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Abstract

Objectives: To describe and validate an AI driven structured reporting system by direct 

comparison of automatically generated reports to results from actual clinical reports generated by 

nuclear cardiology experts.

Background: Quantitative parameters extracted from MPI studies are used by our AI reporting 

system to generate automatically a guideline compliant structured report (sR).

Method: A new non-parametric approach generates distribution functions of rest and stress, 

perfusion and thickening, for each of 17 LV segments that are then transformed to certainty factors 

(CF) that a segment is hypoperfused, ischemic. These CFs are then input to our set of heuristic 

rules used to reach diagnostic findings and impressions propagated into a structured report referred 

as an AI driven structured Report (AIsR).

The diagnostic accuracy of the AIsR for detecting CAD and ischemia was tested in 1,000 patients 

who had undergone rest /stress SPECT MPI.

Results: At the high-specificity level, in a subset of 100 patients, there were no statistical 

differences in the agreements between the AIsR and nine experts' impressions of CAD (p = .33) or 

ischemia (p = .37). This high-specificity level also yielded the highest accuracy across global and 

regional results in the 1000 patients. These accuracies were statistically significantly better than 

the other two levels (SN/SP tradeoff, high sensitivity) across all comparisons.

Conclusions: This AI reporting system automatically generates a structured natural language 

report with a diagnostic performance comparable to those of experts.
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INTRODUCTION

AI methods to aid diagnosticians in making clinical image interpretation of SPECT 

myocardial perfusion studies have been reported. Examples include neural networks (1-4), 

case-based reasoning (5), support vector machines (6), machine-learning (7) and knowledge-

based expert systems (8, 9). In expert systems, a knowledge base of heuristic rules is 

obtained from human experts capturing how they make their interpretations. Yet, to date, no 

one has developed automatically generated and/or validated natural language structured 

reports that follow society guidelines. The convergence of the high prevalence of heart 

disease, increased complexity of cardiac imaging techniques, the increasing amount of 

patient-specific clinical information and the reduced time the diagnostician has to dedicate to 

each patient inevitably lead to misdiagnosis and potential patient mismanagement. Hence, 

AI tools could assist physicians in interpreting and reporting studies at a faster rate and at 

the highest level of up-to-date expertise.

Here we report on our development and validation in 1000 patients of an expert system 

which applies its knowledge to extracted patients' LV perfusion and function information 

from MPI imagery to propagate this AI driven structured (9) Report (AIsR) following 

society guidelines (10). Although physicians can easily modify any aspect of the AIsR, here 

we only evaluate the automatically generated results.

METHODS

Study Design

This is a single center retrospective study designed to compare the diagnostic agreement 

between an automatically generated AIsR and the clinical rest/stress MPI report dictated by 

human experts. One of nine nuclear cardiology experts dictated these clinical reports. The 

primary hypothesis was to demonstrate that the per-patient and per-vessel diagnostic 

performance of the AIsR in reporting hypoperfusion (CAD) and reversibility (ischemia) is 

comparable (i.e. not inferior) to that of human experts' clinical reports. Agreement between 

the AIsR and the clinical report was compared in a 100 patient cohort to the agreement 

between the same MPI studies interpreted and reported a second time by another 

independent -10th human expert (VM) who started at Emory after the last MPI study in the 

trial was acquired (2010) and thus was never privy to their clinical reports. The second goal 

was to apply the same methodology to the entire 1000 study group to determine agreement 

rates between AIsR and experts.

Study Population

One thousand consecutive MPI conventional studies used for this evaluation were obtained 

from our cardiac database of patients (589 men) referred to Emory University Hospital for 
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clinically indicated attenuation-corrected rest/stress myocardial perfusion SPECT imaging 

between May 2008 and March 2010. Note that none of these 1,000 patients was used for the 

development of the method. Patients imaged with a CZT SPECT camera and/or lower doses 

during this period were excluded due to differences in technology and changing protocols. 

Emory’s institutional review board approved this research.

Clinical Data

Age, gender, body mass index and risk factors data were extracted from the patients' medical 

records in Emory's data warehouse (Table 1). Risk factors mined were hypertension, 

hyperlipidemia, diabetes mellitus, smoking history, prior myocardial infarction, and prior 

revascularization. Representative quantitative MPI parameters were also extracted (Table 1) 

to characterize the population.

