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Abstract

Purpose: To introduce a quantitative tool that enables rapid forecasting of T1 and T2 parameter 

map errors due to normal and aliasing noise as a function of the MRF sequence, which can be used 

in sequence optimization.

Theory and Methods: The variances of normal noise and aliasing artifacts in the collected 

signal are related to the variances in T1 and T2 maps through derived quality factors. This 

analytical result is tested against the results of a Monte-Carlo approach for analyzing MRF 

sequence encoding capability in the presence of aliasing noise, and verified with phantom 

experiments at 3T. To further show the utility of our approach, our quality factors are used to find 

efficient MRF sequences for fewer repetitions.

Results: Experimental results verify the ability of our quality factors to rapidly assess the 

efficiency of an MRF sequence in the presence of both normal and aliasing noise. Quality factor 

assessment of MRF sequences is in agreement with the results of a Monte-Carlo approach. 

Analysis of MRF parameter map errors from phantom experiments is consistent with the derived 

quality factors, with T1 (T2) data yielding goodness of fit R2 ≥ 0.92 (0.80). In phantom and in vivo 

experiments, the efficient pulse sequence, determined through quality factor maximization, led to 

comparable or improved accuracy and precision relative to a longer sequence, demonstrating 

quality factor utility in MRF sequence design.

Conclusion: The here introduced quality factor framework allows for rapid analysis and 

optimization of MRF sequence design through T1 and T2 error forecasting.
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Introduction

MRI has long been used as a diagnostic tool, taking advantage of the MR signal’s 

dependence on underlying tissue properties, such as relaxation times and spin density, to 

provide natural contrast between tissue types. While many MR experiments are designed to 

provide qualitative weighting for a particular property, quantitative mapping is a useful 

diagnostic tool [1], for example, in oncology [2][3], cardiology [4][5], and neurology [6][7].

The desire for quantitative MRI has led to the introduction of Magnetic Resonance 

Fingerprinting (MRF), which allows for fast, simultaneous quantization of intrinsic tissue 

properties, including spin density and relaxation times (T1, T2) [8]. Improving upon 

previously developed quantitative MR techniques, MRF can be performed on a clinically 

relevant time scale and produces maps of multiple tissue parameters from a single data set. 

This is achieved by varying imaging parameters such as the flip angle, repetition time (TR), 

and echo time (TE) over N repetitions (time steps), causing tissues with different underlying 

characteristics to produce unique signal evolutions. The obtained signals are then matched to 

a dictionary to generate maps.

It has recently been shown that MRF parameter maps are reliably reproducible given a 

particular sequence design [9]. However, it is also known that the precision of parameter 

quantification depends on the chosen imaging sequence (flip angles, TRs, TEs, and N) [10]–

[16]. For example, there are known structures that have been implemented in MRF sequence 

design to enhance T1 or T2 sensitivity, such as inversion pulses to improve T1 sensitivity, 

time steps with zero degree flip angles to allow for signal recovery, RF phase alternation to 

build bSSFP signal, and π/2 pulses to improve T2 sensitivity [17][18].

The dependence of T1 and T2 mapping on the sequence design raises the question of 

optimality. High degrees of freedom in the pulse sequence design add to the challenge of 

determining an experiment that will result in minimal mapping error. To this end, a number 

of techniques have been proposed for assessing MRF sequence designs. In Cohen et al. and 

Sommer et al., techniques are proposed for judging encoding capability, and thus pulse 

sequence design optimality, based on the correlation between local and global dictionary 

entries[13][14]. However, Sommer et al. found inconsistency in this method in the presence 

of undersampling artifacts. With a rich history in statistical estimation theory, several groups 

have used the Cramer-Rao lower bound to assess MRF parameter estimation in the presence 

of Gaussian white noise [11][15][16][19]. However, Gaussian white noise does not 

accurately characterize the undersampling noise that is prevalent in MRF and dependent on 

signal amplitude.

To address the problem of signal amplitude dependent aliasing noise, Sommer et al. have 

successfully proposed a trial and error, Monte Carlo technique for assessing MRF sequence 

performance [13]. While able to accurately predict the efficacy of a given experimental 

design, the Monte Carlo approach does not provide an analytical tool for quickly 

understanding errors in MRF maps due to aliasing noise.

In this work we introduce a mathematical framework that relates parameter map errors due 

to both Gaussian white noise and correlated undersampling artifacts to the MRF signal, and 
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thus to the chosen imaging sequence (N, TR series, flip angle series). As a result of this 

framework, “quality factors” are found that are inversely related to parameter map variance. 

These quality factors are compared to the results of the Monte Carlo approach presented by 

Sommer et al. and experimentally validated. To show further the utility of the approach, our 

quality factors are used to find an efficient flip angle distribution, requiring fewer 

acquisitions than the best sequence from the Monte Carlo approach, yet achieving a similar 

encoding capability. This analytical approach offers increased understandability and 

usability compared to the previously presented Monte Carlo method.

Theory

In the MRF framework, a dictionary (D) of potential signals (d(θ)) given an experimental 

design is generated for a range of relevant tissue parameters (θ). Then, the experimentally 

acquired signal (s) is matched to a dictionary entry to determine tissue properties per voxel. 

