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Abstract

Background: Externalizing disorders are known to be partly heritable, but the biological
pathways linking genetic risk to the manifestation of these costly behaviors remain under
investigation. This study sought to identify neural phenotypes associated with genomic
vulnerability for externalizing disorders.

Methods: 155 White, non-Hispanic veterans were genotyped using a genome-wide array and
underwent resting-state functional magnetic resonance imaging. Genetic susceptibility was
assessed using an independently-developed polygenic score for externalizing, and functional
neural networks were identified using graph theory-based network analysis. Tasks of inhibitory
control and psychiatric diagnosis (alcohol/substance use disorders) were used to measure
externalizing phenotypes.

Results: A polygenic externalizing disorder score (PS) predicted connectivity in a brain circuit
(10 nodes, 9 links) centered on left amygdala that included several cortical (bilateral IFG pars
triangularis, left rostral anterior cingulate cortex) and subcortical (bilateral amygdala,
hippocampus, and striatum) regions. Directional analyses revealed that bilateral amygdala
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influenced left prefrontal cortex (IFG) in participants scoring higher on the externalizing PS,
whereas the opposite direction of influence was observed for those scoring lower on the PS.
Polygenic variation was also associated with higher Participation Coefficient for bilateral
amygdala and left rACC, suggesting that genes related to externalizing modulated the extent to
which these nodes functioned as communication hubs.

Conclusions: Findings suggest that externalizing polygenic risk is associated with disrupted
connectivity in a neural network implicated in emotion regulation, impulse control, and
reinforcement learning. Results provide evidence that this network represents a genetically-
associated neurobiological vulnerability for externalizing disorders.
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Introduction

The common co-occurrence of behavioral disinhibition, substance use disorders, antisocial
behavior, and conduct problems reflects a broad dimension of psychopathology termed the
externalizing spectrum (Krueger et al., 2002). Externalizing disorders are associated with
poor mental health outcomes, premature death (Eaton et al., 2013; Odgers et al., 2007) and
are estimated to cost more than 417 billion dollars annually in the United States alone
(National Institute on Drug Abuse, 2015). Twin studies have repeatedly found that
externalizing phenotypes are highly heritable across different developmental periods and
point to behavioral disinhibition as a common feature uniting externalizing disorders (Tarter
et al., 2003; Young et al., 2009; Krueger and Markon, 2006). The goal of this study was to
identify neural phenotypes of externalizing by investigating associations between measured
genetic risk for externalizing disorders and brain networks. Based on growing evidence that
connectivity in resting-state functional networks reflects heritable differences in brain
organization and function (Glahn et al., 2010; Smit et al., 2008), we examined patterns of
resting-state connectivity as plausible heritable neural phenotypes for externalizing.

Research on the polygenic structure of psychiatric disorders is advancing rapidly through the
development of polygenic scores (PSs) derived from genome-wide association studies. PSs
are summary measures that weight single nucleotide polymorphism (SNPs) from across the
genome to provide a measured index of the genetic propensity for a given disorder. Salvatore
and colleagues (Salvatore et al., 2015) recently developed an externalizing polygenic score
in adults with alcohol dependence and showed that it explained 6% of the variance in
externalizing disorders (alcohol/substance use disorders, antisocial behavior) and 2—7% of
the variance in other disinhibited phenotypes (e.g., impulsiveness). Building on these
findings, we recently replicated the association between the polygenic score and
externalizing symptoms in trauma-exposed veterans and found that the polygenic score
predicted impaired performance on inhibitory control tasks (Sadeh et al., 2016). Thus, initial
validation studies find reliable polygenic associations with externalizing phenotypes and
illustrate the promise of this approach for identifying heritable neural mechanisms
associated with genetic predispositions for externalizing. An important next step in this line
of research is to examine the neurobiological correlates of the externalizing PS. Research
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that aims to characterize the influences of genetic variations on brain structures and function
has grown exponentially over the past several years, and yielded greater insight into the
heritability of neurobiological risk factors for psychopathology, including emerging
neurogenetics research on externalizing disorders (e.g., Heitzeg et al., 2014; Karoly, et al.,
2013; Shehzad et al., 2012). To our knowledge, no research to date has examined whether
the externalizing PS relates to neurobiological function or structure — potentially crucial
pathways by which genes create vulnerability for externalizing disorders.