Standard Dual-Detector SPECT

All patients underwent 8-frame ECG-gated one-day attenuation corrected (AC) low-dose 

rest, high-dose stress Tc-99m tetrofosmin myocardial perfusion dual-detector SPECT 

according to the ASNC guidelines (12). Rest-stress doses were determined based on 

patient’s body weight starting at <200 lbs (370 MBq rest (10 mCi), 1110 MBq stress (30 

mCi)). Acquisition times were 14 minutes for rest imaging and 12 minutes for stress 

imaging. Conventional SPECT projections were obtained utilizing the simultaneous 

emission/transmission acquisition method that uses a scanning gadolinium-153 line source 

as the transmission source. The emission transaxial images were reconstructed with an 

OSEM algorithm with 4 subsets and 10 iterations and a uniform initial estimate. The scatter 

distribution obtained from the scatter window was used to correct both the scatter from the 

patient onto the photopeak window and the scatter from the patient onto the transmission 

energy window. Attenuation maps were reconstructed by use of a Bayesian algorithm with 

Butterworth filter preprocessing at 0.43 critical frequency and an order of 5.0. The 

attenuation map reconstruction used 30 iterations with a uniform initial estimate.

MPI reporting as reference standard

In each patient, the detection of hypoperfusion at stress and the presence of reversibility at 

rest for each major vascular territory reported by AIsR were compared to those from clinical 

reports generated by one of nine possible nuclear cardiology experts, each with at least 5 

years of experience. The clinical interpretations reported were used as the reference 

standard. The image interpretation for the clinical reports were performed in the routine 

conventional way. The diagnosticians had full use of ECTb V3.0 images and quantitative 

results (13) as well as all the usual clinical information requested by the interpreter. None of 

the nine interpreters had access to the AIsR results from ECTb V4 developed after 2010 nor 

did any of these nine participate in developing any of the heuristic rules in the program’s 

knowledge base.

Thus, because of the differences in the approaches, the SSS, SDS global and regional values 

between V3 and V4 could be quite different. Disease was assigned to one or more vascular 

territory combinations: left anterior descending artery (LAD), left circumflex artery (LCX), 

and the right coronary artery (RCA).
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Inter-observer variability subgroup

A subgroup of the last 100 consecutive patients were extracted from the 1000-patients to 

determine the interobserver variability between experts. A tenth nuclear cardiology expert 

(VM) recruited to our institution after the last patient in the study was acquired performed as 

an independent reader to determine how the diagnostic variability between human experts 

reports compared to the variability between experts and the AIsR.

Image Analysis and AIsR Interpretation and Reporting

All MPI studies were reconstructed and reoriented into oblique-axis tomograms using 

conventional techniques according to ASNC guidelines (12). The studies were then 

submitted by a technologist to a well-established automatic method of extracting 3D rest, 

stress distributions of myocardial perfusion, and function (13). The technologist reviewed 

the processing and manually modified the automatically determined parameters if deemed 

incorrect, which was done less than 10% of the times and usually at the LV base.

These 3D distributions were then submitted to our iterative method of database 

quantification implemented in ECTb V4.0. This iterative approach determines the 0-4 score 

for each of the conventional 17 segments using three iterations through the rest and stress 

AC and non-AC perfusion and non-AC function distributions. The iterative steps were as 

follows: 1) determination of the certainty that a segment is abnormal, 2) assigning the score 

to each of the 17 segments and 3) using our expert system to modify the score consistent 

with all the information available for that segment which we call a smart score.

Step 1. Determining certainty of segment abnormality.—A certainty factor (CF) is 

determined ranging from −1 to +1 for each of the 17 LV segments (−1 = definitely no count 

reduction (normal), +1 = definitely count reduction, and the range from −0.2 to +0.2 means 

the presence of any finding that is equivocal or indeterminate). This CF determination of 

segment abnormality first calculates the % abnormal probability (ps) for each segment (14) 

whether a patient’s normalized perfusion distribution (relative blood flow) is lower than that 

of the normal distribution redeveloped from a previously reported group of normal low 

likelihood patients (15,16). Since the relative blood flow is extracted in terms of number of 

