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Abstract

Heart failure with preserved ejection fraction (HFpEF) is a complex syndrome with an
increasingly recognized heterogeneity in pathophysiology. Exercise intolerance is the hallmark of
HFpEF, and appears to be caused by both cardiac, as well as peripheral abnormalities in the
arterial tree and skeletal muscle. Mitochondrial abnormalities can significantly contribute to
impaired oxygen utilization, and the resulting exercise intolerance in HFpEF. We review key
aspects of the complex biology of this organelle, the clinical relevance of mitochondrial function,
the methods that are currently available to assess mitochondrial function in humans, and the
evidence supporting a role for mitochondrial dysfunction in the pathophysiology of HFpEF. We
also discuss the role of mitochondrial function as a therapeutic target, some key considerations for
the design of early-phase clinical trials using agents that specifically target mitochondrial function
to improve symptoms in patients with HFpEF, and ongoing trials with mitochondrial agents in
HFpEF.
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Introduction

Heart failure is a complex and heterogeneous clinical syndrome that results in significant
morbidity and mortality for patients and a heavy societal and economic burden. According
to NHANES data, between 2011 and 2014, there were 6.5 million Americans over the age of
20 living with heart failure. The prevalence is projected to increase by a further 46% to over
8 million adults by 2030.1 Approximately half of patients with heart failure have heart
failure with preserved ejection fraction (HFpEF).2 Epidemiologic data indicate that the
prevalence of HFpEF is increasing over time as our population ages and epidemics of
obesity, diabetes and metabolic syndrome worsen.2 Despite numerous trials over the last few
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decades, at present there are no evidence-based available pharmacologic therapies that
significantly impact outcomes in HFpEF.

An incomplete understanding of the pathophysiologic underpinnings of HFpEF represents a
significant barrier to therapeutic advances in the field. Difficulties stem from heterogeneity
within the HFpEF population, with research suggesting multiple unique phenotypes rather
than a unified disease state.3 The presence of distinct phenotypes complicates the design of
clinical trials and may reduce the likelihood of successful outcomes, as relatively
indiscriminate enrollment may result in blunted average responses to interventions that
target specific pathologic processes found in certain phenotypic subgroups.

Despite this phenotypic heterogeneity, exercise intolerance is common to all patients with
HFpEF and is the primary driver of morbidity and reduced quality of life in this population.*
The normal physiologic adaptation to exercise involves a delicate systemic coordination
between the cardiac pump, the respiratory system, and the arterial system, with the goal of
delivering inhaled oxygen to mitochondria in skeletal and cardiac muscle. This oxygen can
then be used by the mitochondria to generate adenosine triphosphate (ATP) and in turn, fuel
locomotion, ventilation and cardiac contraction and relaxation. Peripheral abnormalities can
therefore impact the threshold at which a diseased heart exhibits frank failure, and
mitochondrial abnormalities (whether due to disease states directly impacting the
mitochondria, deconditioning, or both) may impact both peripheral muscle (skeletal,
respiratory) and myocardial function.

Peak exercise oxygen consumption (VO,), a widely validated measure of exercise capacity,
is consistently reduced in studies of HFpEF patients®, indicating dysfunction in the oxygen
delivery and utilization system. According to the Fick equation, peak VO, is the product of
cardiac output (CO) and arteriovenous oxygen (A-VO,Diff) difference, a marker of
peripheral oxygen extraction. As such, a reduction in peak VO, can be a consequence of
reduced delivery of oxygen to the systemic circulation by the heart or reduced peripheral
utilization of oxygen.®

It had classically been thought that exercise intolerance and reduced VO, in HFpEF is
primarily due to inadequate augmentation of cardiac output in response to exercise. Early
evidence supported this theory and showed that patients with HFpEF had an inability to
increase end-diastolic volume or stroke volume in response to exercise’ or exhibited
impaired chronotropic reserve.8 However, more recent studies have demonstrated that
peripheral dysfunction is also an important cause of exercise intolerance. Haykowsky et al.
found that reduced cardiac output during exercise accounted for only 50% of the reduction
in peak VO, in HFpEF, with reduced arterio-venous oxygen difference (A-VO,Diff)
accounting for the other half.> In fact, the strongest predictor of peak VO, was change in A-
VO, Diff between resting and peak exercise. Similarly, Bhella et a/. showed that that indices
of cardiac reserve were not impaired in well-compensated HFpEF patients compared to
healthy controls during exercise.® A meta-analysis of six randomized controlled studies
further demonstrated that, while exercise training significantly improved cardiorespiratory
fitness in patients with HFpEF, resting LV function was largely unchanged, suggesting that
the improved fitness may have been derived from changes in the periphery.10 Furthermore,
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in one study that simultaneously assessed cardiac output and VO, during exercise, it was
found that exercise training improved peak VO, predominantly via increased A-VO,Diff
during exercise, rather than increased cardiac output,!! indicating a peripheral rather than a
central hemodynamic basis for the benefit of this intervention.

