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Abstract: Estimating the interregional structural connections of the brain via diffusion tractography is a
complex procedure and the parameters chosen can affect the outcome of the connectivity matrix. Here,
we investigated the influence of different connection reconstruction methods on brain connectivity
networks. Specifically, we applied three connection reconstruction methods to the same set of diffusion
MRI data, initiating tracking from deep white matter (method #1, M1), from the gray matter/white matter
interface (M2), and from the gray/white matter interface with thresholded tract volume rather than the
connection probability as the connectivity index (M3). Small-world properties, hub identification, and
hemispheric asymmetry in connectivity patterns were then calculated and compared across methods.
Despite moderate to high correlations in the graph-theoretic measures across different methods,
significant differences were observed in small-world indices, identified hubs, and hemispheric asymme-
tries, highlighting the importance of reconstruction method on network parameters. Consistent with the
prior reports, the left precuneus was identified as a hub region in all three methods, suggesting it has a
prominent role in brain networks. Hum Brain Mapp 33:1894–1913, 2012. VC 2011 Wiley Periodicals, Inc.
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INTRODUCTION

Compiling the interregional anatomical connections of
large-scale brain networks, also known as the brain connec-
tome [Sporns et al., 2005], has recently acquired significant
interest because of its fundamental role in understanding
brain function [Gong et al., 2009a; Hagmann et al., 2008;
Honey et al., 2009]. With the advent of diffusion magnetic
resonance imaging (MRI) and tractography, it is now possi-
ble to derive the interregional connections of the brain in
large populations in vivo, allowing scientists to gain signifi-
cant insight into the organization of the entire brain net-
work, as well as the contributions of each individual
network element. Although estimating interregional con-
nections of the brain via diffusion tractography is indirect,
difficult to interpret quantitatively, and more error prone
than invasive tracing techniques, its noninvasive nature
makes it the only technique that can be used to study
human structural connectivity in large samples. For exam-
ple, connectivity maps of brain networks made using diffu-
sion tractography have been compiled to study the
relationships between structural brain networks and aging
[Gong et al., 2009b], interhemispheric asymmetry [Iturria-
Medina et al., 2010], the relationship between connectivity
and intelligence [Li et al., 2009], the relationship of struc-
tural and functional connectivity [Honey et al., 2009], and
the effects of early blindness [Shu et al., 2009].

Large-scale brain networks, comprising multiple gray-
matter regions and interregional white-matter fiber bun-
dles, exhibit specific, nonrandom connection patterns. It
has been hypothesized that individual network elements
across the brain may vary significantly in their connectiv-
ity patterns [Passingham et al., 2002] and these different
patterns of connectivity might define their functional roles
in brain networks. As a result, identifying the most central
nodes (also termed hubs) that play pivotal roles in the
coordination of information flow has been a major focus of
many prior brain mapping studies [Gong et al., 2009a;
Hagmann et al., 2008; Iturria-Medina et al., 2008]. Despite
their importance, a recent meta-analysis revealed inconsis-
tencies in the identification of hubs across studies [Gong
et al., 2009a,b; Hagmann et al., 2008; Iturria-Medina et al.,
2008; Shu et al., 2009]. For example, Figure 1 summarizes
the brain areas with the top 20% highest centrality meas-
ures [betweenness centrality (BC) or regional efficiency,
see the Methods section for detailed definitions] from the
literature. Even though a head-to-head comparison was
not practical due to the variety of methodologies used in
published studies (see Supporting Information Table I for
details), one can still appreciate from Figure 1 that there is
little unanimity across studies in the identification of cen-
tral nodes in the human brain.

The discrepancies in the literature raise a fundamental
issue that requires further investigation, namely, the degree
to which the specific method used to compile the connectiv-
ity matrix influences small-world properties and hub identi-
fication [Gong et al., 2009b; Iturria-Medina et al., 2010]. For

instance, structural connectivity maps can be generated
from probabilistic tractography by initiating tracking from
either gray matter or from deep white matter, and these two
methods might produce different results. This is partially
due to the fact that probabilistic tractography methods
based on Monte Carlo sampling of voxelwise probability
density functions (pdfs) suffer from distance-related artifacts
due to the progressive dispersion of uncertainty along the
tracking path, giving a preferential weighting of regions
close to the tracking start point at the expense of more dis-
tant areas. As a result, the probability map always demon-
strates a decrease in probability values with distance from
the start point of the seed region. Therefore, when the seed
region is located in gray matter for tracking, the resulting
connectivity matrix may be more weighted towards connec-
tions between the brain areas linked by short pathways. In
contrast, when the seed region is located in the deep white
matter [Jbabdi et al., 2010], connections between brain areas
linked by long white-matter pathways will have more seed
voxels located on these pathways and therefore more
samples sent from them, causing generally stronger connec-
tions between the regions linked by long tracts, another
distance-related effect that cannot be simply corrected by
normalizing for the tract length (see Fig. 2).

In this study, we quantitatively compared three methods
for reconstructing connections from probabilistic tractogra-
phy, using a same set of diffusion MRI data, to systemi-
cally assess their effects on the resulting connectivity
matrix, and specifically, their effects on small-world indi-
ces, identification of hubs, and hemispheric asymmetry in
connectivity patterns. We hypothesized that the graph-the-
oretic measures would be moderately correlated across the
three methods, but despite this there would be large
between-method differences in small-world indices and
hub identification. We further hypothesized that if distance
effects were one of the major reasons for between-method
discrepancies, results that are more consistent across meth-
ods should be obtained in analyses for hemispheric asym-
metries in connectivity patterns, where the paired tracts in
the two hemispheres are expected to have similar lengths.

METHODS

Subjects

Ninety-four healthy right-handed human subjects (age:
24.2 � 0.84 yrs, 48 females) were recruited in this study
after informed written consent as per Emory Institutional
Review Board guidelines. All subjects had no history of
neurological or psychiatric disorders.

Acquisition of MRI Data and Preprocessing

Human diffusion MRI

MRI was performed in a Siemens 3T Trio scanner (Sie-
mens Medical System, Malvern, PA) with an twelve-
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channel parallel imaging phase-array coil. Foam cushions
were used to minimize head motion. High-resolution T1-
weighted images were acquired with a 3D magnetization-
prepared rapid gradient-echo (MPRAGE) sequence for all
participants. The scan protocol, optimized at 3T, used a
repetition time/inversion time/echo time of 2600/900/3.02
msec, a flip angle of 8�, a volume of view of 240 � 256 �
176 mm3, a matrix of 240 � 256 � 176, and a resolution

of 1 � 1�1 mm3, with 1 average. Total T1 scan time was
�10 min.

Diffusion MRI data were collected with a diffusion-
weighted spin-echo echo planar imaging (EPI) sequence
with GRAPPA (factor of 2). A dual spin-echo technique
combined with bipolar gradients was used to minimize
eddy-current effects [Alexander et al., 1997]. The parame-
ters used for diffusion data acquisition were as follows:

Figure 1.

