingly recognized heterogeneity in pathophysiology. Exercise intolerance is the hallmark of 

HFpEF, and appears to be caused by both cardiac, as well as peripheral abnormalities in the 

arterial tree and skeletal muscle. Mitochondrial abnormalities can significantly contribute to 

impaired oxygen utilization, and the resulting exercise intolerance in HFpEF. We review key 

aspects of the complex biology of this organelle, the clinical relevance of mitochondrial function, 

the methods that are currently available to assess mitochondrial function in humans, and the 

evidence supporting a role for mitochondrial dysfunction in the pathophysiology of HFpEF. We 

also discuss the role of mitochondrial function as a therapeutic target, some key considerations for 

the design of early-phase clinical trials using agents that specifically target mitochondrial function 

to improve symptoms in patients with HFpEF, and ongoing trials with mitochondrial agents in 

HFpEF.
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Introduction

Heart failure is a complex and heterogeneous clinical syndrome that results in significant 

morbidity and mortality for patients and a heavy societal and economic burden. According 

to NHANES data, between 2011 and 2014, there were 6.5 million Americans over the age of 

20 living with heart failure. The prevalence is projected to increase by a further 46% to over 

8 million adults by 2030.1 Approximately half of patients with heart failure have heart 

failure with preserved ejection fraction (HFpEF).2 Epidemiologic data indicate that the 

prevalence of HFpEF is increasing over time as our population ages and epidemics of 

obesity, diabetes and metabolic syndrome worsen.2 Despite numerous trials over the last few 
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decades, at present there are no evidence-based available pharmacologic therapies that 

significantly impact outcomes in HFpEF.

An incomplete understanding of the pathophysiologic underpinnings of HFpEF represents a 

significant barrier to therapeutic advances in the field. Difficulties stem from heterogeneity 

within the HFpEF population, with research suggesting multiple unique phenotypes rather 

than a unified disease state.3 The presence of distinct phenotypes complicates the design of 

clinical trials and may reduce the likelihood of successful outcomes, as relatively 

indiscriminate enrollment may result in blunted average responses to interventions that 

target specific pathologic processes found in certain phenotypic subgroups.

Despite this phenotypic heterogeneity, exercise intolerance is common to all patients with 

HFpEF and is the primary driver of morbidity and reduced quality of life in this population.4 

The normal physiologic adaptation to exercise involves a delicate systemic coordination 

between the cardiac pump, the respiratory system, and the arterial system, with the goal of 

delivering inhaled oxygen to mitochondria in skeletal and cardiac muscle. This oxygen can 

then be used by the mitochondria to generate adenosine triphosphate (ATP) and in turn, fuel 

locomotion, ventilation and cardiac contraction and relaxation. Peripheral abnormalities can 

therefore impact the threshold at which a diseased heart exhibits frank failure, and 

mitochondrial abnormalities (whether due to disease states directly impacting the 

mitochondria, deconditioning, or both) may impact both peripheral muscle (skeletal, 

respiratory) and myocardial function.

Peak exercise oxygen consumption (VO2), a widely validated measure of exercise capacity, 

is consistently reduced in studies of HFpEF patients5, indicating dysfunction in the oxygen 

delivery and utilization system. According to the Fick equation, peak VO2 is the product of 

cardiac output (CO) and arteriovenous oxygen (A-VO2Diff) difference, a marker of 

peripheral oxygen extraction. As such, a reduction in peak VO2 can be a consequence of 

reduced delivery of oxygen to the systemic circulation by the heart or reduced peripheral 

utilization of oxygen.6

It had classically been thought that exercise intolerance and reduced VO2 in HFpEF is 

primarily due to inadequate augmentation of cardiac output in response to exercise. Early 

evidence supported this theory and showed that patients with HFpEF had an inability to 

increase end-diastolic volume or stroke volume in response to exercise7 or exhibited 

impaired chronotropic reserve.8 However, more recent studies have demonstrated that 

peripheral dysfunction is also an important cause of exercise intolerance. Haykowsky et al. 
found that reduced cardiac output during exercise accounted for only 50% of the reduction 

in peak VO2 in HFpEF, with reduced arterio-venous oxygen difference (A-VO2Diff) 

accounting for the other half.5 In fact, the strongest predictor of peak VO2 was change in A-

VO2Diff between resting and peak exercise. Similarly, Bhella et al. showed that that indices 

of cardiac reserve were not impaired in well-compensated HFpEF patients compared to 

healthy controls during exercise.9 A meta-analysis of six randomized controlled studies 

further demonstrated that, while exercise training significantly improved cardiorespiratory 

fitness in patients with HFpEF, resting LV function was largely unchanged, suggesting that 

the improved fitness may have been derived from changes in the periphery.10 Furthermore, 
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in one study that simultaneously assessed cardiac output and VO2 during exercise, it was 

found that exercise training improved peak VO2 predominantly via increased A-VO2Diff 

during exercise, rather than increased cardiac output,11 indicating a peripheral rather than a 

central hemodynamic basis for the benefit of this intervention.