In sum, these studies indicate that peripheral abnormalities are important mediators of
exercise intolerance in HFpEF. Among these abnormalities, mitochondrial dysfunction
appears to be an important pathophysiologic contributor. Current heart failure therapies,
including beta blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor
blockers, and mineralocorticoid receptor antagonists, appear to lead to a nonspecific
decrease in mitochondrial reactive oxygen species production.12 However, direct targeting of
mitochondrial function as a therapeutic intervention has to date been insufficient explored.
This review provides a discussion of mitochondrial abnormalities in HFpEF, currently
available methods to assess mitochondrial function in humans, the role of mitochondrial
function as a therapeutic target, key considerations for the design of early-phase clinical
trials using mitochondrial-targeting agents, and completed or ongoing clinical trials that
using novel therapies that target mitochondria.

Skeletal Muscle Mitochondrial Abnormalities in HFpEF

There is an increasing body of literature suggesting significant structural and functional
abnormalities of skeletal muscle in patients with HFpEF. Kitzman et a/. reported a shift
towards fewer slow-twitch type I fibers (which have greater mitochondrial density and
oxidative capacity), as well as a reduced capillary to fiber ratio in biopsy tissue from the
vastus lateralis muscle among older patients with HFpEF. Both of these abnormalities were
significantly related to peak VO, on multivariate analysis.13 It was also shown that,
compared with healthy controls, patients with HFpEF have a reduced percent of total and
lean leg mass on DEXA scanning. Importantly, peak VO5 indexed to lean body mass was
significantly reduced in HFpEF, indicating a reduced oxygen utilization even after
accounting for the reduced skeletal muscle mass.1# While the above findings were important
in illustrating significant skeletal muscle abnormalities in HFpEF, they did not directly
assess mitochondrial content or oxidative capacity.

Mitochondrial function was directly assessed by Bowen et a/. in a rat model of HFpEF.15 In
this study, female salt-sensitive rats were separated into three groups: low-salt diet, high-salt
diet or high-salt with treadmill exercise training. Diaphragm muscle biopsy from high-salt
diet rats, who developed a HFpEF-like phenotype, demonstrated a fiber type shift from fast
(type I1) to slow (type 1) twitch, with impaired mitochondrial respiration, indicating electron
transport chain dysfunction. Interestingly, soleus muscle biopsy did not demonstrate a
change in fiber-type ratio, but did demonstrate reduced activity of citrate synthase, a key
Krebs cycle enzyme that has been well validated as a proxy for mitochondrial content and
oxidative capacity.1® Exercise training attenuated the reduction of both soleus citrate
synthase activity and diaphragmatic mitochondrial respiration. This rat model may not
recapitulate the key features of skeletal muscle dysfunction in HFpEF, since human HFpEF
has been shown to exhibit a shift towards fewer slow-twitch type | fibers in vastus lateralis
muscle, as discussed above. Additionally, a biphasic pattern of response to pressure overload
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(an early increase in mitochondrial oxidative phosphorylation, with a subsequent decline that
coincides with transition from cardiac hypertrophy to HF) has been reported in models of

HFrEF; however, whether this pattern occurs in the transition to human HFpEF is unknown.
17

Molina et al. subsequently studied the expression of important mitochondrial proteins (as
markers of mitochondrial content and oxidative capacity) among elderly HFpEF patients.
Mitochondrial content in vastus lateralis muscle tissue (as indicated by expression of porin, a
mitochondrial membrane protein) was significantly reduced (46% lower) in the HFpEF
group compared to sedentary healthy controls.18 HFpEF subjects also had a significantly
lower expression of both citrate synthase and mitofusin 2, a key regulator of mitochondrial
fusion. Both porin and mitofusin 2 expression exhibited a moderate significant direct
correlation with peak VO,. These studies made a convincing case for the presence of
skeletal muscle mitochondrial dysregulation in HFpEF, but further research was needed to
assess the impact of such abnormalities on energetics during exercise.

Novel advanced imaging techniques provided additional insights into dysfunctional skeletal
muscle energetics and further demonstrated the link between mitochondrial dysregulation
and exercise intolerance. Recently, Weiss et al. compared 12 patients with HFpEF with 11
healthy controls, using3!P magnetic resonance spectroscopy (MRS) during a plantar flexion
exercise stress test to assess skeletal muscle energetics. They found that, while resting MRS
measurements were not significantly different from healthy controls, patients with HFpEF
exhibited very early and rapid depletion of high-energy phosphates during exercise, and
significantly decreased maximal mitochondrial oxidative capacity.19 Whereas it is tempting
to interpret this as evidence of intrinsic mitochondrial dysfunction, it should be noted that /n
vivo measurements of oxidative capacity interrogate the integrated function of the oxygen
transport chain, including local oxygen diffusion capacity and intrinsic mitochondrial
function. Therefore, impaired microvascular vasodilation and/or microvascular rarefaction
(which can directly impact oxygen diffusion capacity), in addition to intrinsic mitochondrial
dysfunction, could cause or contribute to these observations.