A summary of the top 20% most central nodes reported in the

five prior studies. Since the tractography algorithms (i.e., probabil-

istic or streamline), templates (i.e., AAL or FreeSurfer), as well as

graph-theoretic measures were different in different studies, the

comparisons were only approximate. It can be seen that large var-

iability exists in the top 20% most central nodes in the literature,

with the most consistent findings observed in the precuneus and

middle occipital gyri. The details of the methodology differences

were listed in the Supporting Information Table S1. The positions

of the marking circles are in the approximate locations. [Color fig-

ure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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diffusion-weighting gradients applied in 60 directions with
a b value of 1,000 sec/mm2; repetition time/echo time of
13,100/98 msec; field of view of 230 � 230 mm2; matrix size
of 108 � 128; resolution of 2 � 2 � 2 mm3; and 64 slices
with no gap, covering the whole brain. Averages of two
sets of diffusion-weighted images with phase-encoding
directions of opposite polarity (left–right) were acquired to
correct for susceptibility distortion [Andersson et al., 2003].
For each average of diffusion-weighted images, four images
without diffusion weighting (b ¼ 0 sec/mm2) were also
acquired with matching imaging parameters. The total
diffusion MRI scan time was �20 min.

Post-mortem macaque diffusion MRI data

Diffusion MRI data were acquired in a formalin-fixed
post-mortem macaque (Macaca mulatta) brain using a
Bruker 9.4T scanner. A 2D spin echo MRI sequence was
implemented at 0.55 mm isotropic resolution with an echo
time of 22.25 lsec, a b value of 2,000 sec/mm2, and 60 dif-
fusion directions. We acquired three sets of diffusion-
weighted data for subsequent averaging. The total scan
time was 72 hours.

Regions of macaque cortex were partitioned using the
LVE00a scheme implemented in Caret 5.5 software
(http://brainvis.wustl.edu/wiki/index.php/Main_Page)
[Lewis and Van Essen, 2000], similar to the method used
by Parkes et al., [2010]. To use this cortical partitioning
scheme in our dataset, the FNIRT nonlinear normalization
toolbox available in Oxford Center for Functional MRI of
the Brain’s Software Library (FSL, http://www.fmrib.ox.
ac.uk/fsl/) was used to spatially match the single maca-
que F99UA1 MRI brain volume in the Caret 5.5 to our
post-mortem macaque brain. Then, the nonlinear warping
transformation was applied to the LVE00a partitioning

scheme to transfer the parcellated LVE00a cortical regions
to the diffusion space of our post-mortem macaque brain.
Lastly, similar procedures for data preprocessing were

TABLE I. The Pearson correlations coefficients (R) of the graph-theoretical measures (Eloc, degree, strength,

and BC) within and between the three reconstructing methods (M1, M2, and M3)

R

M1 M2 M3

Eloc Degree Strength BC Eloc Degree Strength BC Eloc Degree Strength BC

M1 Eloc 0.95 0.91 0.70 0.75 0.77 0.53 0.29 0.75 0.83 0.73 0.73
Degree 0.90 0.70 0.73 0.80 0.51 0.32 0.72 0.86 0.71 0.73
Strength 0.81 0.74 0.77 0.57 0.34 0.71 0.79 0.73 0.73
BC 0.63 0.67 0.50 0.40 0.53 0.63 0.56 0.80

M2 Eloc 0.94 0.85 0.45 0.89 0.89 0.89 0.71
Degree 0.78 0.50 0.80 0.94 0.81 0.74
Strength 0.57 0.76 0.73 0.85 0.60
BC 0.32 0.45 0.39 0.55

M3 Eloc 0.87 0.96 0.61

Degree 0.86 0.73

Strength 0.65

BC

The correlations coefficients of the various graph-theoretical measures within each individual tractography method were given in bold.
All the correlation coefficients were statistically significant (P < 0.05). Eloc: local efficiency; BC: nodal betweenness centrality.

Figure 2.

Schematic illustration of the connectivity bias introduced by differ-

ent reconstruction methods. In M1 (left), when the whole-brain

white matter is used as the seed voxels (the gray dots), the con-

nections between two remote brain regions (such as A and B),

will have more seed voxels located on the possible pathways com-

pared with those pathways among close brain regions (such as A

and C), causing more samples sent for tracking and therefore

stronger connectivity; By contrast, in M2 (right), when the GM/

WM interface brain regions (blue squares) are used as the seed

voxels for tracking, the progressive dispersion of uncertainty along

the tracking path will give a preferential weighting of the connec-

tions between the close brain regions(such as A and C), in com-

parison with the remote brain regions (such as A and B). As a

consequence, the NCD between three brain regions will have the

order NCDA–B > NCDA–C in M1, but NCDA–B < NCDA–C in

M2, a difference completely caused by the reconstruction method.

[Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]
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applied to both human and macaque diffusion MRI data
sets (see below for details).

Data preprocessing

Both human and macaque anatomical and diffusion
MRI data were analyzed using FSL. T1-weighted images
of the human data were preprocessed with skull stripping
[Smith, 2002], intensity bias correction [Zhang et al., 2001],
noise reduction [Smith and Brady, 1997], and contrast
enhancement (squaring the images and then dividing by
the mean). Diffusion MRI data of the both species were
first corrected for eddy-current distortion. For human dif-
fusion MRI data, susceptibility distortion was corrected
following the method of Andersson et al. [2003] using
Matlab (Matlab7, Mathworks) codes incorporated in SPM5
(http://www.fil.ion.ucl.ac.uk/spm/).

Reconstructing Anatomical Interregional

Connectivity of Brain Networks

In this study, three tractography methods, denoted here
as Method 1 (M1), method 2 (M2), and method 3 (M3),
were employed to reconstruct the anatomical connectivity
of brain networks for both datasets (human and macaque).
The basic graph-theoretic measures used to characterize
brain networks, the procedures to derive the connectivity
networks, and the differences among the three reconstruc-
tion methods will be described in details in the following
section.

Node definition

The node is the most basic element of a network and its
definition has a direct influence on the outcome of the net-
work connectivity analysis [Sporns et al., 2005]. For the
human subjects, FreeSurfer (http://surfer.nmr.mgh.harvar-
d.edu/) was employed to parcellate each individual’s
high-resolution T1-weighted image into 82 regions (41 for
each hemisphere), with each region representing a node of
the connectivity matrix. As the fiber coherence in gray
matter is low and it is not robust to start tracking using
gray matter as the seed mask, a layer of voxels with the
thickness of 2 mm between the gray matter and white
matter, termed the gray/white-matter (GM/WM) interface
mask, of the 82 brain regions was generated to make trac-
tography robust. An advanced post-registration technique
proposed by Andersson et al., [2003] was used in this
study to correct susceptibility-induced distortion in human
diffusion MRI data, after which no discernable mismatch
between each subject’s T1-weighed image and the corre-
sponding diffusion MR image could be observed after a
rigid-body registration (six degree of freedom). This made
it appropriate to include 14 subcortical regions (7 for each
hemisphere) in our analyses, where (i) the size of these
regions were small and (ii) they are located in more infe-
rior part of the brain and therefore more prone to suscepti-

bility-induced distortion. After each subject’s cortical and
subcortical regions were derived, they were transformed
into each subject’s diffusion space for tractography using a
rigid body transformation with six degree of freedom.
Identical brain cortical and subcortical regions were used
for the three reconstruction methods.