Matching is often performed with maximization of the complex valued dot product between 

the normalized signal (s ) and the dictionary (D) composed of normalized entries (d (θ)),

maxθ s ⋅ D* [1]

To understand errors in MRF parameter mapping, this work analyzes Eq. [1] using 

appropriate models for ideal and noisy MRF signals. This work specifically concentrates on 

the case where θ = [T1, T2]; therefore, we focus on FISP-MRF based sequences, which have 

been shown to be insensitive to off-resonance frequency. [20]

The MRF signal, which behaves according to the Bloch equations, is dependent on a variety 

of experimental parameters and intrinsic tissue properties. In general, at each RF pulse the 

magnetization is rotated, then longitudinal magnetization recovers exponentially at a rate 

determined by R1=1/T1 and transverse magnetization decays exponentially at a rate 

determined by R2=1/T2 up to the time of the subsequent RF pulse. If the repetition time is 

short and the signal is not spoiled between RF pulses, the signal contains the 

magnetization’s history and is dependent on both T1 and T2. In a FISP-MRF experiment, 

where gradients in the slice select direction are applied at the end of each TR to generate a 

phase twist greater than 2π, the overall signal from a given voxel is dephased and thus 

insensitive to off-resonance frequency. [20]

Therefore, the solution to the Bloch equations at each time step in an FISP-MRF experiment 

is a complicated function of R1, R2, repetition times, echo times, and flip angles. In MRF 

experiments, typical TE and TR values are short relative to T1 and T2. Therefore, the signal 

at each time step can be represented by a first-order Taylor Series expansion about chosen 

values of R1 and R2, R1,0=1/T1,0 and R2,0=1/T2,0. Then, each dictionary entry 

(corresponding to relaxation rates R1 and R2) is a 1×N dimensional vector that follows the 

model:

d R1, R2 ≈ d0 + c1 R1 − R1, 0 + c2 R2 − R2, 0 [2]
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where d0 = d(R1,0, R2,0) is the dictionary entry corresponding to the relaxation rates R1,0 and 

R2,0, and the 1×N dimensional coefficients c1 and c2 contain the first derivatives of the 

transverse magnetization with respect to R1 and R2 respectively at each time step.

The acquired signal in an MRF experiment will, in general, contain both Gaussian white 

noise (η) as the result of thermal contributions, and correlated aliasing noise (α) due to 

undersampling artifacts. Therefore, a noisy acquired signal from a voxel with R1=R1,0 and 

R2=R2,0 is expected to be

s = d R1, 0, R2, 0 + η + α
= d0 + η + α

[3]

The thermal noise in the acquired signal is assumed to have zero mean, variance ση
2, and to 

be uncorrelated between real and imaginary channels. Thermal noise is taken to be Gaussian 

rather than Rician due to the high SNR in fully sampled data [21].

Motivated by the work in [13], we model the aliasing noise as proportional to the MRF 

signal at each time step, with a coefficient of proportionality that is taken to be zero-mean 

Gaussian noise (ω) with variance σω
2. This modeled approximation of aliasing noise is an 

ansatz, based on the pseudo-randomization of k-space coverage (for example, through 

golden angle rotation between sparse, variable density spiral acquisitions), and is shown a 

posteriori to serve as a good approximation of experimentally observed aliasing noise (see 

Supporting Information Fig. [S1]). Specifically, the nth component of the complex aliasing 

noise in our model is given by

(α)n = d0 n
(ω)n [4]

The components of ω are assumed to be uncorrelated, as are η and ω.

With the presented dictionary and acquired signal models and Eq. [1] expressed as 
∂

∂Ri
S ⋅ d R1, R2 *  for i=1,2, evaluation of the derivatives with respect to R1 and R2 yields two 

independent equations with which it is possible to solve for (R1-R1,0) and (R2-R2,0). From 

the resulting equations, we find expressions for the variance in R1 and R2 [see appendix for 

a detailed derivation]:

σRi
2 =

ση
2

Qi
+

σω
2

qi
i = 1, 2 [5]

with the quality factors relating to thermal noise given by
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Qi =
aia j − b2

d0
2a j

i = 1, 2 j = 2, 1 [6]

and the quality factors relating to aliasing noise given by

qi =
aia j − b2 2

d0
4∑n = 1

N d0 n
2 a j ci n

− b c j n
+ γi d0 n

2 i = 1, 2 j = 2, 1 [7]

where

ai = d0 ⋅ ci*
2 − d0

2ci
2

b = d0 ⋅ c1* d0 ⋅ c2* − d0
2 c1 ⋅ c2*

γi = c j
2 d0 ⋅ ci* − ci ⋅ c j* d0 ⋅ c j*

Our quality factors due to both thermal and aliasing noise contain dependence on R1,0 and 

R2,0 through d0 and the determination of c1 and c2. Additionally, because the signal 

components (d0, c1, c2) depend on experimental design parameters (flip angle series, TR 

series, TE, N), the quality factors are indicative of the ability with which a given experiment 

can match the noisy acquired signal from a voxel with R1=R1,0 and R2=R2,0 to the 

appropriate dictionary entry for a given level of noise. Therefore, the comparison of quality 

factors for different experimental designs allows for the determination of more optimal 

sequence parameters.

Additionally, noting that c1 and c2 are the derivatives of the MRF signal with respect to R1 

and R2, the quality factors for thermal noise (Qi) are determined to be consistent with the 

Cramer-Rao bounds evaluated for a FISP-MRF experiment. For a complete derivation, 

please see the Supporting Information. Numerical results can be found in reference [22].