Resting-state functional connectivity provides a measure of neural activation in spatially-
distributed brain networks under conditions of rest (i.e., when participants are not engaged in
an explicit, goal-directed task; Beckmann et al., 2005). Unlike task-based measures of brain
activation, resting-state connectivity is relatively stable over time (Zuo and Xing, 2014),
suggesting it indexes more trait-like brain networks and, therefore, acts as a potentially
valuable medium for investigating genetic influences on brain networks. Indeed, there is
growing data to support the heritability of resting-state neural activity, including aberrant
connectivity in these networks in psychiatric populations (Glahn et al., 2010; Smit et al.,
2008). Recently developed graph theory tools can be applied to resting-state connectivity
data to investigate brain organization and function in psychiatric populations, potentially
identifying brain networks that exhibit differential features across psychiatric disorders
(Fornito and Bullmore, 2015). Graph theory is an analytic tool involving the calculation of
network properties that can be used to examine the organization of network connections and,
thus, the functional capabilities of a network and the role that nodes (brain regions) play in
global and local circuitry (Stam, 2014). For example, the graph theory property Participation
Coefficient measures the extent to which a brain region serves as a “hub” that connects
different modules (sub-networks). By assessing distributed functional networks, these
methods capture greater complexity in the neural bases of psychiatric disorders than is
possible when limiting analysis to single regions or even coupling between pairs of regions,
approaches that have traditionally dominated research on the neurobiology of psychiatric
disorders. This makes graph theory a potentially powerful tool for uncovering large-scale
neural circuits that enable the phenotypic complexity inherent in externalizing disorders.

The goals of this study were to (i) identify genetically-associated neural networks for
externalizing by examining polygenic associations with resting-state functional connectivity,
and (ii) examine associations between the externalizing PS, neural networks, and behavioral
phenotypes of externalizing (e.g., alcohol and substance use disorders). Based on our
previous finding that the externalizing PS was associated with poorer performance on tasks
of inhibitory control (Sadeh et al., 2016), we expected this PS to predict neural network
resting-state connectivity and function in regions of the brain that are central to maintaining
such control (e.g., inferior frontal gyrus; dorsolateral prefrontal cortex, anterior cingulate;
Aron et al., 2004; Criaud and Boulinguez, 2013; Nee et al., 2007). In light of evidence that
externalizing disorders are characterized by dysfunction in mesolimbic reward and
emotional-salience systems (Durazzo et al., 2011; Gilman et al., 2014; Glenn and Yang,
2012; Korponay et al., 2017), we hypothesized that the externalizing PS may also moderate
network resting-state connectivity and organization in ventral striatum and amygdala. Two
graph properties were examined: Participation Coefficient indexes the extent to which a
node is a ‘connector hub’ that bridges different functional modules, and Within-Module
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Degree Z-Score or the extent to which a node is a “provincial hub’ that facilitates
communication within its own module (Power et al., 2013). We limited our analysis to
Participation Coefficient and Within-Module Degree Z-Score, because these centrality
metrics that are particularly relevant for identifying hubs that integrate information between
and within functionally-distinct subnetworks.

Methods and Materials

Participants

Measures

Participants were military veterans of Operations Enduring Freedom and Iraqi Freedom.
Exclusion criteria were a history of seizures, serious medical illness (including prior
cerebrovascular accident or myocardial infarction), acute suicide risk, current psychotic
disorder, bipolar disorder, or cognitive disorder due to general medical condition, pregnancy;,
metal implant, shrapnel, aneurysm clip, or pacemaker, and moderate or severe TBI. To avoid
potential genetic confounds related to ancestry, the sample was limited to genetically-
confirmed White non-Hispanic individuals. We did not have adequate statistical power in
our sample to conduct analyses with other ethnically-homogenous groups. Only participants
with viable functional neuroimaging data were analyzed. Study approval was obtained from
all relevant Institutional Review Boards and regulatory committees. Participants provided
written informed consent and were compensated financially.

