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Abstract

We develop an efficient parallel multiscale method that bridges the atomistic and mesoscale 

regimes, from nanometer to micron and beyond, via concurrent coupling of atomistic simulation 

and mesoscopic dynamics. In particular, we combine an all-atom molecular dynamics (MD) 

description for specific atomistic details in the vicinity of the functional surface, with a dissipative 

particle dynamics (DPD) approach that captures mesoscopic hydrodynamics in the domain away 

from the functional surface. In order to achieve a seamless transition in dynamic properties we 

endow the MD simulation with a DPD thermostat, which is validated against experimental results 

by modeling water at different temperatures. We then validate the MD-DPD coupling method for 

transient Couette and Poiseuille flows, demonstrating that the concurrent MD-DPD coupling can 

resolve accurately the continuum-based analytical solutions. Subsequently, we simulate shear 

flows over polydimethylsiloxane (PDMS)-grafted surfaces (polymer brushes) for various grafting 

densities, and investigate the slip flow as a function of the shear stress. We verify that a “universal” 

power law exists for the slip length, in agreement with published results. Having validated the 

MD-DPD coupling method, we simulate time-dependent flows past an endothelial glycocalyx 

layer (EGL) in a microchannel. Coupled simulation results elucidate the dynamics of EGL 

changing from an equilibrium state to a compressed state under shear by aligning the molecular 

structures along the shear direction. MD-DPD simulation results agree well with results of a single 

MD simulation, but with the former more than two orders of magnitude faster than the latter for 

system sizes above one micron.

1 Introduction

Using tethered chains or brush-like layers we can design effective soft multi-functional 

surfaces for diverse engineering applications. For instance, tethered polymer chains or 

brushes in Micro-Electro-Mechanical systems (MEMS) or membrane technologies have 

attracted great attention due to their potential for flow regulation1–3. As another example, the 
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combination of traditional ceramic membranes and organic polymers yields diverse surface 

properties, extending its usage to a wide range of solvents4. In addition to regulating the 

wettability, the polymer grafting can realize pore size tuning at the same time, which makes 

ceramic membranes more versatile5. However, grafting polymers also brings complexity to 

the flow system and therefore it is more difficult to analyze it or improve its design. A 

traditional approach is to perform different types of analysis for different flow subsystems. 

For example, the classic diffusion laws can be used in the bulk region while models for 

hindered flow in porous media can be employed for the polymer region6. Sometimes, this 

two-region analysis can be replaced by a boundary modification to the regular models5, but 

the boundary conditions are not easy to obtain due to the complex interactions between the 

polymers and flow.

On the biological side, one particular example is the endothelial glycocalyx layer (EGL), 

coating the endothelial cells and lining entire vascular system7. Glycocalyx is a sugar-rich 

layer, formed by oligosaccharide chains in direct contact with blood8. Recognized as an 

immobile sheet in early times, the EGL was subsequently found to interfere with the 

ambient flow and dramatically increase the microvascular flow resistance9,10. The EGL is in 

direct contact with blood and essential to human metabolism, as in their interaction with 

blood, they act as protective layer for chemical or mechanical irritations. Moreover, few 

biological process that happen in the vessels can avoid the participation of EGL. Therefore, 

their dendritic structure and their dynamics under flow and interactions with blood cells or 

medicated particles are all of great interest. Recent efforts have focused on understanding 

EGL along with growing concerns about health problems such as diabetes11 and 

atherosclerosis12. Though experimental technologies can be used to probe the flow-

glycocalyx interaction, we can gain a deeper insight into the EGL-blood interaction using 

appropriate computational models.

Among the existing simulation techniques, molecular dynamics (MD) is the most suitable 

method for modeling polymer brushes and EGL. Recent studies13–15 have demonstrated the 

effectiveness of MD in EGL modeling. However, simulating a vascular system is 

computationally expensive, and in fact to conduct an all-atom molecular simulation is 

prohibitively expensive and perhaps unnecessary, since EGL occupies only the endothelial 

regions of the vessels. Nevertheless, the complex interaction between blood flow and 

glycocalyx requires extremely high resolution, while the surrounding flow field has to be 

resolved adequately at a much larger spatio-temporal scales. We encounter the same problem 

in modeling polymer-brushes, where a detailed description maybe necessary to capture the 

complex dynamics, and we require multiple simulations to form a complete understanding 

since the flow depends on several factors such as grafting density, polymer length and shear 

stress16,17. For both the polymer brush and EGL problems, a single-scale simulation can be 

either computationally prohibitive or too coarse-grained to capture the important physics. 

Multiscale modeling approaches can employ heterogeneous descriptions, e.g., continuum 

and atomistic, hence combining different computational and resolution advantages. Several 

examples of multiscale methods are included in references 18–23.

In the multiscale modeling, a variety of models is employed to have different levels of 

resolution and complexity to study one system, where these models are coupled either 
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analytically or numerically. Conceptually, multiscale methods for coupling different solvers 

can be classified into two categories, namely sequential multiscale modeling and concurrent 

multiscale modeling24. The sequential coupling approach couples a hierarchy of 

computational models by sequentially transferring information, so that large-scale models 

can use the information obtained from more detailed small-scale models25. For this reason, 

the sequential coupling approach is also referred to as serial message-passing method. 