In sum, these studies indicate that peripheral abnormalities are important mediators of 

exercise intolerance in HFpEF. Among these abnormalities, mitochondrial dysfunction 

appears to be an important pathophysiologic contributor. Current heart failure therapies, 

including beta blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor 

blockers, and mineralocorticoid receptor antagonists, appear to lead to a nonspecific 

decrease in mitochondrial reactive oxygen species production.12 However, direct targeting of 

mitochondrial function as a therapeutic intervention has to date been insufficient explored. 

This review provides a discussion of mitochondrial abnormalities in HFpEF, currently 

available methods to assess mitochondrial function in humans, the role of mitochondrial 

function as a therapeutic target, key considerations for the design of early-phase clinical 

trials using mitochondrial-targeting agents, and completed or ongoing clinical trials that 

using novel therapies that target mitochondria.

Skeletal Muscle Mitochondrial Abnormalities in HFpEF

There is an increasing body of literature suggesting significant structural and functional 

abnormalities of skeletal muscle in patients with HFpEF. Kitzman et al. reported a shift 

towards fewer slow-twitch type I fibers (which have greater mitochondrial density and 

oxidative capacity), as well as a reduced capillary to fiber ratio in biopsy tissue from the 

vastus lateralis muscle among older patients with HFpEF. Both of these abnormalities were 

significantly related to peak VO2 on multivariate analysis.13 It was also shown that, 

compared with healthy controls, patients with HFpEF have a reduced percent of total and 

lean leg mass on DEXA scanning. Importantly, peak VO2 indexed to lean body mass was 

significantly reduced in HFpEF, indicating a reduced oxygen utilization even after 

accounting for the reduced skeletal muscle mass.14 While the above findings were important 

in illustrating significant skeletal muscle abnormalities in HFpEF, they did not directly 

assess mitochondrial content or oxidative capacity.

Mitochondrial function was directly assessed by Bowen et al. in a rat model of HFpEF.15 In 

this study, female salt-sensitive rats were separated into three groups: low-salt diet, high-salt 

diet or high-salt with treadmill exercise training. Diaphragm muscle biopsy from high-salt 

diet rats, who developed a HFpEF-like phenotype, demonstrated a fiber type shift from fast 

(type II) to slow (type I) twitch, with impaired mitochondrial respiration, indicating electron 

transport chain dysfunction. Interestingly, soleus muscle biopsy did not demonstrate a 

change in fiber-type ratio, but did demonstrate reduced activity of citrate synthase, a key 

Krebs cycle enzyme that has been well validated as a proxy for mitochondrial content and 

oxidative capacity.16 Exercise training attenuated the reduction of both soleus citrate 

synthase activity and diaphragmatic mitochondrial respiration. This rat model may not 

recapitulate the key features of skeletal muscle dysfunction in HFpEF, since human HFpEF 

has been shown to exhibit a shift towards fewer slow-twitch type I fibers in vastus lateralis 

muscle, as discussed above. Additionally, a biphasic pattern of response to pressure overload 
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(an early increase in mitochondrial oxidative phosphorylation, with a subsequent decline that 

coincides with transition from cardiac hypertrophy to HF) has been reported in models of 

HFrEF; however, whether this pattern occurs in the transition to human HFpEF is unknown.
17

Molina et al. subsequently studied the expression of important mitochondrial proteins (as 

markers of mitochondrial content and oxidative capacity) among elderly HFpEF patients. 

Mitochondrial content in vastus lateralis muscle tissue (as indicated by expression of porin, a 

mitochondrial membrane protein) was significantly reduced (46% lower) in the HFpEF 

group compared to sedentary healthy controls.18 HFpEF subjects also had a significantly 

lower expression of both citrate synthase and mitofusin 2, a key regulator of mitochondrial 

fusion. Both porin and mitofusin 2 expression exhibited a moderate significant direct 

correlation with peak VO2. These studies made a convincing case for the presence of 

skeletal muscle mitochondrial dysregulation in HFpEF, but further research was needed to 

assess the impact of such abnormalities on energetics during exercise.

Novel advanced imaging techniques provided additional insights into dysfunctional skeletal 

muscle energetics and further demonstrated the link between mitochondrial dysregulation 

and exercise intolerance. Recently, Weiss et al. compared 12 patients with HFpEF with 11 

healthy controls, using31P magnetic resonance spectroscopy (MRS) during a plantar flexion 

exercise stress test to assess skeletal muscle energetics. They found that, while resting MRS 

measurements were not significantly different from healthy controls, patients with HFpEF 

exhibited very early and rapid depletion of high-energy phosphates during exercise, and 

significantly decreased maximal mitochondrial oxidative capacity.19 Whereas it is tempting 

to interpret this as evidence of intrinsic mitochondrial dysfunction, it should be noted that in 
vivo measurements of oxidative capacity interrogate the integrated function of the oxygen 

transport chain, including local oxygen diffusion capacity and intrinsic mitochondrial 

function. Therefore, impaired microvascular vasodilation and/or microvascular rarefaction 

(which can directly impact oxygen diffusion capacity), in addition to intrinsic mitochondrial 

dysfunction, could cause or contribute to these observations.