Whereas patients with HF can exhibit skeletal muscle deconditioning as a result of
chronically reduced physical activity, it is important to note that the skeletal myopathy seen
in HFpEF, and more broadly in heart failure, cannot be fully explained by deconditioning.
While deconditioning likely contributes to HF myopathy, disuse atrophy causes an opposite
fiber type shift than that reported in human HFpEF; deconditioning typically results in
preferential decrease in type 11 fibers.20

In summary, available data demonstrates abnormalities in skeletal muscle mitochondrial
content and structure, and a significant energetic impairment during exertion in HFpEF. This
suggests that mitochondrial dysfunction may contribute to exercise intolerance in HFpEF
patients and introduces a potential novel therapeutic target in this condition. The etiology
and time-course leading to mitochondrial dysfunction in HFpEF is unclear; possible
etiologies include chronic elevation of sympathetic tone, oxidative stress, overexpression of
pro-inflammatory cytokines, or factors associated with the metabolic syndrome known to be
associated with mitochondrial abnormalities, such as insulin resistance.2}: 22 Given the
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potential role of this organelle in the pathophysiology of HFpEF, there is significant interest
in novel therapeutics that directly target mitochondria; however, there are important aspects
of mitochondrial biology, function and phenotyping that need to be considered when
designing and interpreting early-phase mechanistic clinical trials with agents that impact
mitochondrial function in HFpEF.

Cardiac Muscle Mitochondrial Abnormalities in HFpEF

There is also evidence that cardiomyocyte mitochondria in HFpEF have structural and
energetic abnormalities. The proposed pathophysiology involves an increase in reactive
oxygen species and mitochondrial damage, which results in a mismatch between ATP
production and demand while also activating downstream signaling pathways that can result
in cardiac remodeling, inflammation and diastolic dysfunction.23 A mouse-model of cardiac
hypertrophy and diastolic dysfunction induced by abdominal aortic banding showed an
overall decrease in cardiac mitochondrial metabolism and ATP production.?4 A recent study
in rats utilized a high fat, high sucrose diet to induce metabolic heart disease, characterized
by left ventricular hypertrophy and diastolic dysfunction. Hearts isolated from rats with
metabolic heart disease showed decreased rate of ATP synthesis measured by31P- magnetic
resonance spectroscopy.

Abnormal myocardial mitochondrial energetics have also been demonstrated in human
subjects using non-invasive imaging techniques. A study by Phan, et al., used31P-magnetic
resonance spectroscopy at rest to evaluate /n vivo myocardial energetics in 37 subjects with
HFpEF and 20 control subjects. They found that subjects with HFpEF had significantly
reduced energy reserves, as indicated by creatine phosphate/adenosine triphosphate (PCr/
ATP) ratio.25> Of note, like in peripheral muscle, in vivo measurements of oxidative capacity
may be impacted by factors that govern the oxygen transport upstream of the mitochondrial
respiratory chain, including myocardial microvascular rarefaction, which is a feature of
HFpEF.26 The relative causal impact of cardiac vs. skeletal mitochondrial dysfunction on
exercise intolerance is unclear, but it is likely that therapeutic agents that improve
mitochondrial function will likely enhance both cardiac function and peripheral oxygen
utilization.

Comparison with HFrEF

Patients with HFrEF have been shown to have a number of skeletal muscle abnormalities
that have also been shown in HFpEF, including reductions in type | oxidative fibers, citrate
synthase activity, mitochondrial volume and content, and capillary to fiber ratio.2’: 28

However, despite these similarities, there are differences in mitochondrial abnormalities
between patients with HFpEF and HFrEF. Hunter et a/. utilized mass spectrometry to
quantify levels of 63 circulating metabolites among patients with HFpEF, HFrEF, and no HF.
They found that long chain acyl carnitine levels, a marker of impaired fatty acid oxidation,
were elevated in all subjects with heart failure; however, they were significantly higher in
HFrEF than in HFpEF.29 In addition to this metabolic difference, prior studies indicate a
greater degree of impairment in peripheral mitochondria in patients with HFpEF. As
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mentioned above, Weiss er a/. used®lP MRS imaging to show that subjects with HFpEF
deplete PCr more rapidly than subjects with HFrEF during plantar flexion exercise.1®
Additionally, a study utilizing invasive hemodynamics during cardiopulmonary exercise
testing demonstrated that patients with HFpEF have more impaired peripheral oxygen
extraction compared to patients with HFrEF.30

Methods for the Assessment of Mitochondrial Function

A variety of techniques can be applied to interrogate several aspects of mitochondrial
biology, including mitochondrial biogenesis (content and turnover dynamics), ATP synthesis
and mitochondrial oxygen consumption/utilization, as schematized in Figure 1 and Table 1.