If either thermal noise (i.e. fully sampled data) or aliasing noise (i.e. highly undersampled 

data) dominates Eq. [5], the variance in parameter quantification becomes approximately 

proportional to the dominant term. Because MRF is generally performed with large 

undersampling acceleration factors, this work focuses on the case where aliasing noise is 

dominant so that

Kara et al. Page 5

Magn Reson Med. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



σRi
2 ≅

σω
2

qi
σω

2 ≫ ση
2 i = 1, 2 [8]

Methods

Verification Experiments

To verify the ability of Eq. [5] to predict the encoding capabilities of a given sequence 

design, FISP-MRF experiments predicated on the findings of Sommer et al. were performed 

with a 10-compartment phantom. For these experiments, three FISP-MRF sequences were 

tested, each containing an inversion pulse (inversion time, TI = 21 ms), constant repetition 

times (TR = 6.98 ms) and echo times (TE = 2.93 ms), and flip angle patterns with N=250 

repetitions. The chosen flip angle distributions (θbest, θaverage, θworst) are based on the three 

patterns presented in Sommer et al., which were determined to have varying encoding 

capabilities (best, average, and worst) through their Monte-Carlo approach and with 

experimental verification (see Fig. [1]) [13].

Optimization Experiments

As a result of the inverse relationship between σRi
2 and qi, the error in mapping T1 and T2 

with MRF in the presence of aliasing noise can be minimized by designing an experiment 

with maximized q1 and q2, respectively. Optimization of the flip angle sequence through 

maximization of the herein introduced aliasing noise quality factors was performed in 

MATLAB (MathWorks, Natick, Massachusetts, USA) with the genetic algorithm. For 

simplicity, aliasing noise quality factor maximization was performed while allowing the flip 

angle distribution to vary over the range [0, 60] degrees, fixing TE = 2.93 ms, TR = 6.98 ms, 

and RF phase = 0°, and executing an initial inversion pulse (TI = 21 ms). Optimization was 

initially performed with N=250, resulting in a flip angle distribution achieving a small (20%) 

forecasted improvement in mapping error relative to already optimized θbest as determined 

by Sommer et al. Therefore, to show the utility of our quality factors, the presented 

optimization was performed for N=150 to determine a sequence with comparable error and 

shorter scan time, and therefore improved efficiency, relative to the N=250 step experiment 

with θbest.

The initial population of the genetic algorithm, containing 900 random entries, was created 

with a colored noise generator so that 300 entries each had a power spectral density 1/|f|a 

with a = 20, 50, and 100 to filter out high frequencies [13]. Although the initial population 

contained relatively smoothly varying flip angle distributions, distributions in future 

generations could contain rapid variations due to the processes of mutation and crossover 

employed by the genetic algorithm.

Quality factors are dependent on underlying relaxation time values (T1,0, T2,0) through the 

calculation of zeroth and first order terms in Eq. [2]; thus, to have an effective formula for 

use over a large range of relaxation times, optimization was performed by minimizing the 
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weighted sum: ∑T1, 0, T2, 0

T1, 0
q1 T1, 0, T2, 0

+
T2, 0

q2 T1, 0, T2, 0
 with T1,0 = [600, 850, 1300] ms 

and T2,0 = [45 70 100] ms. Weighting the quality factor terms by T1,0 and T2,0 for this 

optimization acts to normalize the terms in the sum, preventing any one term from 

dominating. The T1,0 and T2,0 values chosen for the optimization cover the range of 

reference relaxation times for white and gray matter at 3T (see Table [1]). The resulting 

optimized flip angle distribution, θN=150, is shown in Fig. [1]. The results of flip angle 

optimization for normal noise through maximization of Qi can be found in reference [23].

Dictionary and Quality Factor Calculation

Dictionaries containing signal time courses for a range of relevant tissue parameters are 

generated in MATLAB using the Bloch equations. Because these dictionaries are used to fit 

d0, c1, and c2 for the calculation of quality factors as defined in Eqs. [6] and [7], the array of 

T1 and T2 values chosen should have small enough increments to perform a linear regression 

while spanning the typical physiological values of the samples to be imaged. For this work, 

T1 was chosen to vary over [35, 1000] ms in 5 ms increments and [1010, 2800] ms in 10 ms 

increments. T2 was chosen to vary over [2, 24] ms in 1 ms increments, [26, 40] ms in 2 ms 

increments, and [45, 800] ms in 5 ms increments, resulting in 56,659 dictionary entries.

To ensure matching accuracy to experimental data, FISP-MRF dictionaries were calculated 

with slice profile corrections [24]. This calculation was performed based on work by 

Hargreaves using RF-pulse and gradient information specific to the performed experiments 

[25]. Using Bloch simulations over 250 spins per voxel, a slice profile corrected FISP-MRF 

dictionary with 250 time steps for each entry was generated in three hours with MATLAB 

on the CWRU High Performance Cluster.

Both normal noise and aliasing noise quality factors were then calculated in MATLAB with 

Eqs. [6] and [7], using linear regressions over nearest neighbors from the calculated 

dictionary entries for chosen T1,0 and T2,0 values to determine d0, c1, and c2.

Experimental Design and Image Reconstruction

FISP-MRF experiments were performed on a 3T Siemens Skyra (Siemens Healthcare, 

Erlangen, Germany) with a 20-channel head-neck array coil. For phantom experiments, an 8 

mm slice was excited with an apodized sinc pulse (nz=8, τRF=2 ms) during application of 

slice select (Gss = 11.74 mT/m, slew rate=117.4 T/m/s) and rephasing (Grephase =−27.4 

mT/m, slew rate=119.1 T/m/s) gradients. For in vivo experiments, a 5 mm slice was excited 

with an apodized sinc pulse (nz=8, τRF=2 ms) during application of slice select (Gss = 11.74 

mT/m, slew rate=117.4 T/m/s) and rephasing (Grephase =−27.4 mT/m, slew rate=119.1 

T/m/s) gradients. Additionally, a spoiler gradient (Gspoil =27.4 mT/m, slew rate=119.1 

T/m/s) was applied at the end of each TR to create a phase twist of 8π in the slice select 

direction.