The final sample consisted of 155 male and female military veterans ages 19-57.
Demographic information and clinical characteristics are presented in Table 1. The
predominately male composition of this sample (~92%) is representative of other military
veteran samples, but likely limits the generalizability of the findings to men.

Genotyping.—DNA was extracted from peripheral blood samples and genotyping details
are provided in Supplemental Methods.

Polygenic Scores.—To calculate the externalizing polygenic score, we obtained a list of
reference alleles and effect sizes for 587,378 SNPs from the investigators of the discovery
externalizing disorders GWAS (Salvatore et al., 2015) that reflect polygenic associations
with externalizing disorders (e.g., alcohol use disorder, substance use disorder, antisocial
personality disorder). We confirmed this list had been pruned of SNPs with ambiguous
coding (i.e. A/T and G/C SNPs) in our data. Of the SNPS, 480,856 were genotyped on the
Illumina OMNI 2.5-8 array in our sample and available for externalizing risk-score
calculations (after removal of SNPs with missing rates >0.01 and Hardy—Weinberg
equilibrium p-values <0.000001). Polygenic scores were calculated by PLINK1 (Purcell et
al., 2007) using the --score option, which computes a linear function of the additively coded
number of reference alleles weighted by the betas from the discovery externalizing GWAS
sample.

Externalizing Phenotypes.—Participants completed the color-word interference test
(i.e., Stroop) from the Delis-Kaplan Executive Function System (Delis et al., 2001) to
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measure inhibitory control. The inhibition subtest measures inhibition of an automatic
response (word reading) to generate a less salient incongruent response (color naming), and
the inhibition/switching subtest measures flexibly switching between these response sets.
We used the scaled scores from these subtests adjusted for performance on the color-naming
and word-reading component tests [e.g., inhibition - (color naming + word reading)/2]. (See
Sadeh et al., 2016 for details).

Lifetime alcohol and substance use disorders was assessed via the Structured Clinical
Interview for DSM-/V/ (First et al., 1994) based on the alcohol, cannabis, cocaine, opioids,
amphetamines, polysubstance, and the other substances modules. We did not model the
latent externalizing dimension, because we did not have a measure of antisocial behavior or
trait constraint.

MRI Acquisition and Preprocessing.—Participants were instructed to remain still with
eyes open while 2 EPI runs (voxel size = 3x3x3mm, TR = 3000ms, TE = 30ms, scan time
per run = 360s) were acquired on a Siemens 3T TIM Trio. Two MPRAGES (voxel size =
1x1x1mm, T1 =1000ms, TR = 2530s, TE = 3.32ms) were acquired and averaged to create a
single high contrast-to-noise image.

Individualized cortical parcellations and subcortical segmentations were created via
FreeSurfer (Fischl et al., 2002). Cortical surface models were manually checked slice-by-
slice and edited for accuracy. The Desikan/Killiany parcellation was used (34 regions per
hemisphere), along with subcortical segmentation (7 regions per hemisphere). Frontal and
temporal poles were excluded due to frequent susceptibility artifact, and 5 visual regions
(the regions of least interest) were excluded to reduce the number of multiple comparisons.
The number of brain region connections that were examined, and corrected for, in the
network analysis was 2,278.

To ensure that our choice of particular preprocessing stream did not drive the findings,
preprocessing was repeated with other options: (i) slice-timing correction, (ii) partialing of
the square, autocorrelation, and 1st derivative of motion parameters, (iii) partialing the 1st
derivative of global, ventricular, and white matter signals, (iv) determination on a
participant-specific basis whether partialling of global signal was necessary (via the Global
Negative Index), (v) motion scrubbing. Connectivity matrices remained extremely similar
(correlations > .97), indicating that findings were not specific to our preprocessing stream.

Pairwise LINGAM Analyses.—Given that the Pairwise LINGAM method requires non-
Gaussian information to be retained in the timeseries (Ramsey et al., 2014), preprocessing
was repeated substituting in FSL’s non-linear high-pass filter. Only high-pass filtering was
performed given evidence that low-pass filtering removes important non-Gaussian
information (Ramsey et al., 2014). For each connection, a pairwise LINGAM coefficient was
first estimated for each participant. Significance of analyses was determined via permutation
(5000 permutations). In order to ensure that outliers did not drive findings, analyses were
repeated after winsorization of LINGAM coefficients to 2.5SD, after which all findings
remained significant.