Whereas patients with HF can exhibit skeletal muscle deconditioning as a result of 

chronically reduced physical activity, it is important to note that the skeletal myopathy seen 

in HFpEF, and more broadly in heart failure, cannot be fully explained by deconditioning. 

While deconditioning likely contributes to HF myopathy, disuse atrophy causes an opposite 

fiber type shift than that reported in human HFpEF; deconditioning typically results in 

preferential decrease in type II fibers.20

In summary, available data demonstrates abnormalities in skeletal muscle mitochondrial 

content and structure, and a significant energetic impairment during exertion in HFpEF. This 

suggests that mitochondrial dysfunction may contribute to exercise intolerance in HFpEF 

patients and introduces a potential novel therapeutic target in this condition. The etiology 

and time-course leading to mitochondrial dysfunction in HFpEF is unclear; possible 

etiologies include chronic elevation of sympathetic tone, oxidative stress, overexpression of 

pro-inflammatory cytokines, or factors associated with the metabolic syndrome known to be 

associated with mitochondrial abnormalities, such as insulin resistance.21, 22 Given the 
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potential role of this organelle in the pathophysiology of HFpEF, there is significant interest 

in novel therapeutics that directly target mitochondria; however, there are important aspects 

of mitochondrial biology, function and phenotyping that need to be considered when 

designing and interpreting early-phase mechanistic clinical trials with agents that impact 

mitochondrial function in HFpEF.

Cardiac Muscle Mitochondrial Abnormalities in HFpEF

There is also evidence that cardiomyocyte mitochondria in HFpEF have structural and 

energetic abnormalities. The proposed pathophysiology involves an increase in reactive 

oxygen species and mitochondrial damage, which results in a mismatch between ATP 

production and demand while also activating downstream signaling pathways that can result 

in cardiac remodeling, inflammation and diastolic dysfunction.23 A mouse-model of cardiac 

hypertrophy and diastolic dysfunction induced by abdominal aortic banding showed an 

overall decrease in cardiac mitochondrial metabolism and ATP production.24 A recent study 

in rats utilized a high fat, high sucrose diet to induce metabolic heart disease, characterized 

by left ventricular hypertrophy and diastolic dysfunction. Hearts isolated from rats with 

metabolic heart disease showed decreased rate of ATP synthesis measured by31P- magnetic 

resonance spectroscopy.

Abnormal myocardial mitochondrial energetics have also been demonstrated in human 

subjects using non-invasive imaging techniques. A study by Phan, et al., used31P-magnetic 

resonance spectroscopy at rest to evaluate in vivo myocardial energetics in 37 subjects with 

HFpEF and 20 control subjects. They found that subjects with HFpEF had significantly 

reduced energy reserves, as indicated by creatine phosphate/adenosine triphosphate (PCr/

ATP) ratio.25 Of note, like in peripheral muscle, in vivo measurements of oxidative capacity 

may be impacted by factors that govern the oxygen transport upstream of the mitochondrial 

respiratory chain, including myocardial microvascular rarefaction, which is a feature of 

HFpEF.26 The relative causal impact of cardiac vs. skeletal mitochondrial dysfunction on 

exercise intolerance is unclear, but it is likely that therapeutic agents that improve 

mitochondrial function will likely enhance both cardiac function and peripheral oxygen 

utilization.

Comparison with HFrEF

Patients with HFrEF have been shown to have a number of skeletal muscle abnormalities 

that have also been shown in HFpEF, including reductions in type I oxidative fibers, citrate 

synthase activity, mitochondrial volume and content, and capillary to fiber ratio.27, 28

However, despite these similarities, there are differences in mitochondrial abnormalities 

between patients with HFpEF and HFrEF. Hunter et al. utilized mass spectrometry to 

quantify levels of 63 circulating metabolites among patients with HFpEF, HFrEF, and no HF. 

They found that long chain acyl carnitine levels, a marker of impaired fatty acid oxidation, 

were elevated in all subjects with heart failure; however, they were significantly higher in 

HFrEF than in HFpEF.29 In addition to this metabolic difference, prior studies indicate a 

greater degree of impairment in peripheral mitochondria in patients with HFpEF. As 
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mentioned above, Weiss et al. used31P MRS imaging to show that subjects with HFpEF 

deplete PCr more rapidly than subjects with HFrEF during plantar flexion exercise.19 

Additionally, a study utilizing invasive hemodynamics during cardiopulmonary exercise 

testing demonstrated that patients with HFpEF have more impaired peripheral oxygen 

extraction compared to patients with HFrEF.30

Methods for the Assessment of Mitochondrial Function

A variety of techniques can be applied to interrogate several aspects of mitochondrial 

biology, including mitochondrial biogenesis (content and turnover dynamics), ATP synthesis 

and mitochondrial oxygen consumption/utilization, as schematized in Figure 1 and Table 1.