Alternatively, the concurrent multiscale modeling considers the quantities at each scale 

depends strongly on what happens at the other scales, so that different computational models 

are coupled on-the-fly as the computation proceeds. In a concurrent multiscale simulation, 

domain decomposition is often used to partition the system into sub-domains characterized 

by different scales and physics, and then the different scales of the system are coupled 

concurrently by a handshaking procedure26. Examples include a hybrid simulation coupling 

a lattice Boltzmann solution of the Navier-Stokes equations to a MD simulation of a dense 

fluid20, and a triple-decker algorithm applied to atomistic-mesoscopic-continuum 

simulations of shear flows21. Adaptive resolution scheme (AdResS)27 is another concurrent 

coupling framework, which can couple MD and coarse-grained domains via force 

interpolation. In the present study, we consider soft multifunctional surfaces subject to time-

dependent shear flows with focus on the concurrent multiscale modeling implemented with 

the domain decomposition method using the coupling methodology proposed in the triple-

decker algorithm21.

We employ dissipative particle dynamics (DPD) as our mesoscopic model to describe 

coarse-grained dynamics that is coupled with atomistic dynamics. Same as the MD model, 

DPD is a particle-based simulation method modeling stochastic dynamics associated with 

correct fluctuation correlations. Because current fluctuations can play an important role in 

microscale dynamics in molecular systems, without consideration of mesoscale fluctuations 

and correlations, some important physical features beyond the mean-field theory predictions, 

i.e., attraction of similarly charged plates28, may not be able to modeled. Moreover, DPD 

using a Lagrangian description of molecular systems has a direct connection with the MD 

method, because the governing equations of DPD can be rigorously derived by applying the 

Mori-Zwanzig projection to an atomistic dynamics29. In addition, the mean-field 

hydrodynamic equations of a DPD system recover the Navier-Stokes equations in the 

continuum limit30. Therefore, DPD is a good candidate to be coupled to the MD solver in 

our multiscale problems as it can seamlessly bridge the nanoscale dynamics and the 

mesoscale hydrodynamics.

The remainder of this paper is organized as follows: in Section 2 we briefly introduce the 

atomistic and mesoscopic methods, as well as the details how to implement the concurrent 

coupling via domain decomposition by matching state variables. In Section 3, we first 

validate the multiscale coupling method for transient Couette and Poiseuille flows. We 

subsequently investigate polydimethylsiloxane-grafted surfaces with various grafting 

densities subjected to shear flows, and then simulate time-dependent flows past an 

endothelial glycocalyx layer in a microchannel. Finally, we end up with a brief summary and 

discussion in Section 4.
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2 Mathematical models

The function of soft functional surfaces depends on the surface nanostructures with designed 

physical/chemical features, which are, in general, determined by specific atomistic details. 

Therefore, we employ an all-atom MD description to capture the molecular details in the 

subdomain with a functionalized surface, while we use a coarse-grained approach by DPD 

in the outer domain to simulate the flow of solvent and possibly the transport of 

nanoparticles. As shown in Fig. 1, the MD and DPD systems are then coupled via a domain 

decomposition technique by matching the state variables in an overlapping region. In this 

section, we first briefly introduce the atomistic and mesoscopic methods, and then describe 

in detail how to implement the concurrent coupling via domain decomposition.

2.1 Atomistic model

To test the capability and limitations of the concurrent coupling algorithm, we will consider 

three molecular systems, namely a simple fluid system, a polymer grafted system, and a 

glycocalyx system. The simple fluid system is made of water molecules, which also 

constitute the solvent in the other two systems. A Lennard-Jones potential is applied among 

all atoms, wherein the TIP3P model is used for water. Previous works have demonstrated the 

poor performance of classic water models in representing water transport properties such as 

viscosity31,32. For example, our simulation with the traditional TIP3P model yields very low 

kinematic viscosity as shown in Fig. 2, which is in agreement with previous reports32,33. 

Such low values of viscosity may lead to an erroneous velocity field in response to particular 

shear stress. An effective way to correct the water viscosity is to employ the DPD thermostat 

in the MD system34. The DPD thermostat, which consists of the pair of dissipative force and 

the random force, not only serves as a thermostat but also regulates the viscosity of the fluid. 

Given the dissipative force in the form of Fi j
D = − γ 1 − ri j/rc

s ei jvi j ei j, the kinematic 

viscosity can be roughly estimated by a function that depends on the DPD parameters as35

ν =
3kBT(s + 1)(s + 2)(s + 3)

16πγρnrc
3

+
16πγρnrc

5

5(s + 1)(s + 2)(s + 3)(s + 4)(s + 5) ,

(1)

where ρn is the number density of particles. Eq. (1) implies that the kinematic viscosity can 

be regulated by the dissipative parameter γ, cut-off radius rc and the exponent of weight 

function s.In the MD system, we fix s = 0.5 and γ =5.56 × 10−15 Nm/s to test the regulation 

effect on viscosity by changing rc. The simulation results are plotted in Fig. 2 for rc = 0.25 

nm and rc = 0.3 nm. We observe an increase in the viscosity values compared to the classical 

TIP3P model, and the DPD thermostat with rc = 0.3 nm yields correct kinematic viscosity ν 
= 8.90 × 10−7 m2/s at 300 K that is consistent with experimental measurements.