Psychol Med. Author manuscript; available in PMC 2020 August 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Sadeh et al.

Page 6

Graph Property Computation.—Resting data were preprocessed using the Graph
Theory GLM (GTG) toolbox version 0.44 (www.nitrc.org/projects/metalab_gtg; RRID:
SCR_014075) (Spielberg et al., 2015). Data were motion corrected, detrended (linear and
quadratic), bandpass filtered (retaining 0.01-0.10Hz), and the mean global, ventricular, and
white matter signals were partialled out, along with estimated motion parameters.
Timeseries for FreeSurfer nodes were extracted by calculating mean signal across the node
for each time point, for each EPI run. Timeseries for the EPI runs were concatenated after
mean-centering each timeseries within run, and a 68x68 Pearson correlation matrix was
created for each participant. Before graph properties were computed, each participant’s
connectivity matrix was thresholded to include only positive weights and normalized via
division by the median positive weight for each matrix (excluding zeros). Normalization was
performed to remove bias due to individual differences in overall network weight. Graph
theory networks, including modules, were derived from a data-driven approach based on the
current sample. Details about module membership are provided in Supplemental Methods.

Statistical Analyses

An externalizing PS computed with a p-value threshold cutoff of <.50 was the primary
variable used in all analyses, selected based on prior work (Sadeh et al., 2016). We also
report associations between the neural network connectivity measures and externalizing PSs
calculated with other p-value thresholds for reference. To identify network connections that
varied with polygenic variation, connectivity matrices were entered as dependent variables
into the Network Based Statistic (NBS) toolbox (Zalesky et al., 2010), with the PS as the
independent variable of interest. An individual connection level threshold of t = 2.9 was used
with intensity-based correction for multiple comparisons (5000 permutations) and an overall
corrected a < .05. Pairwise LINGAM 31) was used to gain initial insight into the overall
direction of influence of those connections observed in NBS analyses between cortical and
subcortical structures. First, we tested the significance of the mean direction (across
participants) for each connection via a one-sample t-test. Next, we tested whether the PS
moderated the direction of influence for each connection via a regression with the same
covariates used in the NBS analyses. False discovery rate was used to correct (across
connections) for multiple comparisons.

We then identified graph theory properties that varied with polygenic variation. First,
resting-state connectivity matrices were entered into the GTG toolbox, which computes
properties for each participant using the Brain Connectivity Toolbox (Rubinov and Sporns,
2010). Two graph properties were examined: Participation Coefficient or the extent to which
a node is connected to nodes in different modules, and Within-Module Degree Z-Score or
the extent to which a node is connected to other nodes within its own module. Graph
properties were examined only for nodes that emerged in the NBS analysis. Properties were
entered as dependent variables in robust regressions in the GTG toolbox. Predictor models
were the same as NBS analyses. Significance was determined via permutation tests (5000
repetitions). False discovery rate was used to correct (across nodes) for multiple
comparisons, and adjusted p-values are in brackets.
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We included covariates in our analyses to conduct a rigorous test of our hypotheses and
reduce the likelihood that these variables could account for findings. All analyses were
adjusted for age, sex, the first two ancestry principal components, deployment-related blast
exposure (Fortier et al., 2014), handedness, current employment, and total cholesterol.
Covariates were selected based on demonstrated associations with neural connectivity/
integrity, genetic effects, and/or externalizing phenotypes in previous research (Han et al.,
2014; Price et al., 2006; Spielberg et al., 2017). Given high rates of trauma exposure, PTSD,
and mild TBI in this sample, we also examined whether these variables and other
comorbidities altered study findings and found that they did not (see Supplemental Results
for details). Correlations between the covariates and study variables are reported in the
supplemental materials (Supplemental Table 1).