Assessment of Mitochondrial biogenesis

Mitochondrial biogenesis is the process by which mitochondrial size and number are
increased to escalate capacity for ATP production. Stimulating mitochondrial biogenesis in
skeletal muscle to improve the bio-energetic capacity during exercise, is thus an important
goal for novel therapeutics. During mitochondrial biogenesis, an increase in mitochondrial
content as well as the dynamic remodeling of the mitochondrial proteome occurs. Turnover
and removal of aged or damaged mitochondria occurs through mitophagy; this process
involves induction of general autophagic mechanisms with selective priming of
mitochondria for removal 3!

Mitochondrial content: Mitochondrial volume and content have been assessed using
transmission electron microscopy of muscle biopsy samples for decades. Indeed, there is
considerable evidence that mitochondrial content assessed in this manner is reduced in heart
failure and correlates with exercise capacity. However, this technique is time-consuming,
requires expensive equipment, and does not provide information regarding mitochondrial
function.

Biomarkers isolated from muscle tissue samples are often used as surrogate measures of
mitochondrial content. Activity of citrate synthase, which catalyzes the first reaction of the
citric acid cycle, is the most commonly used biomarker for mitochondrial function and is
thought to be the most reliable indicator of mitochondrial content.18 Activity of this enzyme
is measurable via a commercially available spectrophotometric assay kit (Sigma-Aldrich, St.
Louis MO, USA). Similar assays for activities of electron transport chain complexes I-1V,
including cytochrome c oxidase, have also been developed.32

In addition to enzyme activity, expression of various mitochondrial structural proteins and
transcription factors can provide an estimate of mitochondrial content; commonly used
proteins include mitofusin I/1118, silent information regulator 1 (SIRT1)33, peroxisome
proliferator-activated receptor gamma coactivator 1-alpha (PGC1a.)3*, nuclear respiratory
factor 1/2 (NRF1/2), estrogen-related receptor alpha (ERRa.)3®, and succinate
dehydrogenase3®. Protein expression can be measured directly with Western blotting or

through measurement of MRNA transcripts with real-time polymerase chain reaction (PCR).
33
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The content of cardiolipin, a phospholipid found only in the mitochondrial inner membrane,
appears to be an excellent marker of mitochondrial content.1® Mitochondrial DNA (mtDNA)
content can be quantified as well via polymerase chain reaction (PCR). Levels of mtDNA
have been shown to increase in response to exercise training proportionally to citrate
synthase and mitochondrial volume density37; however, recent evidence suggests that it may
not be a reliable indicator of mitochondrial content.16

Mitochondrial turnover dynamics: In addition to measuring fixed concentrations of
mitochondrial proteins, assessment of dynamic changes in the mitochondrial transcriptome
and proteome allow for a more specific and temporally-resolved assessment of
mitochondrial biogenesis in response to stimuli. Mitochondrial proteins are continually
remodeled with frequent turnover, allowing for quality control of proteins and optimal
mitochondrial function.38 The synthesis and turnover rates of mitochondrial proteins thus
reflect the overall quality of the mitochondria as a whole. However, mitochondrial proteins
are particularly susceptible to damage by reactive oxygen species (ROS), given that most
ROS are generated in the mitochondria during oxidative phosphorylation.3? As such, it
becomes even more important to ensure that turnover continues to occur during pathologic
states like heart failure. Indeed, it is thought that accumulation of protein damage from ROS
and decreased mitochondrial protein turnover are key aspects of the pathophysiology of
heart failure.*0

It is possible to assess dynamic mitochondrial proteome-wide changes through measuring
changes in the rates of protein synthesis or turnover. Novel stable isotope labeling
techniques with high-resolution mass spectrometry have allowed for global assessments of
mitochondrial proteome dynamics. Heavy water (2H,0) labeling has been used to assess
turnover rates of mitochondrial proteins in a rat model, finding dramatic variations in half-
lives; half-lives ranging from hours to months were calculated for the 458 mitochondrial
proteins that were characterized.*! This same technique applied to a rat model of heart
failure found bidirectional changes in half-lives of cardiac mitochondrial proteins, with
several proteins involved in fatty acid oxidation, electron transport chain (ETC) function,
and ATP synthesis showing increased turnover and other oxidative proteins showing
decreased turnover.42 This approach has been extended to humans /in vivo, with a study by
Wang et al. showing the safety of a2H,0 administration protocol for large scale tracking of
serum proteome dynamics.*3 The potential of this technique for characterizing patients with
HFpEF and their response to novel therapeutics requires further study.

Assessment of ATP synthesis

In addition to evaluating changes in mitochondrial biogenesis, changes in the functional
ability of mitochondria to generate ATP can be measured ex vivoand /n vivo.