Assessment of Mitochondrial biogenesis

Mitochondrial biogenesis is the process by which mitochondrial size and number are 

increased to escalate capacity for ATP production. Stimulating mitochondrial biogenesis in 

skeletal muscle to improve the bio-energetic capacity during exercise, is thus an important 

goal for novel therapeutics. During mitochondrial biogenesis, an increase in mitochondrial 

content as well as the dynamic remodeling of the mitochondrial proteome occurs. Turnover 

and removal of aged or damaged mitochondria occurs through mitophagy; this process 

involves induction of general autophagic mechanisms with selective priming of 

mitochondria for removal.31

Mitochondrial content: Mitochondrial volume and content have been assessed using 

transmission electron microscopy of muscle biopsy samples for decades. Indeed, there is 

considerable evidence that mitochondrial content assessed in this manner is reduced in heart 

failure and correlates with exercise capacity. However, this technique is time-consuming, 

requires expensive equipment, and does not provide information regarding mitochondrial 

function.

Biomarkers isolated from muscle tissue samples are often used as surrogate measures of 

mitochondrial content. Activity of citrate synthase, which catalyzes the first reaction of the 

citric acid cycle, is the most commonly used biomarker for mitochondrial function and is 

thought to be the most reliable indicator of mitochondrial content.18 Activity of this enzyme 

is measurable via a commercially available spectrophotometric assay kit (Sigma-Aldrich, St. 

Louis MO, USA). Similar assays for activities of electron transport chain complexes I-IV, 

including cytochrome c oxidase, have also been developed.32

In addition to enzyme activity, expression of various mitochondrial structural proteins and 

transcription factors can provide an estimate of mitochondrial content; commonly used 

proteins include mitofusin I/II18, silent information regulator 1 (SIRT1)33, peroxisome 

proliferator-activated receptor gamma coactivator 1-alpha (PGC1α)34, nuclear respiratory 

factor 1/2 (NRF1/2), estrogen-related receptor alpha (ERRα)35, and succinate 

dehydrogenase36. Protein expression can be measured directly with Western blotting or 

through measurement of mRNA transcripts with real-time polymerase chain reaction (PCR).
33
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The content of cardiolipin, a phospholipid found only in the mitochondrial inner membrane, 

appears to be an excellent marker of mitochondrial content.16 Mitochondrial DNA (mtDNA) 

content can be quantified as well via polymerase chain reaction (PCR). Levels of mtDNA 

have been shown to increase in response to exercise training proportionally to citrate 

synthase and mitochondrial volume density37; however, recent evidence suggests that it may 

not be a reliable indicator of mitochondrial content.16

Mitochondrial turnover dynamics: In addition to measuring fixed concentrations of 

mitochondrial proteins, assessment of dynamic changes in the mitochondrial transcriptome 

and proteome allow for a more specific and temporally-resolved assessment of 

mitochondrial biogenesis in response to stimuli. Mitochondrial proteins are continually 

remodeled with frequent turnover, allowing for quality control of proteins and optimal 

mitochondrial function.38 The synthesis and turnover rates of mitochondrial proteins thus 

reflect the overall quality of the mitochondria as a whole. However, mitochondrial proteins 

are particularly susceptible to damage by reactive oxygen species (ROS), given that most 

ROS are generated in the mitochondria during oxidative phosphorylation.39 As such, it 

becomes even more important to ensure that turnover continues to occur during pathologic 

states like heart failure. Indeed, it is thought that accumulation of protein damage from ROS 

and decreased mitochondrial protein turnover are key aspects of the pathophysiology of 

heart failure.40

It is possible to assess dynamic mitochondrial proteome-wide changes through measuring 

changes in the rates of protein synthesis or turnover. Novel stable isotope labeling 

techniques with high-resolution mass spectrometry have allowed for global assessments of 

mitochondrial proteome dynamics. Heavy water (2H2O) labeling has been used to assess 

turnover rates of mitochondrial proteins in a rat model, finding dramatic variations in half-

lives; half-lives ranging from hours to months were calculated for the 458 mitochondrial 

proteins that were characterized.41 This same technique applied to a rat model of heart 

failure found bidirectional changes in half-lives of cardiac mitochondrial proteins, with 

several proteins involved in fatty acid oxidation, electron transport chain (ETC) function, 

and ATP synthesis showing increased turnover and other oxidative proteins showing 

decreased turnover.42 This approach has been extended to humans in vivo, with a study by 

Wang et al. showing the safety of a2H2O administration protocol for large scale tracking of 

serum proteome dynamics.43 The potential of this technique for characterizing patients with 

HFpEF and their response to novel therapeutics requires further study.

Assessment of ATP synthesis

In addition to evaluating changes in mitochondrial biogenesis, changes in the functional 

ability of mitochondria to generate ATP can be measured ex vivo and in vivo.