Networks Related to Externalizing Polygenic Score

We began by examining whether polygenic variation related to externalizing predicted
disturbances in functional network connectivity. The externalizing PS was associated with
hyper-connectivity in a network centered on left amygdala (10 nodes, 9 links, corrected p =.
046). As displayed in Figure 1, this network encompassed cortical (bilateral inferior frontal
gyrus [IFG] pars triangularis and left rostral anterior cingulate cortex [ACC]) and subcortical
regions (bilateral amygdala, hippocampus, and striatal areas) that have been implicated in
emotion regulation and inhibitory control. The externalizing PS accounted for significance
variance (ps<.005) in the strength of connectivity in this resting-state network across
multiple significance p-value thresholds (see Table 2).

To better understand the direction of influence between nodes (i.e., A—B vs. B—A), we
conducted pairwise LINGAM analyses on links observed in the NBS analyses between
cortical and subcortical structures. No links evidenced a significant mean direction of
influence. However, the externalizing PS significantly moderated the direction of influence
for two links, and these effects survived FDR correction. Specifically, higher polygenic risk
was associated with a greater direction of influence from left amygdala—left IFG pars
triangularis (p = .007 [corrected p=.033]) and from right amygdala—left IFG pars
triangularis (p=.013 [p=.033]). This suggests that bilateral amygdala is influencing left
IFG triangularis in participants with stronger polygenic associations with externalizing,
whereas the opposite is true in those with weaker polygenic associations with externalizing.

We also examined polygenic effects on the organizational properties of network nodes.
Externalizing PS predicted higher Participation Coefficient for left amygdala (p < .001
[corrected p=.004]), right amygdala (0 =.002 [p=.012]), and left rostral ACC (p=.012 [p
=.039]), suggesting that genetic variation related to externalizing modulates the importance
of these nodes for communication between functional modules in the global network. The
externalizing PS also nominally predicted higher Within-Module Degree Z-score Coefficient
for right pallidum, suggesting externalizing polygenic variation modulates the importance of
this node for communication within its functional module, but this did not survive correction
for multiple comparisons (p = .046 [corrected p = .460]). These findings suggest that genetic
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variation related to externalizing modulated the extent to which these nodes functioned as
communication hubs between functional modules.

Associations with Cognitive/Psychiatric Phenotypes

Bivariate associations between the study variables are presented in Table 3. We assessed the
relevance of the genetic and network metrics for behavioral outcomes by examining
relationships between these variables and externalizing phenotypes, specifically inhibitory
control and lifetime alcohol/substance use using hierarchical regressions. Covariates were
entered in Block 1 of the regression and explanatory variables were entered in Block 2.

At the genomic level, the externalizing PS was not related to a diagnosis of alcohol/
substance use disorders (p>.23, AR?=.01). As reported in this sample in Sadeh et al.
(2016), the externalizing PS was associated with poorer performance on inhibitory control
tasks (p=.01, AR?= .05).

Mean connectivity in the network was negatively associated with performance on inhibitory
control tasks (8= -.21, p=.015, ARZ=.04) and with a greater likelihood of a lifetime
alcohol or substance use diagnosis (Wald X?= 4.9, p=.026, AR? = .03), indicating that
hyper-connectivity in the network confers risk for externalizing phenotypes. Examination of
the graph properties revealed an inverse association between right amygdala Participation
Coefficient and inhibitory control (8= -.24, p=.005, AR? = .05), but no associations
emerged for alcohol/substance use diagnosis.

Overall, the externalizing PS explained approximately 5% of the variance in inhibitory
control (p=.016), and the neural network parameters (combined) explained approximately
8% of the variance in inhibitory control (o =.023). The combined variance explained across
the genomic and neural levels of analysis was also significant (/2= .10, p=.016). In
contrast, the variance explained by the externalizing PS (1%), neural network parameters
(4%), and combined genomic and neural levels of analysis (4%) was not significant for
alcohol/substance use disorders.

Discussion

The identification of heritable mechanisms that link genes to complex clinical phenotypes is
a critical step in mapping the developmental course of psychiatric disorders. We leveraged
recent methodological advances in modeling the polygenic architecture of externalizing to
uncover novel neural phenotypes for this spectrum of disorders. The externalizing PS
predicted hyper-connectivity in a distributed brain network that included prefrontal (PFC)
and subcortical regions critical for salience processing, emotion regulation, reinforcement
learning, and impulse control. Directional analyses revealed that subcortical regions
influenced PFC to a greater extent in participants with stronger polygenic associations with
externalizing, whereas the opposite direction of influence was observed for those with
weaker polygenic associations. The externalizing PS was associated with the organization of
network nodes, specifically higher Participation Coefficient for bilateral amygdala and left
rACC. Findings provide preliminary support that disturbed resting-state connectivity in this
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brain circuit is a genetically-influenced mechanism associated with the manifestation of
disinhibited behaviors and alcohol/substance disorders.