Data was collected using a variable density spiral k-space trajectory, which required 48 

interleaves to fully cover k-space (192×192, 300 mm2 FOV for phantom experiments; 

256×256, 300 mm2 FOV for in vivo experiments) [26]. Fully sampled data sets were 
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acquired for each experiment. Then, data was retrospectively undersampled to achieve 

acceleration factors ranging from R=5 to R=48, employing golden angle rotation of 

interleaves within each time step and relative to neighboring time steps [27]. Image 

reconstruction was performed using the non-uniform fast Fourier transform (NUFFT) [28] 

and the adaptive method for combining images from multiple coils [29].

Phantom Experiments

Both verification experiments, based on the results of Sommer et al., and optimization 

experiments, derived through maximization of our aliasing noise quality factors, were 

performed as described in Experimental Design and Image Reconstruction to image a 10-

compartment phantom. Reference T1,0 and T2,0 values for each of the ten phantom 

compartments were determined with inversion recovery and spin echo sequences, 

respectively (see Supporting Information Table [1]). For additional comparison to the 

optimization experiments, reference T1 and T2 maps were obtained using an undersampled 

(R=48) 1000 step FISP-MRF sequence based on Jiang et al. [20]

Parameter maps (T1 and T2) were generated through complex valued dot product matching 

with the fully sampled and undersampled data from each experiment. A 5×5 ROI was drawn 

in each of the ten phantom compartments for calculation of mean T1, T2  and standard 

deviation σT1
, σT2

 values. The obtained mean values were used to calculate qi and Qi for 

each experiment, and errors in the σTi
 data were propagated based on the changes in qi and 

Qi as the result of mean error relative to the reference T1,0 and T2,0 values in Table [1].

In vivo Experiments

Experiments with θbest and θN=150 were performed in vivo as described in Experimental 

Design and Image Reconstruction to generate T1 and T2 maps from volunteer head scans. 

Reference T1 and T2 maps were obtained using a 1000 step FISP-MRF sequence based on 

Jiang et al., which was shown to reliably yield comparable results to standard T1 and T2 

mapping techniques [20].

The in vivo parameter maps resulting from experiments with θbest and θN=150 were analyzed 

through calculations of the relative error in each parameter map compared to the reference 

map, and the resulting normalized root mean squared errors in T1 and T2 (nRMSET1, 

nRMSET2), defined as nRMSETi= ∑ j = 1
n 1

n

Ti, j − Ti, j
re f

Ti, j
re f

2
, with n total voxels, the matched 

value of Ti in the jth voxel given by Ti,j, and the Ti value in the jth voxel of the reference scan 

given by T i, j
re f . Regions of interest were drawn in areas of white and gray matter for 

calculation of mean T1, T2 , standard deviation σT1
, σT2

 values for additional parameter 

map comparison to reference map and literature values [30].
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Results

Verification Experiments: Quality Factors as Functions of T1 and T2

With the generated dictionaries, both aliasing and normal noise quality factors for the three 

experiments based on Sommer et al. [13] were calculated in MATLAB with T1,0 varying 

over [350, 1710] ms in increments of 10 ms and T2,0 varying over [30, 110] ms in 

increments of 2 ms.

The resulting surface plots of the normal noise quality factor, Qi, versus T1,0 and T2,0 are 

shown in Fig. [2a], demonstrating that the encoding capability of the three sequences in the 

presence of normal noise does not necessarily follow the θbest > θaverage > θworst hierarchy 

predicted for aliasing noise by Sommer et al., but instead the sequences should tend to 

perform comparably well [13]. Surface plots of qi versus T1,0 and T2,0 shown in Fig. [2b] 

reveal that θbest results in the highest valued aliasing noise quality factors and θworst results 

in the lowest valued aliasing noise quality factors over the entire tested range, in agreement 

with the encoding capability predicted by Sommer et al.

Verification Experiments: Phantom Data

The results of ROI analysis on the T1 and T2 maps obtained with phantom experiments 

using θbest, θaverage, and θworst based on Sommer et al. are presented. Analysis of parameter 

maps obtained with fully sampled data show that the three experiments perform comparably 

well in the absence of aliasing noise. This result is in agreement with the T1 and T2 error 

forecasted by the normal noise quality factors (see Fig [2a]), which are expected to dominate 

the relationship presented in Eq. [5] in the absence of aliasing noise. Error in the parameter 

maps obtained with undersampled data achieving acceleration factors between R=5 and 

R=10 were determined to be dependent on both normal noise and aliasing noise quality 

factors, with neither term dominating the relationship between parameter map error and the 

derived quality factors presented in Eq. [5]. See the attached Supporting Information Figs. 

[S2] and [S3] for further details regarding parameter map error at low acceleration factors 

(R≤10).