Ex vivo measurements of mitochondrial ATP synthesis can be performed via 

bioluminescence in mitochondria isolated from tissue samples.44 In brief, fresh tissue is 

sampled through percutaneous needle muscle biopsy and mitochondria are separated rapidly 

by centrifugation and suspended in a reaction mixture, which contains firefly luciferin-

luciferase ATP-monitoring reagent, substrates for oxidation and ADP. ATP molecules 
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produced by mitochondria react with firefly luciferase and create light signal proportional to 

the concentration of ATP in solution. The quantity of photons produced is then quantified 

using a luminometer. Whereas this technique is intuitive, ex vivo measurements of 

mitochondrial ATP synthesis obtained via skeletal muscle biopsy may not reflect their 

function in vivo, which depends on integrated oxygen transport and diffusion mechanisms. 

In addition, the need for single or serial skeletal muscle biopsies represents a barrier to 

subject participation in clinical trials.

A number of novel non-invasive imaging methods for measuring oxidative capacity and ATP 

production have been well described as markers of in vivo mitochondrial function. Unlike 

studies of mitochondria explanted from tissue biopsy, these imaging methods allow for in 
vivo, serial and real-time measurements of oxidative phosphorylation capacity during or 

immediately after exercise.

Magnetic resonance spectroscopy (MRS) can detect31P, which is commonly found in high-

energy intracellular substrates. This requires MRI phosphorus coils (i.e., coils “tuned” to 

detect31P signal), which are different from standard clinical hydrogen coils. Exercise 

protocols can be performed while subjects are inside the magnet, causing demand for ATP 

that is met by breakdown of phosphocreatine (PCr). After depletion of PCr and cessation of 

exercise, oxidative phosphorylation within the muscle leads to ATP production. The 

recovery rate of PCr after exercise depletion reflects generation of ATP and can be used to 

calculate the maximum in vivo mitochondrial oxidative capacity (ATPmax).45

Phosphorous spectroscopy has been extensively validated through comparison with other 

markers of mitochondrial function. ATPmax measured with31P MRS has been correlated 

with gold-standard in vitro measures of mitochondrial respiration from muscle biopsy. 

Lanza et al. first provided this evidence in a study that used high-resolution respirometry of 

mitochondria isolated from muscle biopsy to show agreement between in vitro organelle 

oxygen consumption and in vivo oxidative capacity.46 Coen et al. expanded on these 

observations by comparing in vivo ATPmax with respiration from permeabilized muscle 

fibers.47 31P MRS can also be performed during exercise and recovery for dynamic 

assessment of mitochondrial capacity with high temporal resolution in stressed skeletal 

muscle (Figure 2A). As detailed above, Weiss et al. utilized this technique to show that 

subjects with HFpEF deplete PCr more rapidly than subjects with HFrEF and healthy 

controls during plantar flexion exercise; they also showed poor oxidative capacity in these 

subjects through assessment of PCr recovery rates.19 The main limitations of31P MRS are its 

poor spatial resolution, its low signal-to-noise ratio, and the lack of wide availability of 

phosphorus coils.

Creatine chemical exchange saturation transfer (CrCEST) is a highly innovative novel MRI 

technique that addresses various limitations of31P MRS and allows for assessments of 

muscle oxidative capacity with high spatial (anatomic) resolution, high signal-to-noise ratio, 

and the use of hydrogen coils. Figure 2B shows an example of a CrCEST acquisition. 

CrCEST utilizes the magnetic saturation of creatine hydrogens, which are continuously 

exchanged (and transferred) to water molecules. This technique can perform fast, spatially-

resolved measurements of creatine concentrations in tissue, and thus determine the kinetics 
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of rate of free creatine recovery after exercise, which is a mirror image of PCr recovery 

(Figure 2C).48 Debrosse et al. utilized CrCEST in a study of subjects with genetic 

mitochondrial diseases and found a significantly prolonged rate of free creatine decline, 

consistent with poor mitochondrial oxidative function.49

Assessment of Mitochondrial Oxygen Consumption

Mitochondrial respiration involves a series of cellular processes that convert energy stored in 

macronutrients into ATP, utilizing oxygen as the final electron acceptor of the electron 

transport chain. Rates of oxygen consumption thus reflect mitochondrial capacity for ATP 

synthesis. High-resolution respirometry allows for the assessment of oxygen consumption in 

intact or permeabilized cells or isolated mitochondria. Unlike static measurements (such as 

concentrations of enzymes, DNA, RNA and various signaling molecules), respirometry 

allows for dynamic measurements of mitochondrial function at the level of the organelle. 

Respiration is measured by a temperature-controlled device, known as an oxygraph, that 

measures changes in oxygen tension inside a sealed incubation chamber; oxygen 

consumption is then derived from the change in oxygen concentration.50 Oxygen 

consumption can also be measured after the addition of various oxidative substrates. 