To our knowledge, this is the first study to use a polygenic approach to isolate brain circuits
related to externalizing. We found that an aggregate measure of genetic risk for externalizing
was associated with functional connectivity in a circuit centered on left amygdala that
included several cortical (bilateral IFG pars triangularis, left rostral ACC) and subcortical
(bilateral amygdala, hippocampus, striatum) regions. These regions are central to
psychological processes previously implicated in externalizing, including emotion regulation
(amygdala, ACC), impulse control (IFG), and reward learning (caudate, putamen) (Baskin-
Sommers et al., 2012; DeVito et al., 2013; Glenn and Yang, 2012; Sadeh et al., 2015).
Although connectivity studies on the latent externalizing spectrum are sparse, there is
evidence from within-region activation studies of increased amygdala reactivity and
heightened engagement of executive control regions in impulsive and externalizing
individuals (Foell et al., 2016; Sadeh et al., 2013). Our findings extend this work by showing
that externalizing is also associated with increased amygdala connectivity at rest, primarily
to PFC (see Figure 1). These findings also converge with neuroimaging studies conducted
with specific externalizing disorders, which tend to implicate abnormalities in the structure
and function of prefrontal regions important for cognitive and behavioral control (e.g., ACC)
and subcortical reward and salience systems (amygdala, ventral striatum) (Cardenas et al.,
2011; Dom et al., 2005; Nikolova et al., 2016; Yang and Raine, 2009). Unlike much of the
previous research, this study linked resting-state functional connectivity in these key regions
to genetic variation for externalizing disorders without relying on the selection of a few
brain regions of interest. While this more unbiased approach to identifying an externalizing
PS-related neural network is a strength of the current study, its exploratory nature highlights
the need for replication in an independent sample.

Although PFC is typically thought to exert top-down control over subcortical structures, our
analyses revealed that this was not the case for individuals with higher polygenic
externalizing scores. Bilateral amygdala was found to influence left IFG in high polygenic
scorers, whereas the opposite direction of influence was observed for low scorers. This
connectivity pattern with PFC is in contrast to what has been observed in healthy
individuals. For example, Etkin et al. (2006) examined interregional connectivity during an
emotional conflict task in a sample of healthy subjects and found a significant inverse
relationship between activity in rostral cingulate and right amygdala when emotional
conflict resolution demand was high. This finding suggests that rostral cingulate may help
regulate emotional reactivity in part by decreasing engagement of the amygdala in response
to emotional distractors in healthy individuals. Our findings suggest that this pattern may be
reversed in individuals with higher polygenic associations with externalizing disorders, such
that amygdala has greater influence on prefrontal cognitive control structures, at least during
resting state.

Polygenic burden was also associated with greater bilateral amygdala and left rostral ACC
Participation Coefficient, suggesting that these regions are more likely to serve as ‘connector
hubs’ as genetic risk increases. Connector hubs provide ‘shortcuts’ to communicate between
segregated modules, and such module segregation is necessary for a network to perform
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multiple types of specialized processes. Thus, our findings suggest that amygdala and rACC
influence a wider range of specialized processes as externalizing polygenic scores increase.
This may lead to greater influence of amygdala on, not only bilateral IFG as the resting-state
connectivity analyses suggested, but on a diverse range of processes. These findings extend
previous work on externalizing by suggesting that abnormalities in neural network
organization may be a heritable mechanism by which genetic risk for externalizing is
conferred.