counts and these counts vary depending on the injected dose, patient size, LV size, and 

instrument sensitivity, these count distributions for each voxel segment cvs have to be 

normalized both by the maximal voxel count uptake (Cmax) over the entire LV, and by the 

total number of LV voxels in each segment (Vs). The normalized count density n) for each 

voxel in segment s is given by:

nvs = 100cvs VsCmax

The value of a cumulative distribution function over all voxels in segment s is given by pt
ns 

as the sum of all normalized count densities for patient pt.:

nspt = nvsv : nspt = 0 for all nvs > nvs( nspt = 100)
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Thus, for example, the value of pt
ns at 50% in segment 2 in Figure 1 is found by finding the 

50 in the x-axis to reach the patients red distribution, the value that you read 55% from the 

y-axis is pt
ns - this represents percentage of the total number of voxels in segment 2 which 

are ≤ an nvs of 50%. In Figure 1, the red distributions are the normalized cumulative count 

value stress distributions for each of the 17 segments of the patient shown in the polar map. 

Note that the patient’s distribution (red) is set to zero after it reaches 100%. This was done to 

increase the [pt
ns- nl

ns] difference and thus the discriminatory power of ps.

The white distributions nl
ns are the cumulative distribution functions from all normal patients 

used to create this specific non-parametric normal database. The probability ps, is then 

determined for each of the 17 LV segments whether a patient’s tracer distribution is lower 

than that of the normal distribution as:

ps = 100 n nspt − nsnl nspt

Note that ps is a function of nvs. Also, note that to determine the probability pswe are 

summing over all available n’s (i.e. all available samples of normalized count values) that is 

equivalent to summing all n’s from 0 to 100%. These ps are converted to CFs by a 

transformation from [0,100] → [−1, 1] using Shannon’s information theory (17). In this 

information approach, CF is obtained by using a transformation function between percent 

(ps) of a segment being abnormal and uncertainty U = (1-CF) as:

U = − psii log2 psi

Where i is the potential number of states in this case 2, normal and abnormal. For example, 

in Figure 1, for segment 6, p6 = .89 (or 89%), hence U = − (.89 log2 .89 + .11 log2 .11) 

= .50 and therefore CF is abnormal as 1 − .5 = .5, consistent with this hypoperfused 

(abnormal) segment. For segment 8, on the other hand, the patient’s distribution (red) is 

inside the normal distribution (white) and thus the CF obtained is negative, which indicates 

that the segment is normally perfused. This allows CFs to range from −1 to +1. CFs are 

calculated for each segment and for each quantitative parameter used as input to the AIsR. 

This is a non-parametric approach as no assumptions are made as to the properties of the 

normalized count distribution (usually incorrectly approximated as Gaussian).

Step 2. Assigning a score to each of the segments.—This step converts the CF 

value for each segment into a score (0-4) (Figure 2). All segments with a normal CF (< - .2) 

are given a score of 0. The score for each abnormal (CF > .2) or equivocal (−.2 < CF < .2) 

segment depends on two parameters: 1) the type of distribution (stress, rest perfusion; 

perfusion reversibility; AC vs. non-AC, supine vs. prone, stress, rest thickening, thickening 

reversibility) and 2) the magnitude of the parameter (% uptake for perfusion, % thickening 

for thickening). These CF settings were done at 3 different levels (modes) of sensitivity/

specificity settings: 1. High specificity, where an equivocal CF in the AIsR was set to 

normal, 2. High sensitivity, where an equivocal CF in the AIsR was set to abnormal and 3. 

Tradeoff sensitivity/specificity, where the lower half of the equivocal CF range (−.2 to 0) 

was set to normal and the upper half (0 to .2) to abnormal.
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A set of scores is determined for each segment in each distribution and then are merged into 

one set of results for stress perfusion, rest perfusion, reversibility perfusion, stress thickening 

and rest thickening. The merger takes place such that the most normal score for each 

segment in each distribution is retained. For example, if the scores for segment 16 in the 

stress perfusion distribution is a 2 for non-AC, -and a 0 for AC (or prone) the combined 

score retained is a 0.