Notably, to ensure mitochondrial structural integrity, respiratory function must be measured 

on fresh tissue and not on frozen samples. Coen et al. reported that ex vivo oxygen 

consumption of permeabilized fibers obtained from vastus lateralis muscle biopsy, as 

measured by respirometry, significantly correlated with peak VO2 and maximal ATP 

production capacity (as measured by31P MRS) in older adults.47

An interesting low-cost non-invasive method for the assessment of skeletal muscle 

mitochondrial function was developed by Ryan et al using near-infrared spectroscopy 

(NIRS).51 NIRS is a non-invasive minimal-risk method, which measures changes in optical 

absorption among the oxy and deoxy fractions of hemoglobin and myoglobin in tissue. 

These can be used to assess local oxygen consumption. When NIRS is used in tandem with 

repeated intermittent arterial occlusions via a cuff inflation, oxygen delivery is interrupted 

and the decline in tissue oxygenation measured by NIRS is considered a function of oxygen 

consumption. The rate of oxygen consumption can be assessed at various time points after a 

local exercise transient (such as repeated handgrip contractions with NIRS interrogation of 

the forearm), and the rate at which the consumption rate recovers to baseline can be 

quantified (Figure 3). This technique has been reported to be reproducible and was cross-

validated with31P-MRS assessments in a study of healthy individuals after short-duration 

plantar flexion exercise.52 However, NIRS is significantly limited by depth and fat 

attenuation. Figure 3 demonstrates an example of a forearm NIRS intermittent occlusion 

study in a patient with HFpEF.

Assessment of cardiac mitochondrial function

Many of the above described techniques have been utilized for the assessment of 

mitochondrial function in the heart. However, these measurements present unique challenges 

when compared to the equivalent studies in skeletal tissue. Foremost among these is the 

difficulty of obtaining routine endomyocardial biopsy samples for research purposes. Given 
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the invasiveness of obtaining heart tissue, most studies have utilized tissue that was obtained 

for clinical purposes or explanted hearts after transplantation.

Due to these barriers to obtaining cardiac tissue, significant attention has been paid to 

utilizing non-invasive imaging for assessments of cardiac metabolism.31P magnetic 

resonance imaging has been used in prior studies for assessment of myocardial 

mitochondrial function; unfortunately, data collected using older 3T MRI coils showed a 

relative low sensitivity, leading to poor spatial resolution and long acquisition times.53 More 

recent studies using 7T coils have shown a higher signal-to-noise ratio and more precise 

quantification of31P spectra.54 CrCEST has been applied for the assessment of myocardial 

mitochondrial function in an animal model of myocardial infarction, but significant technical 

development is required before it can be utilized in humans.55

Considerations for Early Phase Clinical Trial Design with Mitochondrial 

Agents in HFpEF

Treatment duration

Mitochondrial biology has important implications for clinical trial design. In particular, the 

kinetics of maximum effect and return to baseline after a pharmacologic intervention should 

be carefully considered.

Time Course of the Onset of Drug Effects

The goal of achieving a near-maximal effect prior to the end-point read outs (“on” effects) is 

paramount in deciding the duration of the active treatment phase in both cross-over and 

parallel arm early-phase trials. The goal of treatment with mitochondrial agents in HFpEF is 

to improve exercise capacity by increasing mitochondrial biogenesis and function. 

Mitochondrial biogenesis involves both an increase in mitochondrial content and remodeling 

of the mitochondrial proteome. It is well established in the literature that sustained exercise 

protocols increase mitochondrial content.56 Recent data indicate that exercise-induced 

adaptations in the mitochondrial transcriptome and proteome occur within days of stimuli, 

indicating that mitochondrial biogenesis can occur much earlier than previously believed.

A recent study of the mitochondrial proteome in human skeletal muscle indicated extensive 

remodeling in response to exercise in as little as 7–14 days, suggesting increased 

mitochondrial biogenesis and increased oxidative capacity; as an example, citrate synthase 

activity increased by 35% at 7 days and subsequently plateaued.57 Citrate synthase activity 

has been shown to be highly correlated and concordant with mitochondrial content and 

cristae density.16 A subsequent analysis of mitochondrial transcriptional regulation in 

response to short-term exercise demonstrated elevations of both mRNA and protein content 

of established regulators of mitochondrial biogenesis, including PGC-1α after 1 day and 

ERRα after three days.58 Increased levels of citrate synthase, cytochrome c, and cytochrome 

c oxidase subunit IV expression were found within 3–7 days following start of exercise 

training. Elevation of mitofusin-2 and transcription factor A mitochondrial factor mRNA 

expression was seen throughout training, though no change in protein content was measured.
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The above data suggests that treatment for as little as one to two weeks could be feasible to 

see initial effects on mitochondrial function; it is unclear, however, when changes in 

mitochondrial content/function and particularly, their effects on whole-system aerobic 

capacity and other relevant endpoints such as quality of life, would reach a sustained steady 

state. Additionally, the HFpEF patient population may have a more limited capacity to 

stimulate mitochondrial biogenesis requiring treatment over longer time periods than non-

HF patients. Given such uncertainties, it seems prudent to consider treatment durations of at 

least several (>4–6) weeks if feasible.