This study identified genetically-associated circuitry via resting-state coupling in order to
examine genomic relations with stable functional networks. Thus, an important next step in
this line of research will be to investigate the functional and structural features of
externalizing PS-related brain networks. First, examining how connectivity in this network
shifts in response to cognitive/emational challenges, like inhibitory control tasks, will be
important to address in future research. Connectivity between PFC executive-control regions
(rACC, IFG) and subcortical regions crucial for emotion/salience (amygdala) increases with
the demand for inhibitory control (Spielberg et al., 2015). Based on limited research on
functional connectivity and impulsivity (Farr et al., 2012; Shannon et al., 2011) we would
not expect high externalizing individuals to show this increase in PFC-subcortical
connectivity with increasing inhibitory control demands in functional tasks. An alternative
hypothesis, based on the present findings, is that bottom-up (e.g., affective) processes would
influence inhibitory control to a greater extent in high externalizing individuals, rather than
top-down control simply being deficient. Second, it will be important to isolate the
anatomical pathways that enable the identified functional network, given that resting-state
fMRI coupling does not imply direct anatomic connection and these analyses are not
bounded by such connections.

Given that brain circuits, behavioral phenotypes, and environmental mechanisms are likely
reciprocally influential (Miller and Rockstroh, 2013), studying how these dynamic
relationships evolve across development will be important for establishing developmental
pathways to behavioral manifestations of externalizing. The cross-sectional nature of our
data prohibits strong conclusions regarding the direction of the proposed effects, and
prospective research is needed to ascertain the mechanism(s) by which neural and behavioral
phenotypes interact overtime. The observed associations across genetic, neural, and
behavioral levels of analysis provides compelling evidence that resting-state connectivity in
the identified network is a heritable mechanism that confers risk for externalizing. At the
same time, more research is needed to validate this network as an endophenotype, including
examining the generalizability of the polygenic associations with network connectivity.
Additionally, although this study focused on identifying neurobiological mechanisms related
to genetic risk for externalizing, understanding the role environmental factors play in the
etiology of externalizing disorders is equally important. There is extensive evidence to
suggest that environmental influences exert both direct and interactive effects on
externalizing outcomes. For example, a large literature points to exposure to risky contexts
(e.g., deviant peers) and stressful events (e.g., trauma) as powerful environments that interact
with genes to confer risk for externalizing outcomes (e.g., Enoch, 2012; Hicks et al., 2004),
including in studies of polygenic risk for externalizing (Sadeh et al., 2016; Salvatore et al.,
2015). Based on these findings, incorporating the environment as a level of analysis in future
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polygenic-neuroimaging studies will be important for developing comprehensive etiological
models of externalizing disorders.

This study has several strengths including analysis of multiple levels of analysis (genes,
brain circuits, and behavior), a relatively large neuroimaging-genetics sample, and use of
thousands of loci to identify genetically-associated brain circuits. Several limitations should
also be considered. First, we were unable to model the latent externalizing spectrum because
a measure of antisocial behavior and/or trait constraint was not available, a limitation that
may have impacted associations between the externalizing PS and externalizing
psychopathology (i.e., alcohol and substance use disorders) in this sample. Given that the
externalizing PS was developed to capture genetic risk for comorbidity among externalizing
disorders, assessing the covariance among alcohol/substance use disorders and antisocial
behavior may be necessary to detect a robust polygenic association with these phenotypes.
Second, although our ability to detect small effects was limited by the modest sample size,
the sample was comparable to other recent neuroimaging-genetic studies (Little et al., 2015;
Pagliaccio et al., 2015). Further, we cannot say definitively that the current results will
generalize to the latent externalizing spectrum. Third, we did not have an independent
sample to examine the replicability of our findings. Investigating the replicability of our
findings in a larger independent sample with more diverse sample characteristics (e.g.,
greater representation of women, ethnic minorities, and civilians) is needed before strong
conclusions can be drawn. Fourth, the cross-sectional nature of our data prohibits
conclusions regarding the direction of the proposed effects, and prospective research is
needed to ascertain the mechanism(s) by which neural and behavioral phenotypes interact
overtime. For example, it is possible that the externalizing PS causes an externalizing
phenotype (clinical symptoms) that then leads to variability in the neural phenotypes rather
than the genes relating directly to neural network functioning. Only longitudinal studies that
assess the interactive effects of multiple levels of analysis over time are well positioned to
clarify the direction of these effects. Finally, although use of an independently-derived PS
represents a less biased approach to genetic analysis than selecting candidate genes, there
are limitations to the polygenic approach. For example, the predictive power of the PS is
limited by the robustness of the original GWAS, and the PS assumes an additive genetic
model without interactions, which might not optimally reflect the underlying genetic
architecture of externalizing. Additionally, the PS does not take into account environmental
effects. Given the high level of stress exposure in the current sample and externalizing prone
samples in general (e.g., Douglas et al., 2010; Luntz and Widom, 1994), examining the
influence of potential epigenetic effects in relation to externalizing disorders will be
important to explore in future research, such as whether differentially methylated loci
associated with externalizing overlap with the externalizing PS.