In order to model polymer brushes, we employ polydimethylsiloxane (PDMS), a polymer 

used widely in industrial applications. It combines characteristics such as flexibility, 
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thermal/chemical stability and hydrophobicity, and has been used as grafted polymer in 

previous works5,37,38. In our work, we employ PDMS as the grafted polymers and silica as 

the substrate to study the polymer response under water flow. The PDMS is represented 

using the atomistic model in the MD solver. The Lennard-Jones 12–6 potential is applied to 

the atoms, where the atomistic united atom force-field is used for the PDMS polymers. This 

force field has been validated against experiments, and accurate radial distribution functions 

were obtained39. Also, the aforementioned TIP3P water model with DPD thermostat is used 

for water. The PDMS/water interaction was validated by the simulation of a water droplet on 

PDMS matrix, with a contact angle of 104° in our work and in agreement with 100°−110° 

from previous experiments40.

In order to model the glycocalyx, we adopt the most detailed all-atom model so far 

introduced by Cruz-Chu et al.14 In this model, the sugar chains are represented by heparan 

sulfate (HS) chains as they are the most prevalent oligosaccharides in glycocalyx. Also, 

Syndecan-4 (Syn-4) are chosen as the transmembrane proteins embedded in a palmitoyl-

oleoyl phosphatidylcholine (POPC) lipid bilayer. We employ the CHARMM force field to 

compute the atomistic interactions between the glycocalyx atoms and the protein atoms41.

2.2 Mesoscopic model

A mesoscopic model covers the region where atomistic details can be neglected in order to 

reduce the computational cost. The DPD method42,43 is one of the most popular mesoscopic 

models, with governing equations rigorously derived by applying the Mori-Zwanzig 

projection to a MD system29. In this study, we adopt DPD as our mesoscopic model to 

describe coarse-grained dynamics that is coupled with atomistic dynamics.

Similarly to the MD model, a DPD system consists of many interacting particles, each of 

them is considered as a coarse-grained particle representing the collective dynamics of a 

group of Nc molecules. The pairwise interactions between DPD particles are governed by 

three forces, namely the conservative force Fi j
C, the dissipative force Fi j

D, and the random 

force Fi j
R. The formulas for these forces are given below:

Fi j
C = ai jωC ri j ei j,

Fi j
D = − γi jωD ri j ei j ⋅ vi j ei j,

Fi j
R = δi jωR ri j ξi jΔt−1/2ei j,

(2)

where a, γ and ε denote the strengths of the forces, rij is the distance between particles i and 

j, eij is the unit vector from particle j to i, and vij = vi −vj is the velocity difference. Also, 

ωC(r), ωD(r) and ωR(r) are the weight functions of FC, FD and FR, respectively. We choose 

the weight functions as ωC(r) = (1−r/rc) and ωD(r) = (1−r/rc)0.5 for r ≤ rc with a cutoff radius 

rc, beyond which the weight functions vanish. The fluctuation-dissipative theory requires 

ωD(r) = ωR
2 (r) and δ2 = 2γkBT, where kB is the Boltzmann constant and T the temperature.
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For all the MD-DPD coupled systems considered in the present study, each sub-system has a 

wall or a functional surface. The upper walls are in the DPD system, where we need to 

impose a no-slip boundary condition. The lower walls are in the MD system, which is 

modeled by fully atomistic description and we do not need to impose no-slip boundary 

condition. In particular, we employ a corrected dissipative coefficient as introduced by Li et 

al.44 to impose correctly the no-slip boundary condition on the channel walls and prevent 

density fluctuations in the DPD system. This correction is a function of the distance between 

the particle and the wall and it is only activated when the distance is smaller than the cut-off 

radius rc.

2.3 Concurrent coupling

Matching of state variables: The coupling is achieved by state exchange, i.e., the 

exchange of particle velocities in the overlapping region. As shown in Fig. 1, the velocity 

information from the sending regions of both domains are saved for use. During each 

communication, the velocity of the DPD particles lying within the receiving region is set as 

the average velocity of the MD particles in the same area. Similarly, the MD particles in the 

receiving region acquire the updated velocities in the same way. Spatial averaging with the 

Gaussian kernel is performed when extracting the local velocity. At the outer border of the 

overlapping region, both the MD and DPD systems impose a particle reflection to prevent 

losing particles. Any particle locating beyond the outer border is moved back to the 

computational domain by a specular reflection, and its velocity is then updated by assigning 

the velocity obtained from other solver. We note that imposing a particle reflection to 

maintain the mass of each subsystem constant can only be used for incompressible flows, 

which is the case considered in the present study. For compressible flows, the particle 

transportation through the interface between two Lagrangian solvers should be considered 

because of density variations. Then, particle deletion and insertion operations at the 

interface45 should be implemented to represent the mass flux through the interface. Before 

each communication, the MD simulation runs for 10 steps while the DPD simulation runs 

for one step. Therefore, we can obtain smooth velocity profile like the one shown in Fig. 1.