Ex vivo measurements of mitochondrial ATP synthesis can be performed via
bioluminescence in mitochondria isolated from tissue samples.* In brief, fresh tissue is
sampled through percutaneous needle muscle biopsy and mitochondria are separated rapidly
by centrifugation and suspended in a reaction mixture, which contains firefly luciferin-
luciferase ATP-monitoring reagent, substrates for oxidation and ADP. ATP molecules
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produced by mitochondria react with firefly luciferase and create light signal proportional to
the concentration of ATP in solution. The quantity of photons produced is then quantified
using a luminometer. Whereas this technique is intuitive, ex vivo measurements of
mitochondrial ATP synthesis obtained via skeletal muscle biopsy may not reflect their
function /n vivo, which depends on integrated oxygen transport and diffusion mechanisms.
In addition, the need for single or serial skeletal muscle biopsies represents a barrier to
subject participation in clinical trials.

A number of novel non-invasive imaging methods for measuring oxidative capacity and ATP
production have been well described as markers of /7 vivo mitochondrial function. Unlike
studies of mitochondria explanted from tissue biopsy, these imaging methods allow for /n
vivo, serial and real-time measurements of oxidative phosphorylation capacity during or
immediately after exercise.

Magnetic resonance spectroscopy (MRS) can detect3!P, which is commonly found in high-
energy intracellular substrates. This requires MRI phosphorus coils (i.e., coils “tuned” to
detect31P signal), which are different from standard clinical hydrogen coils. Exercise
protocols can be performed while subjects are inside the magnet, causing demand for ATP
that is met by breakdown of phosphocreatine (PCr). After depletion of PCr and cessation of
exercise, oxidative phosphorylation within the muscle leads to ATP production. The
recovery rate of PCr after exercise depletion reflects generation of ATP and can be used to
calculate the maximum /n7 vivo mitochondrial oxidative capacity (ATPmax).*?

Phosphorous spectroscopy has been extensively validated through comparison with other
markers of mitochondrial function. ATPy,,x measured with31P MRS has been correlated
with gold-standard /7 vitro measures of mitochondrial respiration from muscle biopsy.
Lanza et al. first provided this evidence in a study that used high-resolution respirometry of
mitochondria isolated from muscle biopsy to show agreement between in vitro organelle
oxygen consumption and Jn vivo oxidative capacity.*6 Coen et al. expanded on these
observations by comparing /in vivo ATPyax With respiration from permeabilized muscle
fibers.4” 31p MRS can also be performed during exercise and recovery for dynamic
assessment of mitochondrial capacity with high temporal resolution in stressed skeletal
muscle (Figure 2A). As detailed above, Weiss et al. utilized this technique to show that
subjects with HFpEF deplete PCr more rapidly than subjects with HFrEF and healthy
controls during plantar flexion exercise; they also showed poor oxidative capacity in these
subjects through assessment of PCr recovery rates.1® The main limitations of31P MRS are its
poor spatial resolution, its low signal-to-noise ratio, and the lack of wide availability of
phosphorus coils.

Creatine chemical exchange saturation transfer (CrCEST) is a highly innovative novel MRI
technique that addresses various limitations of31P MRS and allows for assessments of
muscle oxidative capacity with high spatial (anatomic) resolution, high signal-to-noise ratio,
and the use of hydrogen coils. Figure 2B shows an example of a CrCEST acquisition.
CrCEST utilizes the magnetic saturation of creatine hydrogens, which are continuously
exchanged (and transferred) to water molecules. This technique can perform fast, spatially-
resolved measurements of creatine concentrations in tissue, and thus determine the Kinetics
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of rate of free creatine recovery after exercise, which is a mirror image of PCr recovery
(Figure 2C).%8 Debrosse et al. utilized CrCEST in a study of subjects with genetic
mitochondrial diseases and found a significantly prolonged rate of free creatine decline,
consistent with poor mitochondrial oxidative function.*

Assessment of Mitochondrial Oxygen Consumption

Mitochondrial respiration involves a series of cellular processes that convert energy stored in
macronutrients into ATP, utilizing oxygen as the final electron acceptor of the electron
transport chain. Rates of oxygen consumption thus reflect mitochondrial capacity for ATP
synthesis. High-resolution respirometry allows for the assessment of oxygen consumption in
intact or permeabilized cells or isolated mitochondria. Unlike static measurements (such as
concentrations of enzymes, DNA, RNA and various signaling molecules), respirometry
allows for dynamic measurements of mitochondrial function at the level of the organelle.
Respiration is measured by a temperature-controlled device, known as an oxygraph, that
measures changes in oxygen tension inside a sealed incubation chamber; oxygen
consumption is then derived from the change in oxygen concentration.>? Oxygen
consumption can also be measured after the addition of various oxidative substrates.
Notably, to ensure mitochondrial structural integrity, respiratory function must be measured
on fresh tissue and not on frozen samples. Coen et al. reported that ex vivo oxygen
consumption of permeabilized fibers obtained from vastus lateralis muscle biopsy, as
measured by respirometry, significantly correlated with peak VO, and maximal ATP
production capacity (as measured by31P MRS) in older adults.*’