In summary, findings suggest that disturbed resting-state connectivity in a circuit implicated
in emotion regulation, impulse control, and reinforcement learning is a putative biological
pathway linking polygenic risk for externalizing with psychiatric outcomes. Preliminary data
provide compelling evidence that resting-state connectivity in this network represents an
inherited neurobiological vulnerability for externalizing disorders.
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Figure 1. Network Related to Externalizing Polygenic Score
Circle/sphere color reflects module. Stick/ball figure created using Kamada-Kawai spring

embedder algorithm (SONIA; Bender-deMoll and McFarland, 2006). R = right; L = left;
ACC = anterior cingulate cortex; IFG = inferior frontal gyrus. Node color indicates different
modules. The six 3d brain images show (clockwise from top left) an axial view from
superior to the brain, a coronal view from anterior to the brain, a sagittal view from left of
the brain, a sagittal view from right of the brain, a coronal view from posterior to the brain,
and an axial view from inferior to the brain (created via BrainNet Viewer; Xia et al., 2013).

Psychol Med. Author manuscript; available in PMC 2020 August 01.



1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuen Joyiny

Sadeh et al.

Descriptive Characteristics (N = 155)

Age (M/SD)

Male (n, %)

Ethnicity (1, %)

White, Non-Hispanic

Currently Employed (7, %)

Lifetime Mental Health Diagnosis (1, %)
Alcohol/Substance Use Disorder
Unipolar Mood Disorder
Posttraumatic Stress Disorder

Mild Traumatic Brain Injury (1, %)

31.2/8.1
143/92.3

155/100.0
108/69.7

101/65.6
54/34.8

106/68.4
103/66.5

Note. Participants with a diagnosis of current bipolar disorder, schizophrenia or psychotic disorder were ineligible to participate.
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Table 2.

Variance Accounted for in Neural Parameters Across Externalizing Polygenic Scores Calculated with
Different P-Value Thresholds

Network Resting-State Left Amygdala Right Amygdala Left Rostral Anterior

P-value threshold Connectivity Strength Participation Coefficient ~ Participation Coefficient Cingulate Cortex
R? p-value R? p-value R? p-value R? p-value

<.50 21 <.001 .07 .001 .06 .003 .04 .014

<.40 21 <.001 .07 .001 .06 .003 .03 .029

<.30 19 <.001 .07 .001 .05 .009 .02 .096

<.20 A7 <.001 .07 .001 .04 .018 .02 .087

<.10 12 <.001 .04 .019 .02 124 .03 .047

<.05 .05 .004 .03 .044 .01 279 .01 .165
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Table 3.

Descriptive Statistics and Bivariate Correlations among Study Variables

M/SDorn/% 1 2 3 4 5 6 7
1 Externalizing PS 0.62/0.12 -
Neural Phenotype
2 Network Connectivity 0.05/0.09 43% -
3 L Amygdala Participation Coefficient 0.64/0.07 28" aF -
4 R Amygdala Participation Coefficient 0.63/0.07 25 2% 49t
5 L rACC Participation Coefficient 0.65/0.06 17*  a18* -03 .03 -
Cognitive Phenotype
6 Inhibitory Control 0.03/1.03 -23% -—20* 12 _o5* -13 -
Psychiatric Phenotype

101/65.6 10 14 03 08 06 _q7* -

7 Alcohol/Substance Use Diagnosis

Page 19

Note. PS = Polygenic Score. Network Connectivity: average resting-state connectivity in the neural network associated with the externalizing PS
(see Figure 1). L= left hemisphere. rACC= Rostral anterior cingulate cortex.

*
p<.05
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