Both MD and DPD simulations are performed using the Large-scale Atomic/Molecular 

Massively Parallel Simulator (LAMMPS)46. The concurrent coupling of the MD and DPD 

solvers is implemented with the MUI library47. MUI is a C++ header-only library and serves 

as the data exchange and interpretation layer between different solvers, so that data of state 

variables at discrete points can be easily passed in a push-fetch manner. The three 

dimensional rendering of the MD and DPD systems is generated using VMD48.

Matching of physical properties: The MD system describes a physical system at the 

atomistic level, while the DPD system is a coarse-grained representation of a physical 

system. The typical length and time scales in a MD simulation are in general different from 

those in a DPD simulation. Correct coupling of MD and DPD system requires that the MD 

and DPD systems have consistent physical properties so that they correspond to the same 

physical system. To this end, we need to first perform a unit mapping between the MD 

system and the DPD system. Let the lower case symbols [l], [m] and [t] be the three basic 

units (i.e., length, mass and time units) of the MD system, and the capital case symbols [L], 
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[M] and [T] be the length, mass and time units of the DPD system, respectively. Given a 

coarse-graining level NC, a unit mapping from the MD system to the DPD system can be 

determined.

Taking the liquid water at temperature of 300 K as an example, [m] = 2.99 × 10−26 kg is the 

mass of a water molecule, [l] = 3.17×10−10 m is the characteristic length of a TIP3P water 

molecule, and [t] = 1 × 10−15 s is the time step used in MD simulations. Given a coarse-

graining level Nc = 10, the mass of a DPD particle is [M] = Nc [m] = 2.99×10−25 kg. Then, 

the length scale of the DPD system can be computed by matching the physical mass density. 

Let ρn = 3.0 be the number density of DPD particles, the mass density of the DPD liquid 

should be ρ = ρn · [M]/[L]3 = 1000 kg/m3, from which we have [L] = 9.64×10−10 m. Let [ε] 

and [ν] be the units of energy and kinematic viscosity of the DPD system. Although the time 

unit [L] can be determined via a dimensional analysis of either energy [ε] or viscosity [ν], 

i.e., [ε] = [M][L]2[T]−2, and [ν] = [L]2[T]−1, the time units computed from matching the 

energy and matching the viscosity should be consistent so that correct magnitude of thermal 

fluctuations can be captured. Because both the reduced DPD temperature and the kinematic 

viscosity of DPD fluids change with the value of energy unit [ε], we vary the value of [ε] 

carefully and compute the corresponding viscosity until we have a consistent time unit from 

the energy and the viscosity. By running a few test DPD systems, we obtain the energy unit 

[ε] = 9.78 × 10−21 J and the viscosity unit [ν] = 1.74 × 10−7 m2/s, both leading to a time unit 

[T] = 5.33 × 10−12 s. Accordingly, we have a DPD system with kBT = 0.42 and ν = 5.11 in 

reduced DPD units representing liquid water with a kinematic viscosity of 8.90×10−7 m2/s at 

a temperature of 300 K. For comparison, the values of the characteristic units of both MD 

and DPD models are listed in Table 1.

3 Results

3.1 Simple shear flows

To validate the MD-DPD coupled algorithm, we firstly apply it to the cases of simple flows, 

namely Couette flow and Poiseuille flow. The arrangement of the MD and DPD solvers is 

based on the overlapping domains shown in Fig. 1. For the Couette flow, the fluid is 

confined between two parallel walls at a distance of 30 nm. The MD domain extends from 0 

to 5 nm while the DPD domain extends from 2.5 to 30 nm with an overlapping region of 2.5 

nm. Both domains are periodic in x and y directions. We set the wall velocity in x-direction 

as v0 = 0.0 on the MD side, and v1 = 1.0 in reduced DPD unit on the DPD side. The 

evolution of velocity profiles with time is computed and shown in Fig. 3(a).

In the case of Poiseuille flow, the distance between walls is 15 nm. The MD domain extends 

from 0 to 4 nm from the lower wall while the DPD domain extends from 2.5 to 15 nm with 

an overlapping region of 1.5 nm. Periodic boundary conditions are applied in x and y 
directions in both solvers. Let ma be the atom mass and mw be the mass of a water molecule 

in MD units. The walls are fixed on both sides, while body forces at 0.0005 ma in the MD 

domain and 0.0005 Nc mw[FMD]/[FDPD] in the DPD domain are applied to the flow 

particles. Here, [FMD] and [FDPD] represent the force units in MD and DPD solvers, 

respectively. The same as for the Couette flow, we compute the time-evolution of velocities 

profiles of the Poiseuille flow shown in Fig. 3(b).
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In the Couette flow, the time evolution of velocity profile can be described analytically as49

V x(z, t) =
U0z

d + ∑
n = 1

∞ 2U0
nπ ( − 1)nexp −νφn

2t sin φnz , (3)

where ϕn = nπ/d with d being the channel width, U0 is the velocity of the moving wall, ν is 

the kinematic viscosity and t the time.