ROI analysis of the T1 and T2 maps obtained with undersampled data achieving acceleration 

factors R=12 and higher showed that the relationship between parameter map error and 

quality factors derived in Eq. [5] is dominated by the aliasing noise quality factors, so that 

the approximation taken in Eq. [8] is appropriate. As a representative example, Fig. [3a] 

shows the parameter map error σRi
 per ROI, obtained with undersampled (R=12) data, 

plotted as a function of the calculated aliasing noise quality factor 1/ qi  for the three tested 

sequences (θbest, θaverage, and θworst). In agreement with Eq. [8], the parameter map error 

achieves good linearity (R2=0.92 for σR1
 and R2=0.80 for σR2

) in 1/ qi. The variance of the 

aliasing noise, corresponding to the slope of the fitted data as a result of Eq. [8], is 

determined to be σω = 0.12,0.15 from the σR1
 and σR2

 data, respectively, agreeing to within 

20%. Bar graphs (see Fig. [3b]) of the parameter map error σTi
 per ROI, obtained with 
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undersampled (R=12) data, show further agreement with the results of Sommer et al. and the 

surface plots of aliasing noise quality factors as functions of relaxation times presented in 

Fig. [3a], with θbest achieving the lowest parameter map error and θworst achieving the 

highest parameter map error in each of the tested ROIs. At higher acceleration factors, 

parameter map errors continue to show agreement with the quality factor framework in the 

case where aliasing noise is dominant. For R=16 and R=24, parameter map errors are very 

well characterized by Eq. [8], with goodness of fit greater than or equal to 0.94 (0.89) for 

σR1
σR2

 data (see Supporting Information Fig. [S4] for details).

At very high acceleration factors (R=48), while parameter map errors continue to show 

relative agreement with the presented quality factor framework in the case where aliasing 

noise is dominant, deviations from the expected results begin to arise. The results of ROI 

analysis on parameter maps obtained from data at the highest available acceleration factor in 

this work, R=48, are presented in Fig. [4]. Although the σR1
 data continues to be well 

modeled by the aliasing noise quality factors, achieving R2=0.89, the σR2
 data contains 

obvious outliers relative to 1/ q2. The divergence from the quality factor framework is, in 

part, explained by the large mean error in T2 quantification, as verified by the large error 

bars on the outlying data points. Additional sources of error arise from the first-order 

approximation of aliasing noise used in the quality factor derivation (see Discussion). 

Excluding major outliers from the σR2
 data, the quality factor model is in good agreement 

with the obtained data, achieving R2=0.87 (see Fig. [4b]).

Optimization Experiments: Quality Factors as Functions of T1 and T2

Aliasing noise quality factors for the 250 step experiment with θbest based on Sommer et al. 

and the efficient experiment with θN=150 derived through maximization of the aliasing noise 

quality factors were calculated in MATLAB using Eq. [7]. The resulting surface plots of 

quality factors for aliasing noise as functions of T1,0 and T2,0 (see Fig. [5]) reveal that the 

θbest and θN=150 experiments yield comparable values of qi, and therefore comparable 

forecasted errors, over a large range in T1 and T2 values. With comparable error and 

decreased scan time due to fewer acquisitions, θN=150 is expected to be more efficient in T1 

and T2 mapping than θbest. Note, however, the θN=150 experiment is expected to perform 

poorly at large values of T1 (>1500 ms), which is likely due to the short total scan time 

relative to T1,0 at high values.

Optimization Experiments: Phantom Data

The results of ROI analysis on the T1 and T2 maps obtained with phantom experiments 

using the 250 step θbest based on Sommer et al. and the 150 step θN=150 derived through 

quality factor maximization are presented. Because θN=150 was designed to achieve aliasing 

noise quality factors comparable to θbest, error analysis was designed to specifically probe 

the relationship between qi and σRi
. In agreement with the results of verification 

experiments, plots of the obtained parameter map error per ROI as functions of aliasing 
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noise quality factors showed that the qi term dominates the relationship in Eq. [5] for 

undersampled data with acceleration factors at and above R=12. As a representative case, 

Fig. [6a] shows the parameter map error σRi
 per ROI, obtained with undersampled (R=12) 

data, plotted as a function of the calculated aliasing noise quality factor 1/ qi , achieving 

R2=0.92 and R2=0.70 for σR1
 and for σR2

 data, respectively. (We note that without the 

outlying data point (related to a very low valued T2,0 for which the first order approximation 

taken in Eq. [2] is less accurate) in the plot comparing our σR2
 data to 1/ qi, the goodness of 

fit is increased from 0.70 to 0.92, so that both plots demonstrate excellent agreement with 

the expected linear relationship in Eq. [8]). Bar graphs of the parameter map error σTi
 per 

ROI, obtained with undersampled (R=12) data from experiments using θbest and θN=150 are 

presented in Fig. [6b]. For additional comparison, Fig. [6b] also shows σTi
 per ROI, obtained 

with the reference scan based on the FISP-MRF sequence presented in Jiang et al. and 

performed at the usual acceleration factor R=48. The graphs in Fig. [6b] continue to show 

agreement with parameter map error forecasted by aliasing noise quality factors, with 

generally comparable parameter map error per ROI for θbest and θN=150, except at large T1, 

where the 150 step experiment is expected to incur high mapping errors. In addition, Fig. 

[6b] demonstrates that the parameter map error from undersampled data (R=12) obtained 

with the two short sequences (θbest and θN=150) is comparable to that from the reference 

sequence.

Optimization Experiments: In Vivo Data

The results of in vivo experiments using the 250 step θbest based on Sommer et al. and the 

150 step θN=150 derived through quality factor maximization are presented. As a 

representative example for the case where the aliasing noise term is expected to dominate 

Eq. [5] based on the findings of Optimization Experiments: Phantom Data, all presented 

results were obtained with an acceleration factor R=12. Parameter maps from experiments 

using θbest and θN=150, as well as reference maps from a FISP-MRF scan based on Jiang et 

al., are presented in Fig. [7]. Relative error maps from experiments using θbest and θN=150 

compared to the reference maps are presented in Fig. [8]. Both the parameter maps and the 

relative error maps demonstrate the expected comparable mapping capabilities of θbest and 

θN=150. The results of nRMSE and ROI analysis on maps from the two sequences, detailed 

in Table [1], further demonstrate the comparable performance of the 150 step experiment to 

the 250 step experiment in terms of mean and standard deviation relaxation time values. 