Washout of mitochondrial effects

In addition to the half-life of specific drugs, the longevity of newly formed mitochondria 

(which in turn determine the time-period required for mitochondrial density to return to 

baseline after discontinuation of therapy), is a key factor to consider, particularly when 

cross-over designs are being contemplated. Unfortunately, data regarding the mitochondrial 

half-life in various organisms and tissue types are scarce, and to our knowledge, no data are 

available in HFpEF patients. It is however clear than even within the same organism, 

mitochondrial half-lives differ greatly by organ/tissue type, as shown in Table 2. Further 

research is needed regarding the dynamics of mitochondrial turnover in human HFpEF. 

Given this uncertainty, results from crossover studies evaluating mitochondrial-targeting 

agents should be interpreted in the context of the limitations of this study design.

Strategies for modulation of mitochondrial function

Stimulation of mitochondrial biogenesis

Human and animal model data suggest that mitochondrial biogenesis is reduced in heart 

failure. The exact mechanisms behind this are unclear; however, evidence points to both 

downregulation of the PGC1-α pathway or defective mitochondrial DNA replication. 

Accumulating evidence suggests that stimulation of mitochondrial biogenesis is possible 

through activation of adenosine monophosphate-activated kinase (AMPK) and the nitric 

oxide/soluble guanylyl cyclase/cyclic guanosine monophosphate pathways.

AMPK has been shown to induce mitochondrial biogenesis through direct phosphorylation 

of PGC1-α production63. It also appears that AMPK coordinates mitochondrial biogenesis 

through epigenetic regulation of nuclear genes involved in nucleosome remodeling.64 A 

number of current therapies indirectly target AMPK and have cardioprotective effects, 

including metformin, telmisartan, thiazolidinediones and statins.65–67 Metformin, in 

particular, appears to reduce progression of HF in animal models and is currently being 

tested in an upcoming study of functional capacity and mean pulmonary artery pressures in 

subjects with HFpEF (NCT03629340; Table 3).68 Direct AMPK activators are in various 

stages of development, including 5-aminoimidazole-4-carboxamide riboside (AICAR), 

A-769662, and PT-1.69 However, development of AMPK activators is complicated by the 

heterogeneous expression and effects of its various subunits and isoforms. For example, 

gain-of-function mutations in the γ2 subunit of AMPK appears to induce familial 

hypertrophic cardiomyopathy.66
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Nitric oxide, through a cyclic guanosine monophosphate dependent (cGMP) pathway, has 

also been shown to activate mitochondrial biogenesis.84 Nitric oxide signaling can be 

increased through two pathways: direct modulation of soluble guanylyl cyclase (sGC), 

which synthesizes cGMP, and through targeting of the endogenous nitrate-nitrite-NO 

pathway. Although pre-clinical and early phase studies were promising, increasing NO 

through the soluble guanylyl cyclase system with phosphodiesterase-5 inhibitors was not 

effective in improving clinical or exercise status in patients with HFpEF.85 Vericiguat, a 

direct sGC stimulator, appeared to exert positive effects on quality of life in the SOCRATES 

PRESERVED trial, an effect that is now being tested in a larger trial (VITALITY-HFpEF; 

NCT03547583).86 The CAPACITY-HFpEF trial is testing another sGC stimulator, IW-1973 

(NCT03254485) (Table 3). However, these trials are not assessing the mechanism of any 

potential effect of sGC stimulation on clinical outcomes. Of note, these agents could impact 

symptoms through several non-cardiac effects, including improvements in conduit artery 

function, which is highly NO-dependent.87

Targeting the nitrate-nitrite-NO pathway also appears to be an efficacious means for 

increasing nitric oxide levels. Despite encouraging results with single-dose administration 

trials of inhaled nitrite,88 the recent INDIE-HFpEF phase IIb trial did not demonstrate a 

benefit of this agent on quality of life or aerobic capacity. The very short half-life of this 

agent (~35 minutes) may have substantially limited any potential efficacy in this agent, 

which was administered three times daily. In contrast to inorganic nitrite, orally-

administered inorganic nitrate demonstrates a longer half-life and favorable 

pharmacokinetics for sustained administration.89 The use of oral inorganic nitrate has shown 

promise in single and repeated-dose administration in early phase studies, and a larger phase 

IIb trial (KNO3CK OUT HFpEF) is ongoing.89, 90 (Table 3). Of note, it is likely that the 

effect of inorganic nitrate on exercise capacity is mediated by arterial, rather than 

mitochondrial effects since reductions in arterial wave reflections were the main correlate of 

increases in peak VO2 with this agent.75

Resveratrol, a polyphenol found in red wine, has interestingly been shown to stimulate 

mitochondrial biogenesis through both AMPK and nitric oxide-dependent mechanisms.71, 72 

Animal model data suggests that resveratrol can reduce cardiac dysfunction and improve 

mitochondrial biogenesis in hypertension-mediated heart failure.91 A study of 40 human 

subjects post-myocardial infarction demonstrated efficacy in improvement of diastolic 

function.92 Resveratrol has been studied in HFpEF with a completed study assessing the 

effect of grape seed extract on endothelial function, however, the results have not yet been 

published (Table 3).