On the other hand, the time-dependent Poiseuille flow follows the analytic solution35

V x(z, t) = gd2

8ν 1 − 2z
d

2
− ∑

n = 0

∞ 4( − 1)nd2

νπ3(2n + 1)3 .

cos (2n + 1)πz
d exp − (2n + 1)2π2νt

d2 ,

(4)

where g is the body force. Fig. 3 shows the comparison between the coupled simulations and 

the analytical solutions. We observe excellent agreement in both Couette and Poiseuille flow. 

In addition, we observe an approximately uniform density across the domains. A slightly 

drop of the density at the wall is due to stiff atomistic interaction, while constant density 

profile is observed in the bulk MD region and in the DPD domain. Here, it is worthy noting 

that, in order to eliminate the density fluctuations in the vicinity of wall due to the atomistic 

lattice structures, we create the solid wall by cutting selected regions from a thermal 

equilibrium MD system so that the particle distribution in the solid phase is randomized and 

has the same particle structures as the liquid phase44. Benchmarks of both the Couette and 

Poiseuille flows demonstrate that the coupled MD-DPD method provides continuous and 

smooth velocity profiles across the overlapping region and can represent accurate time-

dependent flows.

3.2 Polymer brushes

To validate the PDMS polymer model, we first perform equilibrium simulations only with 

the MD solver. According to some widely accepted results, the equilibrium properties of 

polymer brushes are determined by the excluded-volume interaction and conformation 

entropy of the polymer chains, and the polymer heights follows the scaling law as50–52:

h Lσβ, (5)

where σ is the grafting density, L is the contour length of the polymer, and h is the average 

brush height, which can be calculated by

h = 2∫ zρ(z)dz
∫ ρ(z)dz . (6)
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The value of the exponent β is different for theta and good solvents52. Due to the 

hydrophobicity of PDMS, there should be β = 1/2 for the PDMS and water system50. We 

perform the PDMS-grafted simulations for three different grafting densities; from dense to 

sparse, we have σ = 1.0, 0.25, and 0.11 nm−2, respectively. In Fig. 4 we show results of the 

brush height, which are in agreement with the theoretical scaling law.

We drive the flow by imposing a fixed velocity at the upper wall on the DPD side. Fig. 5 

shows the velocity profile for water and the density profile for polymer, from which we can 

see that the flow inside the brush is greatly affected compared to the standard Couette flow, 

shown a plug-like profile. By extrapolating the far-field linear velocity profile to zero, we 

can find an imaginary boundary site that has the same far-field velocity profile by replacing 

the brush with a solid wall at a new position. The penetration depth, also called slip length, 

is defined from the tip-position of polymers to the extrapolating site as shown in Fig. 5, 

where the tip-position is determined by the location where the density decay to zero for 

polymer brushes in equilibrium. Thus, the polymer grafted wall can be approximatively 

regarded as a solid wall with the thickness of (h−lslip).

The slip length depends on both the grafting density and the shear rate; it increases with 

shear rate, partly due to polymer bending under high shear stress and partly due to the high 

velocity in the near wall region with almost flat velocity profile. In Fig. 6(a) we display the 

variation of the slip length with shear rate in different systems with various grafting 

densities. Increasing the shear rate can compress the polymer and also enhance the hindered 

flow in the boundary regions, leading to larger slip length. Let τ be the average shear stress 

defined by the dynamical viscosity multiplying the velocity gradient in the bulk region. We 

find in Fig. 6(a) that the slip length remains almost unchanged when τ is relatively small. 

However, as τ increases beyond a critical value τ0, lslip starts increasing linearly. The critical 

shear stress τ0 is different for various grafting densities. It is appreciated that as in denser 

grafted systems, stronger stresses are required to compress the polymers, hence expanding 

the region of the bulk flow. In addition, the hindered flow in the polymer domain also 

requires greater shear stress values to form a visible velocity with higher grating density. In 

summary, higher grafting density can lead to higher critical shear stress for the slip length to 

increase with the stress.

In the previous scaling law based on the so-called “blob theory”, we have lslip ∼ σ−1/2 for 

specific kinds of polymers53. Deng et al.50 demonstrated that such scaling law can only be 

used below the critical shear rate, with the overall scaling law for the slip length changing 

with shear rate given as

lslip
σ−1/2 1 + f τ − τ0, β , (7)

where f is a step-like function as
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f τ − τ0, β =
0 τ < τ0

τ − τ0
α(β) τ ≥ τ0 .