Deriving interregional connectivity map of

brain networks

The procedure of deriving the interregional connectivity
map of brain networks is illustrated in Figure 3. Probabilis-
tic tractography implemented in FDT (http://www.fmrib.
ox.ac.uk/fsl/), a diffusion toolbox in FSL, was modified to
derive the interregional connectivity map, as the algorithm
provides a mechanism to quantify the uncertainty due to
noise, artifacts present in the MR scans, and the incomplete
modeling of the diffusion signal. The derivation of the ana-
tomical connectivity map of brain networks involved three
steps [Behrens et al., 2003, 2007]:

1. The local probability density functions (pdfs) of the
principal diffusion direction in each voxel of the dif-
fusion MRI data were generated through Markov
Chain Monte Carlo sampling technique, using ‘‘bed-
postX’’ in FSL and denoted as P(h, u|Y), where Y is
the data and h and u define the principal diffusion
direction in spherical coordinates.

2. Tracking was started from one seed voxel and propa-
gated based on the underlying pdfs estimated in step
(1): for each random sample starting from the seed
voxel, a principal diffusion direction (h, u) was
sampled from P(h, u|Y) and then moved a distance s
along (h, u). This process was repeated until the stop-
ping criteria were met. For all three methods, the
stopping criteria were set identical as those in the
default settings in FSL, that is, when the streamline
reached the termination masks, targets, propagating
in a loop, etc. By repeating this step, a streamline
fiber that took full account of the uncertainty in each
propagation step could be derived and is termed a
‘‘probabilistic streamline’’ here to differentiate with
the ‘‘streamline’’ used in the conventional determinis-
tic tractography [Behrens et al., 2003]. At the voxels
where multiple fiber orientations were detected
[Behrens et al., 2007], the starting diffusion direction
was randomly selected from one of the respective
fiber pdfs.

3. Seed masks were generated using each of the three
different methods (M1, M2, and M3). In M1, whole-
brain white matter was segmented using FreeSurfer,
which was then used as the seed mask. The source
codes of the ‘‘probtrackx’’ in FSL were modified for
counting the connectivity in this method. Two thou-
sand random samples from each voxel of the white-
matter seed mask were sent and for each sample, a
‘‘probabilistic streamline’’ was propagated in both
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directions until they each reached a different brain
target at which point, a connection between the two
targets was counted for connectivity matrix. In M2,
the GM/WM interface masks of the 82 brain regions
were used as the seed masks: for each pair of brain
regions, 2,000 samples per voxel were sent from the
GM/WM interface seed mask, and the total number

of ‘‘probabilistic streamlines’’ started from the GM/
WM interface seed region and reached the GM/WM
interface target region in that pair were summed and
counted. The procedure was repeated again with the
seed region and target region reversed. In M3, the
tracking procedure was identical to M2. However,
instead of counting the number of ‘‘probabilistic

Figure 3.

Procedure for reconstructing brain networks using diffusion

probabilistic tractography. First, the T1-weighted images were

parcellated into 82 cortical and subcortical brain regions and

seed masks located either in deep white matter (M1) or at the

GM/WM interface (M2 and M3) were used for tractography (1);

Second, probabilistic tractography implemented in FSL was used

to derive the interregional connectivity map among different

brain regions. The local orientation pdfs on each voxel were

estimated, and then global connectivity was derived by sampling

from the local pdfs. When a ‘‘probabilistic streamline’’ connected

two different brain regions, it was counted and considered to

contribute one unit to the total connectivity map (2). Lastly,

interregional connectivity maps were derived based on the

probabilistic tractography outputs. The topology of brain net-

works was reconstructed and analyzed using graph-theoretic

methods (3). [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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streamlines’’ connecting each seed and target-region
pair for the index of the connectivity strength, the
derived tract volume was first (i) thresholded by a
percentage of the total samples sent during the track-
ing process for that cortical region pair (0.02% was
used in the present results, but a series of other
thresholds were also tested), and then (ii) binarized to
calculate the thresholded tract volume. This thresh-
olded tract volume, encoding the information of con-
nectivity strength, tract volume, surface areas of the
cortical region pairs, and distance between them were
subsequently employed as the index for the strength
of connectivity of the each GM/WM interface region
pairs in M3.

Constructing interregional connectivity map
of the human brain

Maps of the interregional connectivity for human and
macaque brains were created based on the outputs of the
probabilistic tractography. Each GM/WM interface region
became a node in the graph. Each connection between two
brain regions became an edge. In M1 and M2, where the
two end-points of a ‘‘probabilistic streamline’’ were located
in two different cortical regions (nu, nv), that specific prob-
abilistic streamline sample was counted, contributing one
unit to the connectivity strength of the edge [e(u,v)]. After
the total number of probabilistic streamlines was derived
for each brain region pairs, it was divided by the mean of
the areas of the two GM/WM interface regions SuþSv

2 , to
normalize for the area differences across brain regions
[Gong et al., 2009b; Hagmann et al., 2008]. In M3, the
derived spatial distribution of the tract was thresholded
by a certain percentage (0.02%) of the total number of
samples sent from each brain region pair. The density
measures using different methods were then normalized
by the total values in the graph (i.e., the cost of the graph)
to remove the global difference in each individual subject
due to the various factors, such as the global organization
differences due to aging, MR scan artifacts, ‘‘trackability,’’
etc. The intrinsic regional contrast of the network organi-
zation would be preserved after this global normalization.
The resulting connectivity network was termed the graph
of normalized connectivity density (NCD) for M1 and M2,
and normalized tract volume density (NVD) for M3. Two
brain regions with large NCD (NVD) were considered to
have strong anatomical connections and those regions
with NCD (NVD) close to 0 were not considered to have
plausible anatomical connections.

Due to the probabilistic nature of the tractography algo-
rithm used in this study, the majority of brain regions
were shown to have non-zero NCD (NVD), which is con-
trary to the classic anatomical view. The results must be
thresholded, but the network density will change accord-
ing to the threshold chosen. As there is currently no con-
vention or theoretically motivated method, for specifying a

threshold, we used series of thresholds ranging from net-
work densities of 10–30%, with 50 intervals, to characterize
the brain networks. These ranges give network densities
similar to that of the previous studies [Achard and Bull-
more, 2007; Gong et al., 2009b] and maximize the inclusion
of real regional connections, while minimizing the number
of false connections. As each of the network measures was
computed at a specific threshold, we estimated the inte-
grals of each metric curve, over the range of the different
network densities, as a summary metric, as done in previ-
ous studies [Achard and Bullmore, 2007; Gong et al.,
2009b].