Step 3. Determining smart scores and AIsR generation.—Here all sets of scores 

from step 2 are used as input to our expert system. This is a Bayesian inference engine 

forward chaining our MPI knowledge base of interpretation and reporting heuristic rules, 

similar to our previous reports (8,9) following well-established expert system methods (18). 

This expert system uses these input scores to determine the certainty of the location, size, 

shape, and reversibility of both the perfusion defects and thickening abnormalities to infer 

the certainty of the presence and vascular location of CAD. This information is then 

transmitted to the AIsR in natural language text. One main difference between our present 

expert system and our previous one (9) is that now all information for each segment is 

weighted to modify each segmental score during this iteration and the AIsR follows ASNC 

guidelines for reporting (11). Thus, for example a segment that exhibits a fixed perfusion 

defect in the non-AC distributions is more certain to be fixed if it is also fixed in the AC 

distributions and even more certain if the segment is thickening abnormally. Once all 

perfusion and function smart scores (Figure 2.A insert) and pertinent pre-specified data 

elements (example LVEF, TID, etc) along with their CF values are determined they are 

exported as a highly structured object which is then imported by the AIsR. These exported 

data elements are mapped to the existing data entry fields within the AIsR. When the user 

begins generating the report, all of the mapped input entry fields are automatically pre-

populated including the smart-scores data generated by our expert system.

All the natural language text is conditionally generated by the reporting module of the 

system. Briefly, take as an example the results in Figure 3 and the AIsR report in Figure 4.A. 

Specifically consider the conclusion in both figures “the apical lateral segment is completely 

reversible”. Before reaching the report, the non-parametric statistics combined with the 

expert system portion of the AIsR has determined CFs for each possible state (categories). In 

this case of apical lateral segmental reversibility it has determined a CF that the segment is 

completely reversible, another CF that it is partially reversible, another CF that it is 

minimally reversible and another CF that it is fixed. The natural language generator reads 

these states and choses the one with the highest CF as the condition to report, in this case 

completely reversible.

Statistical analysis

All studies were classified as normal (definitely normal or probably normal) or abnormal 

(definitely abnormal or probably abnormal) based on the report describing the presence of 

one or more stress perfusion defects. To test the primary hypothesis the methodology 

previously reported by us to test for non-inferiority was used (15). The difference between 

two population proportions from a single sample (19) was used to test if there were 

differences in reporting agreements between AIsR-expert to independent-expert. If AIsR 
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findings are equivalent to expert findings, the expected difference between the AIsR findings 

agreement to independent-expert agreement is zero. The primary analysis tested the null 

hypothesis of equivalence of AIsR-expert agreement to independent-expert agreement (no 

agreement rate reduction) versus inferiority (a reduction of >0%). A 95% confidence interval 

(CI) for the difference between AIsR-expert agreement rates to independent-expert 

agreement rate was calculated and the null hypothesis rejected if the upper limit was below 

0% with a corresponding one-tail p value less than .05. Interobserver agreement between 

AIsR findings and expert findings for all 1000 MPI studies was measured using percent 

agreement (accuracy) and Cohen's kappa value. McNemar's test was used to test the 

statistical differences in accuracy in the 1000 MPI studies between each of the three 

sensitivity/specificity modes. To test whether there were differences between the MPI 

studies from the 1000 patients and the 100 patient cohort as to the prevalence of CAD, 

Ischemia and AIsR agreement rate the Medcalc Chi-squared comparison of proportion was 

used. A p < .05 was considered significant for all comparisons.

Results

Interobserver Analysis

The human experts' reporting of the 100 patient subgroup resulted in 17 patients with CAD 

and 83 without. Of the 17 patients diagnosed with CAD 9 were reported to be ischemic. The 

breakdown of stress hypoperfusion by vascular territory in the 17 CAD patients were as 

follows: 8 LAD, 10 LCX, and 5 RCA. The breakdown of reversible ischemia by vascular 

territory in the 9 ischemic patients were: 6 LAD, 5 LCX, and 1 RCA. The overall agreement 

rates, p values, agreement differences and 95% CI for each of the validated reported 

categories are shown in Table 2. At the high specificity level, there were no statistical 

differences in the agreements between the AIsR findings/impressions compared to the 

experts' findings/impressions when compared versus the independent (10th) reader findings/

impressions vs. the experts in reporting the same studies. The finding of no statistical 

difference was true for the reporting of CAD (p = .33) or ischemia (p = .37). There were 

statistical differences for the tradeoff sensitivity/specificity level (CAD p = .01; ischemia p 

= .03) and even more difference for the high sensitivity level (CAD p = <.001; ischemia p = 

<.001). At the high-specificity level the 95% CI is above 0% for all categories (i.e. the AIsR 

findings are not inferior to the human expert reports) whereas they are below zero at four of 

eight categories at the tradeoff level and all eight categories for the high-sensitivity levels.