(8)

Therefore, if we plot lslip/σ−1/2 with (τ −τ0), there should be a unique curve for a specific 

type of polymer in a specific solvent, regardless of the grafting density. So, we re-plot the 

data in Fig. 6(a) in the form of (lslip/σ−1/2) with (τ − τ0) for different σ, and indeed they 

collapse to a single curve as shown in Fig. 6(b). By fitting this curve, we obtain an 

expression for f(τ −τ0) as follows

f τ − τ0, β =
0 τ < τ0

τ − τ0
0.5 τ ≥ τ0 .

(9)

3.3 Glycocalyx

The all-atom structure of glycocalyx first introduced by Cruz-Chu et al.14 is adopted in our 

simulations. As shown in Fig. 7, each glycocalyx unit contains a Syndecan-4 dimer, and 

each of the monomers is joined with three 50-residue heparan sulfate sugar chains. We start 

with a small system with one glycocalyx unit and 50 nm height in z-direction beyond the 

lipid layer. We perform simulations both with the MD model and the coupled MD-DPD 

model. Subsequently, we enlarge the domain to a height of 200 nm and also 1 μm to 

compare the computational efficiency between the MD and the MDDPD algorithms.

In Fig. 8 we display the velocity profile of the pressure-driven flow over a single glycocalyx 

model when the upper boundary wall is 50 nm away from the lipid layer. For runs with the 

MD simulation alone, the velocity profiles are denoted by circles. In accordance with 

previous works14, a parabolic velocity profile occurs above the glycocalyx, while the profile 

seems to be linear within the sugar chains. The magnitude of velocity becomes one order 

smaller (approximately 2 m/s, and a Reynolds number Re ≈ 0.1) at the tip of the glycocalyx 

layer than the bulk region, where the sugar chains are stretched by the shear flows. 

Subsequently, we employ the coupled MD-DPD system to repeat the same simulations. Here 

the MD domain extends from 0 to 35 nm while the DPD domain extends from 25 to 50 nm 
with an overlapping region of 10 nm. The DPD domain contains only water molecules. The 

velocity profile obtained from the coupled MD-DPD simulation, displayed as squares, is in 

good agreement with the MD simulation.

We can also introduce some modeling based on the continuum hypothesis in order to derive 

simple solutions of the glycocalyx system. To this end, the pressure-driven flow through the 

glycocalyx layer can be described by the Brinkman equation54,55, which is used for 

permeation through porous membranes
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μ
d2νx

dz2 − Λνx + dP
dx = 0, (10)

where vx is the fluid velocity in the x-direction and P is the pressure; μ denotes the dynamic 

viscosity, and Λ is the hydraulic resistivity, which depends on Darcy’s permeability κ by Λ 
= μ/κ.

Beyond the glycocalyx layer, there is a fully developed flow, where the momentum equation 

is

μ
d2νx

dz2 + dP
dx = 0. (11)

We employ a second-order finite difference method to obtain a numerical solution for Eqs. 

(10) and (11), where μ = 0.9× 10−3 Pa s and ∇P = 2.4 × 108 MPa/m. The value of Λ varies 

within the range between 9 × 109 and 9 × 1011 dyn· s/cm4. We recorded the mean squared 

errors when fitting the numerical solution to the velocity plots from our MD-DPD coupled 

simulation, and the best fitting comes from the Λ = 9×1010 dyn·s/cm4 case, which lies 

exactly within the range given by previous estimates56 of 1010-1011 dyn·s/cm4. The 

numerical solution when Λ = 9×1010 dyn·s/cm4 is also displayed in Fig. 8.

With the MD-DPD coupled algorithm, we can enlarge the system by duplicating the 

glycocalyx layer three times. In the simulation we observe the compression of the 

glycocalyx layer under flow as shown in Fig. 9 (see also Supporting Information for a 

movie). The density profiles of the sugar chains before and after the compression are also 

displayed in Fig. 9. When comparing the density profile with the velocity in Fig. 8 we can 

find a mobile region above 15 nm from the wall and a relatively stable region below that. 

From the shear stress profiles in Fig. 8 we can obtain similar results, i.e., that the maximum 

shear stress occurs at the tip-area of the sugar chains while their lower parts are subject to 

much smaller stresses that do not affect the glycocalyx structure. In the simulations, the 

transmembrane proteins (Syndecan-4) are not fixed, but just embedded in and confined by 

the lipid bilayer. Although the proteins are hidden inside the glycocalyx layer, each 

Syndecan-4 is joined with three heparan sulfate chains14 and can response to the mechanical 

stimuli. The heparan sulfate molecules, which are stretched by the shear flow, transmits the 

flow-induced shear stress and pressure onto the transmembrane proteins. In Fig. 9(a) (see 

also Supporting Information for a movie), we can observe the deformation of the proteins 

because of stretching of the heparan sulfate chains.