Evaluation of the Performance of the Three

Reconstruction Methods Using Post-Mortem

Macaque

The known macaque cortex structural connections
derived by invasive tracer studies were extracted from the
CoCoMac LVE00a database (http://www.cocomac.org)
and used as a ‘‘gold standard’’ for evaluating the perform-
ances of the three reconstruction methods. Confirmed
absence of a connection is denoted by a value of 0, while
confirmed presence of a connection (irrespective of its
strength or physiological characteristics) is denoted by a
value of 1. Cortical regions with possible connections that
were not investigated are denoted by a value of �1. The
confirmed connections are modified so that they are bidir-
ectional and symmetrical. After the interregional connec-
tivity matrices of the macaque brain were derived using
the three methods, a range of thresholds between 1 and
100% were applied on these NCD (NVD) networks and
comparisons were made to the LVE00a atlas. A measure
of accuracy, defined as the percentage of correctly deter-
mined connections (true positives) versus the percentage
of incorrectly determined connections (false positives), was
determined and plotted using a Receiver Operating Char-
acteristic (ROC) curve implemented in Matlab (Matlab7,
Mathworks).

Graph-Theoretic Methods

Degree, strength and BC

The first local quantity used to characterize the brain
connectivity network was the degree, defined as the num-
ber of connections to that node in the network, regardless
of weight. Highly connected nodes have a large degree
[Sporns et al., 2005]. A natural generalization of the degree
to a weighted network is given by the strength, which is
defined as the sum of the weights (NCD or NVD) of the
connections from nodes that are connected to a given node
i in a graph. Both degree and strength are local measures
and therefore do not consider nonlocal effects, such as the
existence of certain crucial nodes with small degree and/
or strength but act as bridges between different subgraphs.
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In this context, a widely used quantity called nodal BC
can be used to express the structural importance of these
nodes. It is defined as the fraction of shortest paths
between pairs of nodes that pass through a given node.
Specifically, the BC of a weighted network is given as:

BCw
i ¼

X
k;j2G
k6¼j 6¼i

rw
kjðiÞ
rw
kj

(1)

where rwkj is the number of all shortest paths from node k
to node j, and rwkj (i) is the number of shortest paths pass-
ing through node i in a weighted graph.

In this study, the degree, strength, and BC within and
across methods were compared to investigate their correla-
tions. All the graph-theoretic measures were calculated
using the Matlab functions implemented in Brain Connec-
tivity Toolbox (http://www.brain-connectivity-toolbox.net)
[Rubinov and Sporns, 2010].

Small-world properties

The small-world network concept was first proposed by
Watts and Strogatz, [1998] to describe many biological and
technological networks that lie between completely ran-
dom and regular networks. This concept was later
expanded to both unweighted and weighted graphs, as
well as to disconnected and nonsparse graphs [Latora and
Marchiori, 2001, 2003]. Global and local efficiency instead
of the characteristic path length and the cluster coefficient
were used to characterize small-world properties of net-
works in this study as these measures are valid for both
weighted, nonweighted, disconnected, and nonsparse
graphs [Latora and Marchiori, 2003]. Global efficiency of
the graph G is defined as the average efficiency of the
node i, which equals to the sum of the inverse of the har-
monic mean of shortest path length (dij) between each pair
of nodes within the network:

EgloðGÞ ¼ 1

n

X
i2N

P
j2N;j6¼i d

�1
ij

n� 1
(2)

The local efficiency, however, is defined to characterize
the local properties of the graph (G) by evaluating the effi-
ciency of the subgraph of the neighbors of node i:

ElocðGÞ ¼ 1

n

X
i2N Eloc;i ¼ 1

n

X
i2N

P
j;h2N;j6¼hðdjhðNiÞÞ�1

kiðki � 1Þ (3)

where Eloc,i is the local efficiency of node i, and djh(Ni) is
the length of the shortest path between j and h, with only
the neighbors of i included. It represents the extent to
which the network is fault tolerant, measuring how effi-
cient the information flow is within the first neighbors of a
given node i when the node i is removed. Based on these

two efficiency measures, the definition of a small-world
network could be assessed according to the information
flow at global and local levels, which is characterized by
high global (close to the global efficiency of the matched
random networks) and local efficiency (much higher than
the local efficiency of the matched random networks)[La-
tora and Marchiori, 2003]. The matched random networks
were computed based on null-hypothesis networks, with
random topology but sharing the size and degree distribu-
tion of the original networks [Maslov and Sneppen, 2002;
Rubinov and Sporns, 2010]. In this study, we compared
the global and local efficiency of the interregional connec-
tivity networks derived using the three reconstruction
methods (M1, M2, and M3) with those derived from the
matched random networks. Additionally, we conducted
statistical analysis on the integrated, global (Eglo) and local
efficiency (Eloc) as well as the scaled global (Eglo/Eglo_ran-

dom) and local (Eloc/Eloc_random) efficiency of the derived
brain networks to investigate the small-world differences
across the three reconstruction methods.

Identification and classification of

community structure

Complex networks usually consist of several modules,
in which the nodes densely interconnect with other nodes
within the module, but relatively sparsely connect with
the nodes outside the module. In this study, the different
modules within the brain networks derived using the
three methods were detected and classified based on the
algorithm proposed by Newman [2006b] and the commu-
nity structures of the three brain networks were plotted
and compared.

The Relationship Between NCD (NVD) and

Fiber Length

One possible explanation for differences in graph-theo-
retic measures across the three methods could be differen-
ces in their sensitivity to distance. For example, one
method might weight connections more between remote
brain regions than the other methods. To evaluate this
possibility, we first explored the relationships between
NCD (NVD) and fiber length using simulated diffusion
MRI data. Diffusion MRI data for white-matter tracts with
the same diameter, but varying lengths (4�160 mm) and
fractional anisotropy (FA ¼ 0.2, 0.7), were generated to
simulate tracts with different lengths and degrees of fiber
coherence. Then, the three reconstruction methods were
applied to the simulated diffusion MRI data to determine
whether the NCD (NVD) in the connectivity matrices cor-
related with fiber length and whether the correlations
were similar across method. SNR similar to that in the in
vivo diffusion MRI data (SNR ¼ 15 for diffusion weighted
images) and tensor profiles simulating single fiber path-
way were used for all the simulations in this study.
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After the interregional connectivity maps for all the
human subjects were derived, we calculated the mean
fiber length of the tracts contributing to the top 20% NCD
(NVD) for each node in the brain networks and compared
the results across the three methods. We hypothesized that
if one method weights more toward the connectivity
between two remote brain regions (i.e., connections linked
by long fiber tracts) than that between two close ones,
then the average of the mean fiber length of the white-
matter tracts that contribute to the top 20% NCD (NVD) in
the connectivity matrix should be longer in that method.
Therefore, based on the simulation results, we expected
that the average mean fiber length of the tracts contribut-
ing to the top 20% NCV/NVD for all brain regions should
have the order M1 > M3 > M2.