AIsR agreement with experts.

The nine human experts reporting of the 1000-patient population resulted in 247 patients 

with CAD and 753 without. Of the 247 patients diagnosed with CAD 120 were deemed 

ischemic. The breakdown of stress hypoperfusion by vascular territory in the 247 CAD 

patients were 135 LAD, 103 LCX, and 85 RCA. These included 194 patients with single-

vessel disease, 169 with double-vessel disease, and 117 with triple-vessel disease. The 

breakdown of reversible ischemia by vascular territory in the 120 ischemic patients were 61 

LAD, 63 LCX, and 28 RCA. There were no significant differences between the 100 patient 

cohort used to test the non-inferiority of AIsR vs. expert and the 1000 patient study group 

used to determine agreement rates between AIsR and experts. The categories tested were 
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prevalence of CAD (347/1000 vs 27/100; p = .11), prevalence of ischemia (120/1000 vs 

9/100; p = .37), agreement rate for CAD (820/1000 vs 85/100; p = .45) and agreement rate 

for ischemia (880/1000 vs 89/100; p = .77). All statistical comparisons were done using 

AIsR’s high-specificity mode.

Figure 2 depicts images and smart-scores in a female patient with reversible defects in the 

LCX coronary territories with the corresponding smart-report shown in Figures 3 and 4.A. 

Figure 4.B shows the findings and impressions of the actual clinical report.

Figure 5 shows agreement results of AIsR-experts for the entire 1000 patient group using the 

reported expert clinical read as the reference and compared for the three levels of sensitivity/

specificity. These agreements are shown as to detection of stress induced hypoperfusion and 

stress-induced ischemia. Note that for both the CAD and ischemia category the high 

specificity level yielded the highest accuracy and specificity across global and regional 

results. These accuracies were determined to be statistically significant across all 

comparisons for global and regional hypoperfusion and reversibility. Table 3 shows percent 

agreement, kappa agreement values between the AIsR and the experts' impressions of CAD 

and ischemia in the 1000 MPI studies. These kappa values ranged from 32.3 to 51.9 

corresponding to a range from fair to moderate agreement as might be expected in the 

variation of clinical reports amongst nine different experts.

Discussion

We developed and validated the diagnostic performance of an MPI natural language 

reporting system that utilizes non-parametric relative perfusion and function quantification 

as input to our expert system to interpret the study and generate the report. This is the first 

study that compares automatically generated MPI natural-language reports to actual clinical 

reports.

Our results show that the reporting of CAD (hypoperfusion at stress) and ischemia 

(reversibility at rest) from our automatically generated AIsR is not statistically inferior from 

that of experts when a high-specificity mode is used (i.e. equivocal = normal) and the 

reporting of other experts is used as the reference standard. Importantly this high-specificity 

mode yielded the highest accuracy in our extensive population. It should not be surprising 

that AIsR best agreed with the experts in the high-specificity mode since this indicates the 

human image interpretation trend being adjusted to the drop in the prevalence of abnormal 

studies to 25% at our institution (also in this population) similar to trends reported by others 

(21) and reported as low as 9% at other major institutions (22). These findings are also 

consistent with those reported from a meta-analysis of 49,000 patients demonstrating 

diagnostic performance for referral bias corrected MPI (similar to echocardiography) of 99% 

specificity and 38% sensitivity (from 69%, 85% uncorrected, respectively) (23).

Strength of the approach.