To further quantify the glycocalyx distortion under flow, we use gyration tensor to represent 

its three-dimensional structure57. The gyration tensor is defined as
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Gmn = 1
Nν

∑
i

rm
i − rm

c rn
i − rn

c , (12)

where m, n can be x, y or z, and ri denotes the atomic positions while rc is the center of 

mass. If we denote the eigenvalues of the gyration tensor as λ1, λ2 and λ3, then the radius of 

gyration can be given as Rg = (λ1 +λ2 +λ3)1/2. In Fig. 10 we display the evolution of Rg 

with time for both the sugar chains and proteins. The time starts after the formation of a 

steady flow, and the results for the sugar chains represent the average value of all six chains 

on the central monomer. As we see from Fig. 10, the gyration radius of both sugar chains 

and protein increases with time. This demonstrates that they are both stretched by the flow, 

and after some time the glycocalyx layer reaches statistically stationary state.

The advantage of the MD-DPD coupling method cannot be fully presented if the simulation 

system is relatively small. As we increase the size of system to 200 nm and 1 μm in height, 

the simulation efficiency for each case performed on a cluster of 128 CPUs is displayed in 

Fig. 11. When the system size is increased from nano-meter to micro-meter, the 

computational cost of the coupled MD-DPD algorithm increases slightly, while the cost for a 

single MD simulation increases exponentially fast. For the height of 1 μm, the computational 

cost of a MD simulation is two orders of magnitude higher than the MD-DPD simulation. 

The reduction in computational cost is attributed by the following reasons. Firstly, the DPD 

system has less number of particles than the full-atom MD system. Given a coarse-graining 

level of 10, one DPD particle represents a group of 10 water molecules, which is 30 

interactive atoms (TIP3P) in MD. As a result, the total number of particles is only 1/30 of 

the full-atom MD system. Secondly, the pairwise potential between DPD particles becomes 

much softer than the Lennard-Jones potential in MD, and thus the time integration of DPD 

system can use much larger time step than that in MD. Furthermore, the number of 

neighboring particles in DPD is often smaller than that in MD, which also reduces the 

computational cost. Therefore, the computational efficiency of the coupled MD-DPD 

simulation is significantly higher than a full-atom MD simulation.

4 Conclusions

Bio-inspired hierarchical nanostructured surfaces play an important role in surface science 

for creating functional surfaces. A fundamental understanding of the relation between the 

surface structures and their functions can lead to a better and more effective design in 

diverse physical and biomedical applications. The multiscale features originating from these 

hierarchical structures span across a wide range of spatiotemporal scales, and hence, are well 

beyond the capability of any single simulation method. To this end, we developed a hybrid 

algorithm that couples molecular dynamics (MD) and dissipative particle dynamics (DPD) 

to solve the multiscale problems encountered in functionalized surfaces for nanoflow. The 

coupled method is able to cover different spatio-temporal scales and provide efficient 

simulation without losing local atomistic details.
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We validated the coupled MD-DPD method using time-dependent simple flows such as 

Couette and Poiseuille flows. In both cases, we observed smooth velocity and density 

profiles through the entire channel. Furthermore, the results show time-dependent accuracy 

in comparison with analytic solution. This MD-DPD coupled method can be used in many 

diverse applications in physical and biological systems. Here, we used two examples to 

demonstrate the effectiveness of the MD-DPD method for multiscale systems. For physical 

systems, we investigated the dynamics of polymer brushes under flow. In the MD domain, a 

detailed PDMS polymer model was established while the DPD domain included the solvent 

only. Our simulation results verify a previously established scaling law of slip length as a 

function of the imposed shear stress. For the biological system, we simulated flow over a 

surface grafted with a glycocalyx layer, fully immersed in the MD domain. In a test 

simulation with a simulation box of 50 nm in width, the MD-DPD method obtains identical 

velocity profiles with the MD alone simulation as well as a continuum-based numerical 

solution. Then we compare the simulation efficiency for the glycocalyx system with a height 

of 50 nm, 200 nm and 1 μm. As the simulation box grows in z-direction, the MD-DPD 

method performs stable simulations at very small extra cost while the MD simulation 

becomes prohibitively expensive.

Another possible application of the MD-DPD method is to simulate accurately targeted drug 

delivery of functional nanoparticles (with size of tens of nanometers) to the specific site of 

the glycocalyx layer58,59 (see Fig. 12). A typical human arteriole is about 50 microns, and 

the cell-free layer (CFL) is about 2 microns60. In the CFL region the solvent is plasma, 

which is similar to the DPD domain we employed in the glycocalyx MD-DPD simulation. 

The additional complexity, however, comes from the transport of nanoparticles through the 

CFL stream. These nanoparticles are functionalized with molecular level ligands and 

proteins, which somehow have to be resolved in order to correctly capture their interaction 

with the glycocalyx. However, since they are transported through the coarse-grained DPD 

domain, it is impossible to resolve molecular details in such large domain. What we 

envision, however, is simply the transport of nanoparticles through the DPD domain and 

their re-definition as they cross into the MD domain by endowing them with the 

functionalized ligands, since these information is available by the drug-delivery experts61.