RESULTS

Evaluation of the Performance of the Three

Reconstruction Methods Using Post-Mortem

Macaque Data

To evaluate the performance of the three methods, we
compared the macaque interregional connectivity maps
derived from diffusion tractography with the connectivity
information extracted from invasive tracer studies. Figure
4A illustrates the partitioning scheme of LVE00a on a
standard three-dimensional (upper) and flat (lower) maca-
que brain. Figure 4B shows the connectivity information of
the macaque data extracted from CoCoMac based on the
invasive tracing studies. The results of the ROC curves
that compare the connectivity matrices derived via the
three methods with the cortico-cortical information from
invasive tracing studies for left and right hemispheres are
presented in Figure 4C,D. No clear difference in perform-
ance among the three reconstruction methods was
detected, which was further supported by the quantitative
measure of the corresponding area under curve (AUC) in
the ROC plots (M1-left: 0.658; M1-right: 0.645; M2-
left:0.661; M2-right:0.691; M3-left: 0.705; M3-right: 0.670).
However, the order of the mean AUC from both hemi-
spheres was shown to be M3 > M2 > M1, with M3 show-
ing marginally higher accuracy on average compared to
M1 and M2.

Comparison of Small-World Properties of the

Interregional Connectivity Map of the Human

Brain Across the Three Reconstruction Methods

Figure 5 shows the network density as a function of
thresholding, and the local and global efficiency, as a func-
tion of network density for the three reconstruction meth-
ods. As expected, the network density decreased as the
threshold became more stringent (Fig. 5A,D,G). Consistent
with the previous studies [Gong et al., 2009b; Latora and
Marchiori, 2003], all three networks showed high local

(much higher than that of the matched random networks)
and global efficiency (close to that of the matched random
networks), indicating that the derived interregional con-
nectivity maps in this study can be characterized as small-
world networks. Regarding the between-method differen-
ces in small-world indices, the integrated, original global,
and local efficiency were first investigated: Kruskal-Wallis
tests rejected the null hypothesis that the integrated, origi-
nal global efficiency (Eglo, P < 9.65e-13) and overall local
efficiency (Eloc, P < 1e-20) in the three reconstruction
methods were drawn from the same population. The post-
hoc sign rank test showed that the medians of the inte-
grated, original global efficiency from M1, M2, and M3
has the order of M1 > M3 > M2 (M1 vs. M2: Z(2,93) ¼ 7.59,
P < 2.57e-11; M1 vs. M3: Z(2,93) ¼ 3.65, P < 4.35e-04; M2
vs. M3: Z(2, 93) ¼ 2.47, P < 0.02). We also investigated the
integrated, scaled global (Eglo/Eglo_random) and overall local
efficiency (Eloc/Eloc_random) across the three methods: Simi-
larly, Kruskal-Wallis test rejected the null hypothesis that
the integrated, scaled global efficiency (Eglo/Eglo_random,
P < 1.11e-16), and overall local efficiency (Eloc/Eloc_random,
P < 7.7e-14) were drawn from the same population. The
post-hoc sign rank test showed that the integrated, scaled
global efficiency from M1 and M2 had larger medians
than M3, but had similar median between each other (M1
vs. M2: Z(2,93) ¼ 0.68, P < 0.49; M1 vs. M3: Z(2,93) ¼ 8.37,
P < 5.57e-17; M2 vs. M3: Z(2, 93) ¼ 8.35, P < 6.77e-17).

Comparisons of Graph-Theoretic Measures from

the Three Reconstruction Methods

Degree, strength, and BC derived from the interregional
connectivity maps are listed in Figure 6–8. Degree,
strength, and BC were sorted based on their order in M1,
then applied to M2 and M3 for visual comparisons. The
four graph-theoretic measures, that is, the local efficiency,
degree, strength, and BC, were shown to be correlated
with each other within each method (mean Rall_within ¼
0.76, see Table I for details), with BC having the lowest
correlation coefficients among the four local graph meas-
ures (mean RBC_within ¼ 0.63), which is in good accordance
with a previous study [Sporns et al., 2007]. We also
observed that the graph-theoretic measures across the
three methods were interrelated (mean Rall_between ¼ 0.67),
with BC again having the lowest correlation coefficients
(mean RBC_between ¼ 0.58).

The nodes with the top 20% highest BC values derived
in the M1, M2, and M3 were considered as hubs in this
study and marked in Figure 9. Among the 16 nodes (top
20% of 82 nodes) with highest BC, bilateral putamen, bilat-
eral superior frontal cortex, and left precuneus were iden-
tified as hubs in all three reconstruction methods,
consisting of �31% of the selected nodes.

The community structure of the brain networks derived
using the three methods are shown in Figure 10. It can be
observed that the module numbers as well as the nodes
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Figure 4.

Comparison of anatomical connectivity matrices of post-mortem

macaque brain derived through invasive tracing studies and

through diffusion probabilistic tractography technique. A: The

partitioning scheme of LVE00a on a standard three-dimensional

(upper) and flat (lower) macaque brain. B: The anatomical con-

nections derived by invasive tracer studies were extracted from

CoCoMac LVE00a database (http://cocomac.org/home.asp). After

the interregional connectivity matrices were derived using the

three methods, a range of thresholds between 1 and 100% were

applied on these NCD (NVD) networks and then compared

with the LVE00a atlas. ROC curves for the left hemisphere (C)

and right hemisphere (D) based on the three tractography

methods were plotted and compared. No clear difference in

performance was observed among three methods, although the

mean AUC for M3 was marginally higher than that in M1 and

M2, with order M3 > M2 > M1 (see Results section for details).

Value 1 (0) has been used to indicate there is (not) a direct con-

nection, while value �1 has been used to indicate that no con-

nection information is available for the invasive tracer studies.

The total 71 cortical regions compared in the present study

include: 1, 2, 23, 24a, 24b, 24d, 29, 30, 3a, 4, 45, 46p, 46v, 4C,

5D, 5V, 6Ds, 6Val, 6Vam, 6Vb, 7a, 7b, 7op, 7t, 8Ac, 8Am, 8As,

A1, AIP, DP, FST, IPa, Id, Ig, LIPd, LIPv, LOP, M2, MDP, MIP,

MSTda, MSTdp, MSTm, MT, PIP, PO, Pi, PrCO, R, Ri, S2, ST,

TAa, TE1-3, TEa/m, TF, TH, TPOc, TPOi, TPOr, Toc, Tpt, V1,

V3, V3A, V4ta, V4tp, VIP, VIPl, VIPm, VP. [Color figure can be

viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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included within each module varies across the three meth-
ods. The topological connectivity backbone in M1 seems to
show stronger connections among the remote brain
regions compared to that in M2 and M3. For example, the
nodes located at the medial posterior parietal regions in
M1 tend to have less degree and weaker NCD among
themselves than M2 and M3.

The Relationship Between the NCD (NVD) and

Fiber Length in the Simulated and In Vivo

Diffusion MRI Data

We generated two sets of diffusion MRI data simulating
white-matter tracts with different fiber coherence and
length (Fig. 11). The preliminary results demonstrated that

Figure 5.