This is the first report showing full integration between an image analysis system and 

structured reporting; a critical need in modern imaging practice. Although the best 

agreement existed when the high-specificity mode was selected this choice is easily 
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modified to a high-sensitivity level (or tradeoff level) when the AIsR is used to report on 

patients from a high-risk population such as diabetes. Newly reported here is the 

determination and use of our 17 segment smart-scores. This novel scoring uses a non-

parametric normalized count distribution applied to information theory to generate a 

certainty of abnormality. This certainty for each segment is modified according to all 

available perfusion and function information for that segment including rest, stress, changes 

between stress and rest, AC and non-AC images, and prone images. Although not validated 

here, the diagnostician is allowed to change manually any of the scores that in turn would 

modify the report if needed. Importantly, as previously reported (20), the expert system 

tracks all steps in generating the report as a justification which may be used by the 

diagnosticians to decide whether they agree or not with the findings or impressions in the 

report. This is an important benefit of expert systems over conventional neural net or 

machine learning approaches. Another benefit of the expert system approach used here is 

that, compared to other AI approaches, only the 40 normal patients used for database 

generation were needed to train the system as most of the training comes from the 

cumulative experience of the experts.

Comparison of AIsR to PERFEX.

As described in the methods section we had previously developed and validated a decision 

support expert system to assist nuclear cardiology physicians with the image interpretation 

process (8, 9). There are several differences between that system (PERFEX) and the one 

reported here. PERFEX divided the LV into 32 segments; AIsR uses the standard 17-

segment system. PERFEX depended on Gaussian distributions and statistics to determine 

normality and abnormality criteria; AIsR uses non-Parametric statistics. PERFEX did not 

use the global or regional functional information to reach its conclusions; AIsR integrates 

the functional information into all its conclusions. PERFEX did not use its conclusions to 

modify the ECTb results; AIsR uses its knowledge base and the available quantitative 

information to modify the original segmental scores into smart-scores. If AC was performed, 

PERFEX would provide a separate interpretation for the AC study and one for the non-AC 

study; AIsR integrates both into one set of scores and one conclusion. If there were, also a 

prone study performed AIsR would also integrate it. This integration takes place by trying to 

mimic in the code how human experts use the information. Before the integration is done 

AIsR determines segmental scores separately for each of the diagnostic categories 

considered: stress perfusion, rest perfusion, reversibility, and thickening. After these 

individual scores are determined, AIsR integrates the information into a meta-analysis 

module. Therefore, if an MPI study had AC, non-AC and Prone studies performed AIsR 

would use the most normal score for that segment. If the same segment exhibited 

reversibility AIsR would then modify the score using Bayesian statistics and the strength of 

the information (i.e. how much reversibility was present). Similarly, if the same segment 

exhibited abnormal thickening then AIsR would again modify the score using the same 

approach as with reversibility. Perhaps the most obvious difference between PERFEX and 

AIsR is that AIsR propagates its conclusions into a structured report.
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Reference standard.

Since AI systems have to be “trained” and validated with both input images and accepted 

output interpretations, the question of what to use as the reference standard often arises. Use 

of invasive coronary angiography or clinical outcome as the gold standard for training and 

validating is often mentioned for an MPI AI system as attractive goals but it misses the point 

of these systems that is to interpret studies with the same level of expertise as experts. 

Moreover, using invasive catheterization as a gold standard is biased by the referral pattern 

of abnormal MPI studies to catheterization as well as by the discrepancies in comparing 

physiologic results to anatomic ones. Outcome is certainly an important measure but in MPI, 

coronary angiography and outcomes as gold standards are confounded by the fact the scan 

interpretation (e.g. ischemia or no ischemia) has a major impact on the referral to the 

catheterization lab or the clinical outcome (intervention versus observation); consequently, 

these gold standards are biased. Simply stated, the interpretation of the study affects the 

treatment and the treatment affects the outcomes thus biasing the outcomes as a reference 

standard. Thus, the practice of using interpretation of the MPI studies by experts is an 

acceptable approach that others and we have used (9, 24).

Limitations.

First, all the data used for this evaluation were obtained retrospectively from one center. 

