Skip to main content
. 2019 Feb 26;43(4):1559–1574. doi: 10.3892/ijmm.2019.4112

Figure 3.

Figure 3

Strategies for editing a signaling pathway. (A) Signaling pathway where there is a mutation in the inhibitory gene that prevents the correct folding of encoded protein and therefore its function as an inhibitor. Indents B-E display different strategies that can be approached for preventing that inhibitory protein from being produced. (B) Knockout of the gene that codes for receptor, preventing it from acting on the pre-enzyme and from producing activator protein. (C) Knockout of the gene that codes for pre-enzyme, preventing it from acting on the pre-activator protein and from producing activator protein. (D) Knockout of the gene coding for pre-activator protein, preventing the enzyme acting on it from producing activator protein. (E) Mutation of the binding site of promoter so that the activator protein cannot bind. Indents F-I display different strategies that can be applied for the production of inhibitory protein. (F) Edition of a defective gene to restore production of an inhibitory protein to produce a functional inhibitory protein. (G) In the case that mutations in the inhibitor gene are difficult to repair, the pseudogene inhibitor is repaired to produce a functional inhibitory protein. (H) If a deleterious mutation is difficult to repair and causes the accumulation of a misfolded protein, the gene could be totally inactivated and the pseudogene can be reactivated to produce a functional protein. (I) Another strategy is the addition of the functional cDNA of the inhibitor gene in any of the genes or pseudogene stimulated by the activator protein. (J) Finally, mutation of the enhancer results in reduced production of inhibitory protein.