White matter and gray matter ROI analysis on parameter maps from both sequences are in 

agreement with the reference maps and in agreement with literature values [29]. In addition, 

θbest and θN=150 are found to have comparable nRMSE in both T1 (0.09, 0.10) and T2 (0.15, 

0.22). Due to its comparable performance and decreased scan time, the results of the in vivo 

experiments with θN=150 continue to demonstrate the utility of the quality factor framework 

in designing efficient MRF experiments.
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Discussion

In this work, the genetic algorithm was chosen for aliasing noise quality factor optimization, 

with an initial population of 900 sequences. Optimization was initially performed with 

N=250, reaching agreement with the already optimized θbest as determined by Sommer et al. 

within the first iteration (approximately 1 minute). Convergence to a result similar in 

encoding capability to θbest on this first iteration was anticipated due to the similarity 

between our initial population and the population of sequences tested by Sommer et al. 

Allowing further iteration, the optimization produced sequences with incremental 

improvements over the best sequence at the initial iteration, producing an MRF sequence 

leading to an approximately 20% improvement in forecasted error relative to θbest. This 

result suggests two advantages of the quality factor framework in MRF sequence evaluation 

and optimization. Due to this demonstrated ability to quickly evaluate given MRF 

sequences, the quality factor framework is expected to provide significant advantages in 

computation time compared to other, trial and error approaches. In addition, while trial and 

error approaches are limited to the initial population of MRF sequences, optimizations with 

our quality factors can produce effective sequences that are dissimilar from the initial 

population, and therefore do not require a priori knowledge.

To show the efficacy of our approach, optimization was performed for N=150, to determine 

a sequence with comparable error and therefore improved efficiency relative to the N=250 

step experiment with θbest. While still fast (1 minute), the initial iteration of the optimization 

over 150 steps did not yield a sequence with forecasted error comparable to the 250 step 

θbest, suggesting that the initial population created with a colored noise generator did not 

contain the required qualities for an efficient MRF sequence. Therefore, the ability to 

diverge from the initial population provided by our quality factor framework was required to 

find an MRF sequence comparable to θbest. As in the optimization over 250 steps, not 

having a priori information built into our initial population did not affect the capability of the 

quality factor approach to find an efficient MRF sequence; however, thousands of iterations 

(approximately 26 hours) were required to find θN=150.

The flip angle distribution optimized for aliasing noise (θN=150) is observed to contain some 

rapid variation, resulting in a correspondingly varying signal time course (see Fig. [1]). In 

contrast to the common belief that MRF sequences should be smoothly varying [11][16], 

this result suggests that while flip angle distributions used in MRF with undersampling 

should not contain significant and very rapid variations to prevent the unequal weighting of 

aliasing noise at various time steps, some controlled rapid variations in the flip angle 

distribution may be beneficial.

The error assessment and optimization in this work has been focused on comparisons with 

the MRF sequences presented in Sommer et al. For example, we find a 150-step sequence 

that performs as well as the best, 250-step sequence found with Monte Carlo methods at 

equal acceleration factors, and, therefore, θN=150 is more efficient than θbest. Short 

sequences at lower acceleration factors may not be as efficient as longer sequences at higher 

acceleration factors. This decreased efficiency can be mitigated, for example, in multi-slice 

imaging where the wait time between k-space acquisitions can be used to acquire data in 
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other slices. In addition, sequences with fewer steps, are expected to be useful in specialized 

applications, for example in imaging patients for whom breath holds are challenging.

As an example, it is of interest to discuss experiments with the standard 1000-step 

distribution based on Jiang et al. acquired at R=48. At lower acceleration factors (R=12), the 

short sequences (θN=150 and θbest) have comparable T1 and T2 mapping error to the 

standard sequence performed at R=48, as evidenced by both the phantom and the in vivo 

data presented herein (Fig. [6b], Table 1). Although θN=150 and θbest have fewer time steps 

than the standard sequence, necessary wait times between the k-space trajectories, required 

to achieve the reduced acceleration factor, result in a less efficient scan in terms of total 

sequence duration. However, outside the aforementioned focus of this work, our quality 

factors can be employed to find new distributions with increased efficiency relative to the 

standard sequence. In an example, the presented framework has been used to find a flip 

angle distribution with 500 time steps, achieving higher q1 (reduced T1 mapping error) and 

comparable q2 (comparable T2 mapping error) relative to the standard sequence in [20]. 

Other examples employing our quality factors to analyze and optimize MRF sequences with 

larger number of time steps have been reported in [23][31][32].

Results in this work demonstrate that the aliasing noise term dominates Eq. [5] for 

acceleration factors R=12 and above. Parameter map error is found to be in very good 

agreement with the relationship in Eq. [8] for acceleration factors between R=12 and 24; 

however, at the highest available acceleration factor in this work, R=48, deviations from the 

derived model arise (see Fig. [4]). These deviations are believed to result, in part, from the 

first-order approximation of the aliasing noise taken in the quality factor derivation, which is 

not accurate for the large aliasing artifacts (approximately equal to the signal amplitude) 

present in the undersampled data for R=48. Therefore, at very large acceleration factors, the 

derived parameter map model in terms of aliasing noise quality factors is an appropriate 

guide in forecasting the parameter map error of an MRF sequence, serving as a first 

approximation to the true, more complicated relationship. Further investigation into 

improving the derived quality factor model for very large acceleration factors will be a topic 

for future work.