In this paper, we demonstrated the application of MD-DPD multiscale simulation with 

domain decomposition in both physical (polymer-brush) and biological (glycocalyx) 

systems, which can be readily applied to other multiscale problems with complex interfaces 

requiring atomistic resolutions locally. Future works should consider extending this coupled 

MD-DPD method to multiphase flows involving suspensions and platelets moving through 

the overlapping interface between solvers. Fig. 12 shows a sketch of the MD-DPD 

multiscale simulation applied to functional nanoparticles transported through the CFL region 

for targeted drug delivery, where the nanoparticles are endowed with molecular functionality 

as they cross into the MD domain from the DPD bulk domain.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
Schematic of the domain decomposition of a three-dimensional channel (middle), and the 

MD-DPD coupling via an overlapping domain (left). On the right, a typical flow profile is 

sketched. Shown in the MD domain are polymer brushes and solvent whereas in DPD 

domain we include only the solvent (middle). The MD domain is much smaller than the 

DPD domain, but the MD simulation is computationally much more expensive than the DPD 

simulation.
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Fig. 2: 
Dependence of kinematic viscosity of water on temperature. Our MD simulation results 

from the TIP3P model (solid circles) are compared with TIP3P results at 300 K and 320 K 
by Mao and Zhang33 (diamonds, orange). Results of TIP3P with DPD thermostats with rc = 

0.25 nm are shown by open squares and with rc = 0.3 nm by solid squares. The dashed line 

shows experimental results36.
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Fig. 3: 
Testing the MD-DPD coupling for simple shear flows. Shown are time-dependent velocity 

profiles and density profiles for (a) Couette flow, and (b) Poiseuille flow. The overlapping 

domain is 2.5 nm. The solid symbols represent DPD results while the open symbols 

represent MD results.

Wang et al. Page 18

Soft Matter. Author manuscript; available in PMC 2020 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4: 
Polymer brushes in equilibrium. (a) polymer density as a function of the distance from the 

wall for different grafting densities. (b) polymer height as a function of grafting density. The 

MD simulation results agree well with the theoretical slope of 1/250–52.
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Fig. 5: 
Polymer brushes subject to shear flow. Shown are density and velocity profiles over a 

PDMS-grafted surface for grafting density σ = 1 nm−2. The definition of slip length is also 

illustrated in the figure.
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Fig. 6: 
Polymer brushes subject to shear flow. (a) slip length versus shear stress for two different 

grafting densities. (b) Slip length replotted versus the difference of shear stress and the 

critical shear stress τ0. Results collapse to a universal curve as predicted by Eqs. (7)–(9).
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Fig. 7: 
Schematic of the domain decomposition for the MD-DPD simulation of glycocalyx in a 3D 

channel subject to shear flow (left). On the right the detailed structure of the glycocalyx 

based on Cruz-Chu et al.’s work14 is shown.
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Fig. 8: 
Velocity profiles and shear stress (open diamond) over the glycocalyx layer and across the 

channel. Velocities are obtained with all-atomic MD simulation (red circles), MD-DPD 

coupled simulation (open and solid squares), and continuum based numerical results based 

on the model of Eq. (10) (dash line). The overlapping domain is 10 nm.
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Fig. 9: 
Simulation results of glycocalyx subject to shear flow. (a) Snapshots of the glycocalyx and 

the lipid layer at initial equilibrium (top), at intermediate stretching (middle), and fully 

stretched (bottom). (b) Sugar chain density at initial configuration (circles) and in fully 

stretched configuration (squares). See also Supporting Information for a movie.

Wang et al. Page 24

Soft Matter. Author manuscript; available in PMC 2020 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10: 
Evolution of the radius of gyration under shear flow. The square symbols denote the sugar 

chain and the triangle symbols denote the protein. Steady state is achieved after about 2 ns.
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Fig. 11: 
Comparison of computational efficiency between MD and MD-DPD simulations for 

different channel heights. In the MD-DPD coupled simulations the MD subdomain remains 

fixed at 35 nm and we change the size of the DPD subdomain. All simulations were 

performed using 128 Intel Xeon E5–2670 CPUs. The timings were collected for 1000 time 

steps for each of the simulations.
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Fig. 12: 
Sketch of a setup for simulating the transport of drug delivering nanoparticles to the 

glycocalyx. The size of the DPD domain is typically 1–2 μm to represent the cell-free layer 

in arterioles. The nanoparticles are transported in the DPD solvent (plasma) and as they 

cross into the MD domain, they are endowed with molecular functionality.
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Table 1:

Matching the physical properties: units for MD and DPD simulations. We perform MD simulations using 

LAMMPS with real units, and perform DPD simulations using LAMMPS with reduced DPD units. In coupled 

MD-DPD simulations, both MD and DPD quantities are converted to physical units to matching state variables

MD DPD Reduced

(real units) Scales DPD units

Length (m) 3.17×10−10 9.64×10−10 1

CG level - 10 -

Mass (kg) 2.99×10−26 2.99×10−25 1

Time (s) 1×10−15 5.33×10−12 1

Energy (J) 4.14×10−21 9.78×10−21 0.42

Viscosity (m2/s) 8.90×10−7 1.74×10−7 5.11
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