Second, we had to extract manually the needed diagnostic information from the clinically 

dictated reports to use as the reference standard. Third, all the clinical reporting was 

performed by Emory experts. Although these experts were trained at different institutions, it 

could be argued that over time, they tended to read similarly and perhaps different from 

readers from other institutions. Fourth, although the AIsR uses standardized reporting 

guidelines we did not compare the size and severity of the hypoperfused or reversible areas 

between the experts and the AIsR, only whether these were present and in which vascular 

territory. This is because in part when the clinical reports were generated reporting 

guidelines were not being strictly applied by the experts. Fifth, we also chose not to report 

here the clinical reporting agreements as to functional variables. Although these functional 

parameters were used in the generation of the smart-scores, these variables are quantitative 

and straightforward in how they are usually reported thus not compared for simplification. 

Sixth, although we have previously integrated patients’ clinical information with their 

imaging results in order to improve diagnostic accuracy (25), this was not attempted here, as 

it would require either manual input and/or EMR interfaces with hospital systems that now 

would limit the applicability of this AIsR. Seventh, the agreement in reporting between the 

AIsR in the high-specificity mode and our clinicians reflects the current reduced prevalence 

of disease (25%) of our patient referral pattern. In other scenarios (such as other countries) 

where the prevalence of disease is much higher than 25% different results could have been 

obtained. This is the rationale for allowing the AIsR to switch easily between modes such as 

high sensitivity and sensitivity/specificity tradeoff mode. Finally, although the use of AC is 

not a limitation but an attribute that reduces the complexity of image interpretation, results 

of applying our approach to a large study population without AC (or prone imaging) cannot 

be predicted by the present study.
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New Knowledge Gained

Non-parametric statistics can be used to determine certainty that a regional parameter of LV 

perfusion and/or function is abnormal. Due to apparent reduced prevalence of CAD in 

populations of patients undergoing MPI, automated diagnostic systems agreement with 

experts improves when set to analyze images at high-specificity settings.

Conclusions

Automatic structured reports from computer-assisted interpretation of rest/stress myocardial 

perfusion SPECT studies by an AI expert system when operating at a high-specificity level 

statistically agrees with the interpretations of nuclear cardiology experts and exhibits 

diagnostic accuracy consistent with that of experts when their clinical reports are used as the 

reference standard.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations:

AI artificial intelligence

AIsR AI driven structured report

CAD coronary artery disease

CDSS clinical decision support system

CF certainty factor

CI confidence interval

ECTb Emory Cardiac Toolbox

LAD left anterior descending coronary artery

LCX left circumflex coronary artery

LLK low likelihood

LV left ventricle

MPI myocardial perfusion imaging

NC nuclear cardiology
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RCA right coronary artery

TID Trans-ischemic dilatation

SN sensitivity

SP specificity

sR structured Report

SSS sum stress score
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Figure 1. 17-Segment Results from a Patient with LCx vessel disease.
Color polar map insert (A) shows the myocardial perfusion distribution for a female patient 

with LCx vessel disease with the 17-segment model with scores superimposed. The 17 plots 

correspond to the 17-segment model (B) with the LAD segments on the top, LCX in the 

middle, and RCA in the bottom rows. The x-axes are the normalized count values and the y-

axes are the normalized voxel frequencies with those count values. The white distributions 

are the averaged normalized cumulative distributions from 20 female patients with low 

likelihood of CAD. The red distributions are the normalized cumulative count value 

distributions for the patient shown in the polar map. Note that red distributions to the left of 

the white normal ones represent increasing certainty of abnormality. Also note how well 

behaved is the shape of each of the patient’s segmental distributions even though it 

represents a small portion of the LV from just one patient.
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Figure 2. Combined slices/polar map displays of the patient with reversible lateral wall perfusion 
defect from figure 1.
Stress (top)/Rest(bottom) SPECT attenuation corrected Slices, Rotating projections, 

transmission slices and 17 segment smart-scores. Note three contiguous segments in the 

lateral wall of the stress polar maps each with a score of 2 (SSS = 6) corresponding to 9% of 

the LV hypoperfused. Also note that circles around the stress perfusion scores (insert A) 

signifies that the original score in Figure 1.A were modified by the expert system.
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Figure 3. 
Automatically generated AIsR perfusion sub-report of patient from Figure 2. Note 

concordance with the oblique slices and smart-scores. All drop down arrows indicate a 

parameter that can be modified by the nuclear cardiology expert before it reaches the final 

report (not used for this validation).