The small-world properties of the interregional connectivity

maps of the human brain. The network density, local efficiency

and global efficiency are shown in A, B, C (for M1), D, E, F

(for M2), and G, H, I (for M3). The network density ranges

from 5 to 30%. The local and global efficiency of the derived

interregional connectivity maps in this study match the descrip-

tion of networks with small-world properties: high local (much

higher than that of the matched random networks) and global

(close to that of the matched random networks) efficiency. Both

local efficiency and global efficiency of the interregional connec-

tivity maps at the thresholds used for integration in our study

(10–30%) in all three methods were significantly different from

that in the matched random networks (two sample t-tests with

P < 0.05, two tails). Circles and the error bars represent the

mean and one standard deviation of each measure across sub-

jects. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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when the fiber coherence was high (FA ¼ 0.7), the NCD in
both M1 and M2 showed a clear distance-related effect
(Fig. 11A, M1: y ¼ 0.001x þ 1.24e-5, R2 ¼ 0.99; M2: y ¼
0.42x�0.43 þ 0.04, R2 ¼ 0.95), indicating a possible bias in
NCD for M1, favoring the connections between remote
brain regions by longer white-matter tracts, and vice versa
for M2. In contrast, no significant distance effect was seen
between the NVD and fiber length in M3 (Fig. 11A, y ¼
�1.5�5x þ 0.12, R2 ¼ 0.02). When fiber coherence was low
(FA ¼ 0.2), the NCD and NVD in all three methods
decreased significantly as fiber length increased and
dropped off to zero when the fibers were longer than 65
mm (Fig. 11B).

The mean fiber length of the white matter tracts that
contribute to the top 20% NCD (NVD) for each brain
region in the in vivo MRI data was plotted and compared
across the three reconstruction methods (Fig. 11C). Con-
sistent with our simulations, there were significant differ-
ences in mean fiber length: 37 (45%) out of the 82 brain
regions in M3 have the mean fiber length ranging between
M1 and M2 with the order of M1 > M3 > M2, a represen-

tation much higher than the proportion by a random
chance (14 regions, 17%).

Hemispheric Asymmetry in Connectivity

Patterns

The interregional connectivity maps of brain networks
characterized by graph-theoretic measures, such as Eglo and
BC, were used to evaluate hemispheric asymmetry in con-
nectivity patterns in humans. The detailed statistics are listed
in Table II. In brief, no hemispheric asymmetry in connectiv-
ity patterns in terms of Eglo was detected with either M1 or
M2, whereas left > right global asymmetry was found with
M3. As regards regional differences in connectivity patterns,
the majority of the asymmetrical brain regions identified in
M2 showed left > right asymmetry, whereas roughly the
same amount of left > right and right > left brain regions
were identified using M1 and M3. The precuneus was
the only brain area identified by all three methods with
left > right asymmetry (see Table II for details).

Figure 6.

Comparisons of the degree of the interregional connectivity

maps derived using the three different reconstruction methods.

The order of the degree for different brain regions were based

on M1 and then were applied on M2 and M3. The solid vertical

bars and error bars represent the mean and standard deviation

of the degrees across the subjects. The horizontal solid and

dashed lines denote the mean and mean plus one standard devi-

ation across all brain regions. Brain regions with measures larger

than the mean plus one standard deviation are highlighted with

light gray color.
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DISCUSSION

In this study, we investigated the influence of
connection reconstruction method on the interregional con-
nectivity map of the human brain. Specifically, three
reconstruction methods using diffusion probabilistic trac-
tography were applied to the same diffusion MRI data set
and interregional connectivity maps were derived and
compared with respect to their small-world properties,
identification of hub regions, and hemispheric asymmetry
in connectivity patterns. Brain anatomical networks
showed robust small-world properties regardless of the
reconstruction method. However, significant differences in
small-world measures were detected across the three
methods. In addition, large between-method differences in
the graph-theoretic measures were observed, resulting in
differences in hub identification as well as brain asymme-
try patterns. This suggests that the choice of connection
reconstruction method for probabilistic tractography must
be considered as a confounding factor when comparing
studies of interregional connectivity based on probabilistic
tractography.

Evaluation of the Performance of the Three

Methods Through Comparison With Macaque

Post-Mortem Data

Validating the structural connectivity patterns in the
human brain using diffusion MRI data has always been chal-
lenging, as no gold standard for interregional connections in
the human brain is currently available. Fortunately, the struc-
tural connectivity of macaque brains has been a subject of
intense study using invasive tracing techniques [Felleman
and Van Essen, 1991; Ferry et al., 2000; Lewis and Van
Essen, 2000]. In the study by Lewis et al., the partitioning
scheme investigated in the tracer study was also available
digitally, allowing us to evaluate the validity of macaque cor-
tico-cortical connectivity maps obtained via diffusion tractog-
raphy. Our preliminary results indicated that deriving the
interregional connectivity map of the brain via tracking from
deep white matter (as implemented in M1), where the uncer-
tainty of the voxelwise pdfs is low, does not give significant
benefits in accuracy compared to conventional tracking
methods such as M2 [Gong et al., 2009b]. Similarly, none of
the three methods was clearly superior to the others based

Figure 7.

Comparisons of the strengths of the interregional connectivity

maps derived using the three different tractography methods.

The order of the strengths for different brain regions were

based on M1 and then were applied on M2 and M3. The solid

vertical bars and error bars represent the mean and standard

deviation of the degrees across the subjects. The horizontal

solid and dashed lines denote the mean and mean plus one

standard deviation among various brain regions. Brain regions

with measures larger than the mean plus one standard deviation

is highlighted with light gray color.
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on these results in postmortem macaque, although the M3
showed slightly higher accuracy on average compared to M1
and M2. However, we believe that this results are still
preliminary and that further investigations are needed for
several reasons: first, the gold standard we used here, that is,
the invasive tracer study, explored majorly the parietal and
temporoparietal cortico-cortical connections, enabling us to
validate only a small portion of the white-matter connections
in the brain (Fig. 4B); second, the connection information in
the tracing study was binary (connections were scored pres-
ent or absent), which did not accurately capture the strength
of connections; lastly, considering the large between-subject
and between-hemisphere variability in the connectivity
matrix derived from diffusion tractography, future studies
with larger sample sizes are desired to draw a statistical con-
clusion on the performance of the three methods.

The Effect of Fiber Length on Connectivity Maps

For any probabilistic tractography method that depends
on Monte Carlo sampling to estimate the voxelwise pdfs

[Behrens et al., 2003; Lazar and Alexander, 2005; Parker
and Alexander, 2005], the probability of connections from
a start voxel to a target one is defined as the frequency
with which ‘‘probabilistic streamlines’’ pass through the
target voxel, normalized for the total number of the ‘‘prob-
abilistic streamlines’’ sent during the Monte Carlo random
walk. Therefore, the connectivity map always demon-
strates a decrease in probability values with distance from
the start point of the seed mask. This is a result of the pro-
gressive dispersion of uncertainty due to noise, artifacts,
and/or a genuine reflection of fiber spreading from voxel
to voxel. Although this definition of probability is a valid
representation of the likelihood of given ‘‘probabilistic
streamlines’’ connecting two voxels, it can cause difficulty
in interpreting the contrast in the connectivity strength
between different brain areas connected by fiber tracts
with various lengths. For example, when M2 is chosen to
map structural connectivity information of the brain, the
NCD would be lower for brain areas linked by long tracts
(remote brain regions) than those by short ones, even
though the actual connectivity strength of the two cases

Figure 8.