An interesting low-cost non-invasive method for the assessment of skeletal muscle
mitochondrial function was developed by Ryan et a/ using near-infrared spectroscopy
(NIRS).%1 NIRS is a non-invasive minimal-risk method, which measures changes in optical
absorption among the oxy and deoxy fractions of hemoglobin and myoglobin in tissue.
These can be used to assess local oxygen consumption. When NIRS is used in tandem with
repeated intermittent arterial occlusions via a cuff inflation, oxygen delivery is interrupted
and the decline in tissue oxygenation measured by NIRS is considered a function of oxygen
consumption. The rate of oxygen consumption can be assessed at various time points after a
local exercise transient (such as repeated handgrip contractions with NIRS interrogation of
the forearm), and the rate at which the consumption rate recovers to baseline can be
quantified (Figure 3). This technique has been reported to be reproducible and was cross-
validated with31P-MRS assessments in a study of healthy individuals after short-duration
plantar flexion exercise.>2 However, NIRS is significantly limited by depth and fat
attenuation. Figure 3 demonstrates an example of a forearm NIRS intermittent occlusion
study in a patient with HFpEF.

Assessment of cardiac mitochondrial function

Many of the above described techniques have been utilized for the assessment of
mitochondrial function in the heart. However, these measurements present unique challenges
when compared to the equivalent studies in skeletal tissue. Foremost among these is the
difficulty of obtaining routine endomyocardial biopsy samples for research purposes. Given
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the invasiveness of obtaining heart tissue, most studies have utilized tissue that was obtained
for clinical purposes or explanted hearts after transplantation.

Due to these barriers to obtaining cardiac tissue, significant attention has been paid to
utilizing non-invasive imaging for assessments of cardiac metabolism.31P magnetic
resonance imaging has been used in prior studies for assessment of myocardial
mitochondrial function; unfortunately, data collected using older 3T MRI coils showed a
relative low sensitivity, leading to poor spatial resolution and long acquisition times.>3 More
recent studies using 7T coils have shown a higher signal-to-noise ratio and more precise
quantification of3!P spectra.>* CrCEST has been applied for the assessment of myocardial
mitochondrial function in an animal model of myocardial infarction, but significant technical
development is required before it can be utilized in humans.>®

Considerations for Early Phase Clinical Trial Design with Mitochondrial
Agents in HFpEF

Treatment duration

Mitochondrial biology has important implications for clinical trial design. In particular, the
kinetics of maximum effect and return to baseline after a pharmacologic intervention should
be carefully considered.

Time Course of the Onset of Drug Effects

The goal of achieving a near-maximal effect prior to the end-point read outs (“on” effects) is
paramount in deciding the duration of the active treatment phase in both cross-over and
parallel arm early-phase trials. The goal of treatment with mitochondrial agents in HFpEF is
to improve exercise capacity by increasing mitochondrial biogenesis and function.
Mitochondrial biogenesis involves both an increase in mitochondrial content and remodeling
of the mitochondrial proteome. It is well established in the literature that sustained exercise
protocols increase mitochondrial content.>® Recent data indicate that exercise-induced
adaptations in the mitochondrial transcriptome and proteome occur within days of stimuli,
indicating that mitochondrial biogenesis can occur much earlier than previously believed.

A recent study of the mitochondrial proteome in human skeletal muscle indicated extensive
remodeling in response to exercise in as little as 7-14 days, suggesting increased
mitochondrial biogenesis and increased oxidative capacity; as an example, citrate synthase
activity increased by 35% at 7 days and subsequently plateaued.>’ Citrate synthase activity
has been shown to be highly correlated and concordant with mitochondrial content and
cristae density.1® A subsequent analysis of mitochondrial transcriptional regulation in
response to short-term exercise demonstrated elevations of both mRNA and protein content
of established regulators of mitochondrial biogenesis, including PGC-1a after 1 day and
ERRa after three days.>8 Increased levels of citrate synthase, cytochrome ¢, and cytochrome
c oxidase subunit IV expression were found within 3—7 days following start of exercise
training. Elevation of mitofusin-2 and transcription factor A mitochondrial factor mMRNA
expression was seen throughout training, though no change in protein content was measured.
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The above data suggests that treatment for as little as one to two weeks could be feasible to
see initial effects on mitochondrial function; it is unclear, however, when changes in
mitochondrial content/function and particularly, their effects on whole-system aerobic
capacity and other relevant endpoints such as quality of life, would reach a sustained steady
state. Additionally, the HFpEF patient population may have a more limited capacity to
stimulate mitochondrial biogenesis requiring treatment over longer time periods than non-
HF patients. Given such uncertainties, it seems prudent to consider treatment durations of at
least several (>4-6) weeks if feasible.