Garcia et al. Page 16

J Nucl Cardiol. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Findings and impressions extracted from AI Structured Report (A) and actual excerpts of the 

clinical report (B) for the MPI study shown in Figures 1-3. Note concordance in presence 

and location of hypoperfusion associated with ischemia.
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Figure 5. 
Diagnostic performance of the AI Structured Report in reporting stress-induced 

hypoperfusion as indicative of CAD (top row) and reversibility at rest as indicative of 

ischemia (bottom row). Results for the modes: high specificity (green bars), sensitivity (SN)-

specificity (SP) tradeoff, (red bars) and high sensitivity (blue bars) results are shown for 

agreement (i.e., accuracy - left column), specificity (middle column) and sensitivity (right 

column) (* p < .001). The labels CAD and Ischemia in the abscissa of each graph refers to 

global findings regardless of vascular territory.
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Table 1.

Characteristics of the study population.

Sample size 1000

Age (years) 61 ± 13

Male gender 59% (586)

Body mass index (kg/m2) 29.2 ± 6.0

Hypertension 74% (741)

Hyperlipidemia 87% (867)

Diabetes mellitus 42% (415)

Smoking history 8.7% (87)

Prior myocardial infarction 11% (105)

Prior revascularization 30% (304)

Prevalence of CAD* 34.7%

Prevalence of Ischemia* 12.0%

SSS^ 2.24 ± 4.57

SDS^ 1.11 ± 2.64

TID^ 1.01 ± .13

Stress LVEF^ 64 ± 13%

Rest LVEF^ 63 ± 13%

*
From Clinical MPI Reports

^
From ECTb4
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Table 2.

Agreement between automated smart-report results and human experts at three different sensitivity/specificity 

modes (n=100).

Hi-Specificity CAD LAD LCX RCA

%Agree: AIsR:expert 85 95 92 93

%Agree: Ind:expert 83 90 94 89

p value .33 .07 .24 .14

Δ agreement .052 .05 −.02 .04

95% CI −.07 to .11 −.01 to .11 −.08 to .04 −.03 to .11

Ischemia

%Agree: AIsR:expert 89 95 96 98

%Agree: Ind:expert 90 94 94 99

p value .37 .33 .21 .28

Δ agreement −.01 .01 .02 −.01

95% CI −.07 to .05 −.03 to .05 −.03 to .07 −.04 to .02

Tradeoff Sn/Sp CAD LAD LCX RCA

%Agree: AIsR:expert 74 82 77 89

%Agree: Ind:expert 83 90 94 89

p value .01 .02 <.01 .5

Δ agreement −.09 −.08 −.17 .00

95% CI −.17 to −.01 −.16 to −.003 −.25 to −.09 −.07 to .07

Ischemia

%Agree: AIsR:expert 83 91 89 97

%Agree: Ind:expert 90 94 94 99

p value .03 .12 .06 .08

Δ agreement −.07 −.03 −.05 −.02

95% CI −.14 to −.0007 −.08 to .02 −.11 to .01 −.05 to .007

Hi-Sensitivity CAD LAD LCX RCA

%Agree: AIsR:expert 61 65 63 73

%Agree: Ind:expert 83 90 94 89

p value <.001 .03 <.001 .001

Δ agreement −.22 −.25 −.31 −.16

95% Cl −.31 to −.13 −.35 to −.15 −.41 to −.21 −.26 to −.06

Ischemia

%Agree: AIsR:expert 64 76 72 88

%Agree: Ind:expert 90 94 94 99

p value <.001 <.001 <.001 <.001

Δ agreement −.26 −.18 −.22 −.11

95% CI −.35 to −.17 −.25 to −.10 −.31 to −.13 −.17 to −.05
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Table 3.

Agreement, kappa and 95% CI results for the automated AIsR using High-specificity mode and the human 

experts reports as reference standard (n=1000).

Hi-Specificity CAD LAD LCX RCA

%Agree: AIsR:expert 82 89 89 92

Kappa 48.7 47.7 51.4 40.3

95% CI 42.0 to 55.4 38.7 to 56.7 42.8 to 59.9 27.6 to 53.0

Ischemia

%Agree: AIsR:expert 88 93 93 97

Kappa 43.6 32.3 51.9 36.9

95% CI 34.0 to 53.2 16.8 to 47.9 40.7 to 63.1 14.2 to 59.3
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