Reduction of oxidative stress

Elevated and pathologic reactive oxygen species production has been implicated in a number 

of cardiometabolic disorders, including heart failure.93 However, trials of antioxidant 

therapies in HF have resulted in varying levels of success.

MitoQ, a lipophilic quinol that accumulates in the mitochondrial matrix and scavenges ROS, 

has been extensively studied as a mitochondrial antioxidant. A recently published study 

showed that in rats with pressure-overload induced heart failure, MitoQ reduced hydrogen 
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peroxide levels and improved mitochondrial respiration.94 A human study of patients with 

chronic hepatitis C showed a significant improvement in hepatic function without severe 

side effects.95 However, the efficacy of MitoQ may be limited as its uptake into the 

mitochondria relies on an intermembrane potential difference, which is reduced in heart 

failure.66

Szeto-Schiller (SS) peptides are small amino acid sequences that are rapidly taken up by 

mitochondria due to their high affinity for cardiolipin, a phospholipid found in the inner 

mitochondrial membrane. The SS-31 variant of SS peptides (also called elamipretide or 

Bendavia), in particular, has shown benefit as a cardioprotective antioxidant with reduced 

mitochondrial ROS production and reduces maladaptive remodeling.70 There is also 

evidence that elamipretide improves skeletal muscle function and exercise capacity.96 

Results from long-term phase II efficacy studies of Elamipretide in humans are pending.

Other antioxidant therapies include free radical scavengers and superoxide dismutase 

mimetics like mitoTEMPO and EUK8/EUK132.97, 98 Maintenance of mitochondrial iron 

homeostasis and reduction of iron content is also thought to result in inhibition of free 

radical formation and reduced oxidative stress; targeted therapies of targeted mitochondrial 

iron chelators like deferiprone and idebenone have undergone human testing and led to 

partial reversal of cardiomyopathy in patients with Freidrich’s ataxia.99

CONCLUSION

Current evidence supports mitochondrial function as an important factor contributing to the 

pathophysiology of HFpEF. As a result, there are a number of ongoing or completed early 

phase clinical trials of agents that seek to improve mitochondrial function in this population 

(Table 3) by acting on a number of different aspects of mitochondrial function (Figure 4). 

However, these trials largely utilize endpoints that indirectly assess the improvement of 

mitochondrial function through downstream effects on exercise capacity. While exercise 

capacity is a clinically important outcome, it may be vital to better assess how these novel 

therapeutics impact mitochondrial oxidative function, and whether dysfunction in other 

organ systems become limiting in the presence of substantially improved mitochondrial 

function. Direct measures of mitochondrial function have the potential to determine whether 

the pharmacologic effects of new drugs mimic those seen in animal models, and to enhance 

our understanding of how (and in whom) to target mitochondrial dysfunction in HFpEF. As 

described above, there are numerous measures of mitochondrial function that can be utilized 

in human studies, allowing for assessments of mitochondrial function at a level of detail 

never before possible.

However, more studies are needed to clarify both the role of abnormal mitochondrial 

function in HFpEF and the impact of mitochondrial therapies on morbidity and mortality in 

this patient population. Additionally, future studies will be needed to clarify the extent of 

mitochondrial pathology among the various phenotypic subgroups of patients with HFpEF. 

As these studies are being planned and conducted, it will be vital to consider the unique 

biology of the mitochondria and how we can best stimulate this powerhouse of the cell to 

improve the lives of patients with HFpEF.
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Figure 1. Utilizing multiple aspects of mitochondrial biology for the assessment of functional 
changes
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Figure 2. Utilizing phosphorous MRS and CrCEST for the quantification of oxidative capacity in 
lower limbs during exercise.
Panel A shows a representative image from a phosphorous MR spectroscopy study of the 

lower limb. The phosphorous spectra are analyzed for each voxel before and after exercise, 

allowing quantification of phosphocreatine recovery as a marker of oxidative capacity. Panel 

B shows an example image from a CrCEST study with pre-exercise baseline and post-

exercise muscle-group specific increase in free creatine signal and subsequent decay during 

recovery. Panel C provides a comparison of signal recovery to baseline during the post-

exercise period in both phosphorous MRS and CrCEST. Reproduced from Kogan, et al.100
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Figure 3. Use of Near Infrared Spectroscopy for the assessment of skeletal muscle oxygen 
consumption.
Panel A shows measurements of oxygenated hemoglobin during intermittent occlusions 

post-exercise (to calculate individual slopes, indicated by arrows). This signal is calibrated 

according to an ischemic occlusion (panel B). A subsequent exponential fit of the slopes 

(panel C) allows for the measurement of oxygen consumption (MVO2).
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Figure 4. Activity of mitochondria-targeted therapies
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