While the quality factors defined by Eqs. [6–7] are specific to T1 and T2 mapping, there are 

several additional imaging parameters that can be mapped with MRF. In addition to off-

resonance frequency mapping, which is necessary in bSSFP-MRF, MRF has expanded into 

the quantification of properties such as B1
+ [24][33][34] and diffusion parameters [35][36]. 

Therefore, broadening the quality factor framework to include these additional parameters is 

of great interest.

Because the quality factor framework derived herein is based on the theory of small 

perturbations to a system, specifically those arising from TR/Ti << 1, the expansion of 

quality factors to include a third mapping parameter is straightforward if the added 

parameter of interest can also be modeled as a small perturbation. For example, initial 

investigations have successfully quantified the error in T1, T2, and B1
+ mapping when the 

flip angle distribution is required to be small (<15°). Alternatively, an expansion can be 

made assuming a small variation about a central value of B1
+. Then quality factors can be 

Kara et al. Page 13

Magn Reson Med. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



calculated at various central B1
+ values to analyze mapping capability over a large range in 

B1
+ values, analogous to the procedure for comparing quality factors over a large range of 

relaxation times used in this work. In addition, initial investigation into the application of 

quality factors to T1, T2, and ADC mapping is promising. However, more work is required 

for a robust expansion of the quality factor framework to include added properties such as 

off-resonance frequency and B1
+, which in general do not produce small perturbations to the 

system.

Conclusion

In this work, quality factors for the assessment of MRF pulse sequence designs in the 

presence of normal noise and aliasing artifacts were derived, tested, and shown to accurately 

forecast parameter map error. Due to quality factor dependence on the MRF signal, 

optimized MRF sequences can be rapidly evaluated and optimized relative to normal and 

aliasing noise through quality factor maximization, to yield efficient MRF experiments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Quality Factor Derivation

With presented models for the dictionary entries and acquired signal, as detailed in the 

theory section,

d R1, R2 ≈ d0 + c1 R1 − R1, 0 + c2 R2 − R2, 0

s = d0 + η + α

the initial step in our quality factor derivation involves noting that matching through 

maximization of the complex dot product implies that the derivative of the dot product 

between the normalized signal and the matched normalized dictionary entry will be zero:
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max
R1, R2

s ⋅ D* ∂
∂Ri

s ⋅ d R1, R2 * = 0

Re s ⋅ d* ∂
∂Ri

Re s ⋅ d* + Im s ⋅ d* ∂
∂Ri

Im s ⋅ d* = 0 (A.1)

In a FISP-MRF experiment where spoiler gradients are applied at the end of each TR to 

create a phase twist greater than 2π in the slice select direction and excitation pulses are 

applied along a single axis (ex. along x), the complex signal (d = dx + idy) will be dominated 

by either the real or the imaginary component (ex. d ≈ idy). Therefore, the imaginary 

components of Eq. [A.1] vanish, leaving

∂
∂Ri

s ⋅ d R1, R2 * ≈ Re s ⋅ d* ∂
∂Ri

Re s ⋅ d* = 0 (single excitation axis FISP‐MRF) (A.

2)

For ease of notation, now let (a⋅b*) indicate the real part of the complex dot product. Using 

Eq. [A.2] and noting that s is related to the ground truth relaxation rates (R1,0 and R2,0), and 

thus independent of Ri, to first order in Ri and Rj we find,

1
s d 3 d 2 s ⋅ ci* − d0 ⋅ ci* + ci

2 Ri − Ri, 0 + ci ⋅ c j* Rj − Rj, 0 s ⋅ d* = 0 (A.3)

Using Eq. [2] to write Eq. [A.3] in terms of d0, ci, cj, η, and α, keeping only first order terms 

in Ri, Rj, η, and α:

d0 ⋅ ci* η ⋅ d0* + α ⋅ d0* − d0
2 η ⋅ ci* + α ⋅ ci* = ai Ri − Ri, 0 + b Rj − Rj, 0 (A.4)

With

ai = d0 ⋅ ci*
2 − d0

2ci
2

b = d0 ⋅ c1* d0 ⋅ c2* − d0
2 c1 ⋅ c2*

Using the two equations (i=1,2 and j=2,1) to solve for (R1 – R1,0) and (R2 – R2,0):
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aia j − b Ri − Ri,0 = − d0
2 a j η ⋅ ci* + α ⋅ ci* − b η ⋅ c j* + α ⋅ c j*

+ γi η ⋅ d0* + α ⋅ d0*
(A.5)

Where

γi = c j
2 d0 ⋅ ci* − ci ⋅ c j* d0 ⋅ c j*

Because ω and α have zero mean and are uncorrelated, averaging Eq. [A.5] over the time-

step population yields a vanishing result on the right-hand side of the equation, leading to 

R1=R1,0. Averaging over the square of both sides leads to the following variance 

relationships:

Var[LHS[A.5]] = σRi
2 aia j − b 2

(A.6)

Var[RHS[A.5]] = d0
4 a j η ⋅ ci* − b η ⋅ c j* + γi η ⋅ d0* 2 + d0

4

a j α ⋅ ci* − b α ⋅ c j* + γi α ⋅ d0* 2
(A.7)

In general, for vectors u = iuy and ν = iνy with vanishing real components and Gaussian 

white noise η with 〈(η)m(η)n〉 = ση2δm,n:

η ⋅ u* η ⋅ v* = ∑m, n ηy m
ηy n

uy m
vy n

= ∑m, nση
2δm, n uy m

vy n
= ση

2 u ⋅ v*

In the case of aliasing noise with (α)n = |(d0)n|(ω)n and 〈(ω)m(ω)n〉 = σω2δm,n:

α ⋅ u* α ⋅ v* = ∑m, n αy m
αy n

uy m
vy n

= ∑m, n d0 m
d0 n

(ω)m(ω)n uy m
vy n

= ∑m, nσω
2δm, n d0 m

d0 n
uy m

vy n
= σω

2∑n d0 n
2
((u)n ⋅ (v)n*)

Therefore, we find

Var[RHS[A.5]] = ση
2d0

2a j aia j − b2 + σω
2d0

4∑n d0 n
2 a j ci n

− b c j n
+ γi d0 n

2
(A.8)

Finally, combining Eqs. [A.6] and [A.8],
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σRi
2 =

ση
2

Qi
+

σω
2

qi
i = 1, 2

With the quality factors relating to thermal noise given by

Qi =
aia j − b2

d0
2a j

i = 1, 2 j = 2, 1

And the quality factors relating to aliasing noise given by

qi =
aia j − b2 2

d0
4Σn = 1

N d0 n

2
a j ci n

− b c j n
+ γi d0 n

2
i = 1, 2 j = 2, 1
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Figure 1. 
Flip angle distributions used in verification and optimization experiments. (a)-(c) Flip angle 

distributions based on Sommer et al., (θbest, θaverage, θworst), which were determined to have 

varying encoding capabilities: (a) best, (b) average, and (c) worst. (d) Efficient flip angle 

distribution with N=150 acquisitions, determined through maximization of aliasing noise 

quality factors.

Kara et al. Page 20

Magn Reson Med. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Surface plots of (a) normal and (b) aliasing noise quality factors as functions of T1,0 and T2,0 

over the range T1,0=[350,1710] ms and T2,0=[30,110] ms, for experiments using θbest, 

θaverage, and θworst. Figure [2a] demonstrates that the three flip angle distributions, which 

achieve comparable normal noise quality factors over the tested range in relaxation times, 

are expected to perform similarly in the presence of normal noise. Figure [2b] shows that 

experiments with θbest yield the highest aliasing noise quality factors and experiments with 

θworst yield the lowest aliasing noise quality factors over the tested range, in agreement with 

the encoding capabilities demonstrated by Sommer et al.
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Figure 3. 

Results of undersampled (R=12) verification experiments. (a) Parameter map error σRi
 per 

ROI, plotted as a function of the calculated aliasing noise quality factor 1/ qi  for the three 

tested sequences (θbest, θaverage, and θworst), achieving goodness of fit R2=0.92 and R2=0.80 

in σR1
 and σR2

, respectively. (b) Bar graphs of the parameter map error σTi
 per ROI, 

showing further agreement with quality factor analysis, with θbest experiments achieving the 

lowest error and θworst experiments achieving the highest error, as expected.
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Figure 4. 

Results of undersampled (R=48) verification experiments, plotting parameter map error σRi

per ROI as a function of the calculated aliasing noise quality factor 1/ qi  for the three 

tested sequences (θbest, θaverage, and θworst). In (a), all data points are included achieving 

goodness of fit R2=0.89 and R2=0.20 in σR1
 and σR2

, respectively. In (b), obvious outliers 

from the σR2
 are excluded, resulting in goodness of fit R2=0.87.
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Figure 5. 
Surface plots of aliasing noise quality factors as functions of T1,0 and T2,0 over the range 

T1,0=[350,1710] ms and T2,0=[30,110] ms, comparing experiments using θbest and θN=150. 

The two experiments yield comparable aliasing noise quality factors, except at large T1, 

where θN=150 is expected to yield large errors.
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Figure 6. 
Results of undersampled (R=12) phantom optimization experiments. (a) Parameter map 

error σRi
 per ROI, plotted as a function of the calculated aliasing noise quality factor 1/ qi

for experiments with θbest and θN=150. achieving goodness of fit R2=0.92 and R2=0.70 in 

σR1
 and σR2

, respectively. (b) Bar graphs of parameter map error σTi
 per ROI, showing that 

experiments with θbest and θN=150 performed at R=12, and the standard FISP-MRF 

experiment based on Jiang et al. yield comparable errors. With fewer acquisitions (shorter 

scan time) and comparable error, θN=150 is more efficient than θbest.
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Figure 7. 
In vivo T1 and T2 maps from experiments using θbest and θN=150, as well as reference maps 

from a FISP-MRF scan based on Jiang et al., demonstrating the expected comparable 

mapping capabilities of θbest and θN=150.
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Figure 8. 
Relative error maps from experiments using θbest and θN=150 compared to a reference scan 

based on Jiang et al., demonstrating the expected comparable mapping capabilities of θbest 

and θN=150.
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Table 1.

Relaxation times in white and gray matter at 3T from literature [29] and the results of ROI and nRMSE 

analysis on in vivo parameter maps obtained with FISP-MRF experiments using θbest, θN=150, and a reference 

scan based on Jiang et al.

White Matter Gray Matter

Sequence T1 ± σT1
(ms) T2 ± σT2

(ms) T1 ± σT1
(ms) T2 ± σT2

(ms) nRMSET1 (ms) nRMSET2 (ms)

Literature (812.3–1110.0) (49.5–79.6) (1275.0–1763.0) (66.0–110.0) - -

Reference Scan 1066 ± 91 59 ± 5 1610 ± 128 78 ± 10 - -

θbest 1033 ± 88 53 ± 4 1579 ± 133 71 ± 7 0.09 0.15

θN=150 993 ± 89 49 ± 4 1629 ± 95 73 ± 10 0.10 0.22
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