Washout of mitochondrial effects

In addition to the half-life of specific drugs, the longevity of newly formed mitochondria
(which in turn determine the time-period required for mitochondrial density to return to
baseline after discontinuation of therapy), is a key factor to consider, particularly when
cross-over designs are being contemplated. Unfortunately, data regarding the mitochondrial
half-life in various organisms and tissue types are scarce, and to our knowledge, no data are
available in HFpEF patients. It is however clear than even within the same organism,
mitochondrial half-lives differ greatly by organ/tissue type, as shown in Table 2. Further
research is needed regarding the dynamics of mitochondrial turnover in human HFpEF.
Given this uncertainty, results from crossover studies evaluating mitochondrial-targeting
agents should be interpreted in the context of the limitations of this study design.

Strategies for modulation of mitochondrial function

Stimulation of mitochondrial biogenesis

Human and animal model data suggest that mitochondrial biogenesis is reduced in heart
failure. The exact mechanisms behind this are unclear; however, evidence points to both
downregulation of the PGC1-a pathway or defective mitochondrial DNA replication.
Accumulating evidence suggests that stimulation of mitochondrial biogenesis is possible
through activation of adenosine monophosphate-activated kinase (AMPK) and the nitric
oxide/soluble guanylyl cyclase/cyclic guanosine monophosphate pathways.

AMPK has been shown to induce mitochondrial biogenesis through direct phosphorylation
of PGC1-a production83. It also appears that AMPK coordinates mitochondrial biogenesis
through epigenetic regulation of nuclear genes involved in nucleosome remodeling.64 A
number of current therapies indirectly target AMPK and have cardioprotective effects,
including metformin, telmisartan, thiazolidinediones and statins.85-87 Metformin, in
particular, appears to reduce progression of HF in animal models and is currently being
tested in an upcoming study of functional capacity and mean pulmonary artery pressures in
subjects with HFpEF (NCT03629340; Table 3).68 Direct AMPK activators are in various
stages of development, including 5-aminoimidazole-4-carboxamide riboside (AICAR),
A-769662, and PT-1.69 However, development of AMPK activators is complicated by the
heterogeneous expression and effects of its various subunits and isoforms. For example,
gain-of-function mutations in the -y2 subunit of AMPK appears to induce familial
hypertrophic cardiomyopathy.56

Circulation. Author manuscript; available in PMC 2020 March 12.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Kumar et al.

Page 12

Nitric oxide, through a cyclic guanosine monophosphate dependent (cGMP) pathway, has
also been shown to activate mitochondrial biogenesis.84 Nitric oxide signaling can be
increased through two pathways: direct modulation of soluble guanylyl cyclase (sGC),
which synthesizes cGMP, and through targeting of the endogenous nitrate-nitrite-NO
pathway. Although pre-clinical and early phase studies were promising, increasing NO
through the soluble guanylyl cyclase system with phosphodiesterase-5 inhibitors was not
effective in improving clinical or exercise status in patients with HFpEF.8° Vericiguat, a
direct sGC stimulator, appeared to exert positive effects on quality of life in the SOCRATES
PRESERVED trial, an effect that is now being tested in a larger trial (VITALITY-HFpEF;
NCT03547583).86 The CAPACITY-HFpEF trial is testing another sGC stimulator, IW-1973
(NCT03254485) (Table 3). However, these trials are not assessing the mechanism of any
potential effect of sGC stimulation on clinical outcomes. Of note, these agents could impact
symptoms through several non-cardiac effects, including improvements in conduit artery
function, which is highly NO-dependent.87

Targeting the nitrate-nitrite-NO pathway also appears to be an efficacious means for
increasing nitric oxide levels. Despite encouraging results with single-dose administration
trials of inhaled nitrite,88 the recent INDIE-HFpEF phase I1b trial did not demonstrate a
benefit of this agent on quality of life or aerobic capacity. The very short half-life of this
agent (~35 minutes) may have substantially limited any potential efficacy in this agent,
which was administered three times daily. In contrast to inorganic nitrite, orally-
administered inorganic nitrate demonstrates a longer half-life and favorable
pharmacokinetics for sustained administration.89 The use of oral inorganic nitrate has shown
promise in single and repeated-dose administration in early phase studies, and a larger phase
b trial (KNO3CK OUT HFpEF) is ongoing.89: 90 (Table 3). Of note, it is likely that the
effect of inorganic nitrate on exercise capacity is mediated by arterial, rather than
mitochondrial effects since reductions in arterial wave reflections were the main correlate of
increases in peak VO2 with this agent.’®

Resveratrol, a polyphenol found in red wine, has interestingly been shown to stimulate
mitochondrial biogenesis through both AMPK and nitric oxide-dependent mechanisms.’?: 72
Animal model data suggests that resveratrol can reduce cardiac dysfunction and improve
mitochondrial biogenesis in hypertension-mediated heart failure.% A study of 40 human
subjects post-myocardial infarction demonstrated efficacy in improvement of diastolic
function.92 Resveratrol has been studied in HFpEF with a completed study assessing the
effect of grape seed extract on endothelial function, however, the results have not yet been
published (Table 3).