Comparisons of the BC of the interregional connectivity maps

derived using the three different tractography methods. The

order of the BCs for different brain regions were based on M1

and then were applied on M2 and M3. The solid vertical bars

and error bars represent the mean and standard deviation of

the degrees across the subjects. The horizontal solid and dashed

lines denote the mean and mean plus one standard deviation

among various brain regions. Brain regions with measures larger

than the mean plus one standard deviation is highlighted with

light gray color.
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and all other conditions are kept the identical. This was
clearly demonstrated in the simulation results (Fig. 11,
M2): the NCD between two target regions decreased as
fiber length increased, regardless the coherence of fibers
(FA ¼ 0.2, 0.7). Furthermore, the relationship between the
NCD and fiber length is also determined by a variety of
other parameters in diffusion MRI data, such as noise and
artifacts in the MRI data, tract anatomy (fanning out or

not), termination criteria for tracking, etc., making correc-
tion for the fiber length alone insufficient [Gong et al.,
2009b; Iturria-Medina et al., 2008].

Another alternative strategy is to initiate the tracking
from each voxel in deep white matter, as implemented in
M1 in this study [Hagmann et al., 2008; Jbabdi et al.,
2010]. This approach was originally thought to be more
robust, since the uncertainty of pdfs in deep white matter

Figure 9.

A summary of the top 20% nodes with the highest nodal BC val-

ues derived in the present study. The same diffusion MRI data,

partitioning scheme were used in all three reconstruction meth-

ods. Large variability can be observed from the most central

nodes (20%) based on the ranks of BC measures. The bilateral

putamen, bilateral superior frontal lobes, and left precuneus

were unanimously identified as hubs in all three methods. The

positions of the marking circles are in the approximate locations.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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is usually considered low compared to that near gray mat-
ter. However, as the remote brain regions linked by long
white-matter tracts will have more seed voxels located on

the tracts; more samples will be sent on the pathways for
tracking, causing stronger connectivity between the two
areas–another distance-related effect in addition to the one

Figure 10.

Dorsal view of the connectivity backbone derived using the M1, M2,

and M3 in anatomical coordinates. Nodes are coded according to

the degree and edges are coded according to the strength of NCD

(NVD). The community structure of the network was obtained

through subdividing the network into nonoverlapping modules, based

on the algorithm proposed by Newman [2006a]. Different modules

in networks were coded using different color schemes, which do not

have a one-to-one correspondence across the three methods, as the

number and size of the clusters detected were different across meth-

ods. The full name of the abbreviations used in the figures could be

found in the Supporting Information Table II (Table S2). r: right hemi-

sphere; l: left hemisphere.

r Effect of Compiling Method on Brain Networks r

r 1909 r



in M2. Whereas this effect could be easily corrected in the
conventional deterministic tractography, as it affects con-
nectivity values linearly [Hagmann et al., 2008], the prob-
lem becomes more complicated in probabilistic
tractography: as the voxelwise pdfs in probabilistic tractog-
raphy have a distribution instead of a binarized values
(with the probability of either 1 or 0) as in deterministic
tractography, the relationship between NCD and fiber
length can no longer be simply modeled as linear. Instead,
the NCD is affected by both the biases due to the different
number of seeds sent for tracking and the progressive dis-
persion of ‘‘probabilistic streamline’’ samples as they prop-
agate. To test this point, we employed the simulated

white-matter tracts as a simplified model: when the NCD
reconstructed using M1 was corrected by tract length, the
relationship between tract-length-normalized NCD and
tract length still presented, and became highly similar as
that in M2 (see Supporting Information Fig. 4). This clearly
demonstrated that simply normalizing the NCD in M1 as
that in deterministic algorithms would not alleviate the
distance-related effect associated with the method.

One approach that could potentially mitigate the dis-
tance effect is to start tracking from the GM/WM inter-
face, as in M2, but to use the thresholded tract volume as
the index of connectivity; we implemented this approach
in M3. We reasoned that even though two distant brain

Figure 11.

The relationships between the NCD (NVD) and fiber length in the

simulated and in vivo diffusion MRI data; (A) a clear distance effect

on the NCD (NVD) could be seen in M1 and M2, when fibers were

coherent. This distance effect was not as significant in M3 (see

Result section for details); (B) when the coherence of the white

matter tracts was low, a similar distance effect was seen in all three

methods, that is, probability decreased significantly with distance,

and dropped off to zero for the fibers longer than 65 mm; (C) The

mean fiber lengths of the white-matter tracts that contributed to

the top 20% NCD (NVD) for each brain region were plotted across

the three methods. Consistent with the observations in our simula-

tions, there were significant differences in the mean fiber length of

the tracts that contributed to the top 20% NCD (NVD) for each

brain region. Among 82 brain regions, 45% of them have the mean

fiber length in M3 shorter than that in M1 but longer than in M2, a

representation much higher than the proportion by a random

chance (17%). Black squares in Fig. 11C denote the brain regions

with the order of mean fiber length M1 > M3 > M2. [Color figure

can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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regions with long tracts connecting them have reduced
connectivity due to the dispersion of the local pdfs, the
increased tract volume could partially compensate for the
decreased probability, making the NVD insensitive to
the distance between brain regions. By using a percentage
of the total samples sent for tracking to threshold the tract
volume, the resultant thresholded tract volume should be
a value encoding the information containing both tract
strength and volume, possibly serving as a more represen-
tative index for brain mapping studies. The relative insen-
sitivity of M3 to distance could be appreciated in both the
simulations (Fig. 11A,B) and the in vivo data (Fig. 11C):
Compared to the NCD in M1 and M2, we observed
smaller distance-related effects on the NVD in M3. In the
in vivo diffusion MRI data, the mean length of the tracts in
M3 that contribute to the top 20% NVD for each node was
lower than for the NCD in M1, which tends to weigh
more toward connections between distant brain regions,

but higher than that in M2, which has been shown to favor
connections between close brain regions.

It is obviously not trivial to correct the distance effect
inherent in any brain mapping study that relies on proba-
bilistic tractography for compiling the interregional con-
nectivity maps and it has been suggested that the flux of
connections in the probability should obey a probabilistic
version of Gauss’s Law, which means that the probability
at a distance could be expressed in terms of the surface
area of the isofrequency contour. However, this analogy
with Gauss’s Law is only approximate in practice due to
computational effects such as use of stopping criteria dur-
ing tracking, geometric effects (brain-CSF interface), and
tract anatomy [Morris et al., 2008]. For example, in one of
our tests to derive the null probability map in a homoge-
nous diffusion phantom in which we sent 50,000 samples
on a seed voxel, no ‘‘probabilistic streamline’’ tract could
propagate beyond 50 mm from the start voxel with
the stopping criteria same as the default settings in FDT
toolbox, an obvious violation of the approximation (results
not shown).