Reduction of oxidative stress

Elevated and pathologic reactive oxygen species production has been implicated in a number
of cardiometabolic disorders, including heart failure.93 However, trials of antioxidant
therapies in HF have resulted in varying levels of success.

MitoQ, a lipophilic quinol that accumulates in the mitochondrial matrix and scavenges ROS,
has been extensively studied as a mitochondrial antioxidant. A recently published study
showed that in rats with pressure-overload induced heart failure, MitoQ reduced hydrogen
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peroxide levels and improved mitochondrial respiration.®* A human study of patients with
chronic hepatitis C showed a significant improvement in hepatic function without severe
side effects.9% However, the efficacy of MitoQ may be limited as its uptake into the
mitochondria relies on an intermembrane potential difference, which is reduced in heart
failure.56

Szeto-Schiller (SS) peptides are small amino acid sequences that are rapidly taken up by
mitochondria due to their high affinity for cardiolipin, a phospholipid found in the inner
mitochondrial membrane. The SS-31 variant of SS peptides (also called elamipretide or
Bendavia), in particular, has shown benefit as a cardioprotective antioxidant with reduced
mitochondrial ROS production and reduces maladaptive remodeling.’® There is also
evidence that elamipretide improves skeletal muscle function and exercise capacity.%
Results from long-term phase 1l efficacy studies of Elamipretide in humans are pending.

Other antioxidant therapies include free radical scavengers and superoxide dismutase
mimetics like mitoTEMPO and EUK8/EUK132.97: 98 Maintenance of mitochondrial iron
homeostasis and reduction of iron content is also thought to result in inhibition of free
radical formation and reduced oxidative stress; targeted therapies of targeted mitochondrial
iron chelators like deferiprone and idebenone have undergone human testing and led to
partial reversal of cardiomyopathy in patients with Freidrich’s ataxia.%®

CONCLUSION

Current evidence supports mitochondrial function as an important factor contributing to the
pathophysiology of HFpEF. As a result, there are a number of ongoing or completed early
phase clinical trials of agents that seek to improve mitochondrial function in this population
(Table 3) by acting on a number of different aspects of mitochondrial function (Figure 4).
However, these trials largely utilize endpoints that indirectly assess the improvement of
mitochondrial function through downstream effects on exercise capacity. While exercise
capacity is a clinically important outcome, it may be vital to better assess how these novel
therapeutics impact mitochondrial oxidative function, and whether dysfunction in other
organ systems become limiting in the presence of substantially improved mitochondrial
function. Direct measures of mitochondrial function have the potential to determine whether
the pharmacologic effects of new drugs mimic those seen in animal models, and to enhance
our understanding of how (and in whom) to target mitochondrial dysfunction in HFpEF. As
described above, there are numerous measures of mitochondrial function that can be utilized
in human studies, allowing for assessments of mitochondrial function at a level of detail
never before possible.

However, more studies are needed to clarify both the role of abnormal mitochondrial
function in HFpEF and the impact of mitochondrial therapies on morbidity and mortality in
this patient population. Additionally, future studies will be needed to clarify the extent of
mitochondrial pathology among the various phenotypic subgroups of patients with HFpEF.
As these studies are being planned and conducted, it will be vital to consider the unique
biology of the mitochondria and how we can best stimulate this powerhouse of the cell to
improve the lives of patients with HFpEF.
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Figure 1. Utilizing multiple aspects of mitochondrial biology for the assessment of functional

changes
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Figure 2. Utilizing phosphorous MRS and CrCEST for the quantification of oxidative capacity in
lower limbsduring exercise.

Panel A shows a representative image from a phosphorous MR spectroscopy study of the
lower limb. The phosphorous spectra are analyzed for each voxel before and after exercise,
allowing quantification of phosphocreatine recovery as a marker of oxidative capacity. Panel
B shows an example image from a CrCEST study with pre-exercise baseline and post-
exercise muscle-group specific increase in free creatine signal and subsequent decay during
recovery. Panel C provides a comparison of signal recovery to baseline during the post-
exercise period in both phosphorous MRS and CrCEST. Reproduced from Kogan, et al.100

Circulation. Author manuscript; available in PMC 2020 March 12.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Kumar et al.

Page 23

C
0-
0.5 °
D
-1
500 550 600 650 700 750 800 O(\:
B Time S -15
35 - . =
-2
30
a 25 25
T
B
O 20 3t
0 100 200 300
15 Time (s)
10
1900 2000 2100 2200 2300 2400 2500
Time (s)

Figure 3. Use of Near Infrared Spectroscopy for the assessment of skeletal muscle oxygen
consumption.

Panel A shows measurements of oxygenated hemoglobin during intermittent occlusions
post-exercise (to calculate individual slopes, indicated by arrows). This signal is calibrated
according to an ischemic occlusion (panel B). A subsequent exponential fit of the slopes
(panel C) allows for the measurement of oxygen consumption (MVOy).
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Figure 4. Activity of mitochondria-targeted therapies
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