Hub Identification and Brain Asymmetry in

Connectivity Patterns

Compiling interregional connectivity maps of brain net-
works involves complex procedures that require careful
selection of a series of parameters–ranging from the track-
ing algorithm, to cohort size, to partitioning schemes, to
inclusion or exclusion of subcortical regions, to number of
diffusion directions–all of which have been shown to
potentially influence the properties of the resulting connec-
tivity maps [Gong et al., 2009b; Hagmann et al., 2008;
Vaessen et al., 2010; Wang et al., 2009; Zalesky et al.,
2010]. As a result, we set all other factors constant in this
study except for the reconstruction method and compared
the interregional connectivity maps generated by the three
different approaches. We observed that even though there
were moderate to high correlations in graph-theoretic
measures across the three methods, they exhibited large
differences in the identified hub regions. For the top 20%
of the 82 brain regions with the highest BC values, only
bilateral putamen, bilateral superior frontal cortex, and left
precuneus were identified unanimously as hubs by all
three methods, consisting of approximately one third of
the selected 20% nodes. Of these three nodes, the precu-
neus is of particularly interest. The precuneus is involved
in self-referential processing, visuospatial imagery, epi-
sodic memory retrieval, and consciousness [Bullmore and
Sporns, 2009; Cavanna and Trimble, 2006]. Similar to our
results, it is also the only brain area unanimously identi-
fied as a hub region in all of the five previously published
studies on hubs in humans, confirming its prominent
structural role in brain networks. Interestingly, a closer
look at the ranks of the precuneus based on BC values
revealed that the mean rank of the precuneus in M3

TABLE II. The statistic results of the regional brain

asymmetry in connectivity patterns indexed by the

graph-theoretic measures Eglob and BC

Index P values Asymmetry

M1 Eglob 0.7458 N/A
BC IP 3.92E-06 R > L

ACUM 3.01E-06 R > L
PORB 4.51E-06 R > L
SP 9.28E-05 R > L
FP 5.32E-04 R > L
POPE 0.006 R > L
MOF 0.009 R > L
TT 0.015 R > L
PCUN 3.04E-04 L > R
PUT 6.20E-04 L > R
AMYG 0.002 L > R
RMF 0.018 L > R

M2 Eglob 0.070 N/A
BC IP 2.91e-6 R > L

LOCC 5.20E-05 L > R
RAC 8.45E-05 L > R
PCUN 2.98E-04 L > R
PC 0.0037 L > R

M3 Eglob 0.009 L > R
BC RAC 6.98E-08 R > L

FP 2.64E-04 R > L
CUN 0.001 R > L
SP 0.0013 R > L
PCAL 0.0022 R > L
MOF 0.0058 R > L
TP 0.011 R > L
FUS 1.14E-05 L > R
PCUN 6.29E-05 L > R
PC 3.15E-04 L > R
AMYG 0.0013 L > R
PSTS 0.009 L > R
CAC 0.011 L > R
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(mean: 9.5, left: 9, right: 10) was higher than that in M1
(mean: 18, left: 12, right: 24) and M2 (mean: 16, left: 10,
right: 22), respectively, perhaps another indication that
using thresholded tract volume is a more representative
measure than NCD in M1 and M2.

The selection of reconstruction method might also
depend on the aims of the study itself. For instance, a
method might not be capable of accurately capturing the
contrasts of white-matter connections among different
brain areas, that is, identification of hub regions, due to its
limitations in the distance-related bias, but might still be
sensitive enough to detect the differences between a brain
region in the left hemisphere and its corresponding right
one, that is, brain asymmetry in connectivity patterns, as
both of them having similar geometric distances with
other brain regions. To test this possibility, we conducted
brain asymmetry analyses based on the interregional con-
nectivity maps and compared the results. It is interesting
to note that there were still large variations in the global
and local measures across methods, indicating some fac-
tors other than distance contributing to the between-
method differences, which warrant future studies.

It is also worth noting that hubs in this model are iden-
tified solely by their anatomical connections in brain net-
works. Two identified hubs with similar importance based
on the structural connectivity may have quite different
functional fingerprints and/or biophysics (i.e., excitatory
or inhibitory, conduction delay) [Sporns et al., 2005].
Therefore, characterizing and validating connectivity infor-
mation of brain networks based on multimodality
approach may depict a more comprehensive picture of
hubs in brain networks [Honey et al., 2009]. Similarly, due
to (i) the macroscale nature of the parcellation scheme
used in this study and (ii) nonexistence of universally
accepted parcellation template, we might have underesti-
mated the importance of the brain regions that consist of
multiple heterogeneous yet interconnected sub-regions/-
nuclei, as the connectivity information of these local cir-
cuits could not be captured in this study. Therefore, we
expect that the results in small-world properties, hub iden-
tification, etc. will vary if the current three methods were
applied by using a finer parcellation scheme, as indicated
in the study by Zalesky et al. [2010]. The details regarding
how node number affects the reconstructed brain network
in terms of the distribution of hubs on the cerebral cortex
is currently under investigation and will be reported in an
independent publication.

The Importance of Including Subcortical Regions

With the advanced post-processing method for correct-
ing susceptibility distortion used in our study [Andersson
et al., 2003], no visible spatial mismatch between a
T1-weighted anatomical image and its corresponding dif-
fusion image was present after a rigid-body registration
(six degrees of freedom), making it possible to include

even fourteen compact subcortical regions (17.1% of all the
regions) in our analyses. Even though there is still contro-
versy regarding how the subcortical areas should be
included and weighted together with cortical regions for
an unbiased brain network study [Hagmann et al., 2008],
our results underlined the prominent structural role of the
subcortical regions: among the top 20% nodes with the
highest BC values, the subcortical regions constitute of
43.8% in M1, and 37.5% in M2 and M3, respectively, much
higher than their representation as a proportion of the
total number of brain regions included (17.1%). Therefore,
structural and functional brain mapping studies that
exclude subcortical areas may be missing important
connections involving subcortical-cortical coupling and/or
cortico-cortical circuits that loop through subcortical
structures.

CONCLUSIONS

We applied three connection reconstruction methods
based on probabilistic tractography for compiling interre-
gional connectivity maps of brain networks on the same
set of diffusion MRI data, and then compared the resultant
connectivity matrices. Although there were moderate to
high correlations among different graph-theoretic meas-
ures in the three methods, significant between-method var-
iability in terms of small-world properties, brain-hub
identification, and hemispheric asymmetry were demon-
strated, suggesting that reconstruction method has a sig-
nificant impact on derived brain networks. We also
proposed that compared to the conventional connectivity
index, using thresholded tract volume as the index for the
strength of connectivity could alleviate the distance-related
effect that is common in brain mapping studies based on
probabilistic tractography. Despite some between-method
inconsistencies in hub identification, the left precuneus
was unanimously identified as a hub, in good agreement
with prior studies, suggesting its prominent role in brain
networks.
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