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Abstract

Brain-machine interfaces (BMIs) have been widely used to study basic and translational neuro-

science questions. In real-time closed-loop neuroscience experiments, many practical issues arise, 

such as trial-by-trial variability, and spike sorting noise or multi-unit activity. In this paper, we 

propose a new framework for change-point detection based on ensembles of independent detectors 

in the context of BMI application for detecting acute pain signals. Motivated from ensemble 

learning, our proposed “ensembles of change-point detectors” (ECPDs) integrate multiple 
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decisions from independent detectors, which may be derived based on data recorded from different 

trials, data recorded from different brain regions, data of different modalities, or models derived 

from different learning methods. By integrating multiple sources of information, the ECPDs aim to 

improve detection accuracy (in terms of true positive and true negative rates) and achieve an 

optimal trade-off of sensitivity and specificity. We validate our method using computer simulations 

and experimental recordings from freely behaving rats. Our results have shown superior and robust 

performance of ECPDS in detecting the onset of acute pain signals based on neuronal population 

spike activity (or combined with local field potentials) recorded from single or multiple brain 

regions.
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Brain machine interface; Change point detection; Ensemble learning; Population codes; Acute 
Pain; Poisson linear dynamical system; Support vector machine; Event-related potential

1 Introduction

An important problem in closed-loop neuroscience experiments is to quickly identify abrupt 

changes in neural ensemble spike activity induced by external stimuli or internal change in 

brain states. Although the univariate or multivariate change-point detection problem has 

been widely studied, most of studies have been limited to continuous or discrete time series 

with assumed probability distributions (Aminikhanghahi & Cook 2017, Xie et al. 2013, 

Kopepcke et al. 2016, Pillow et al. 2011). In neuroscience experiments, changes are reflected 

in the neuronal ensemble spike activity and local field potential (LFP), which may directly 

relate to the change in behavior or attention. In real-time closed-loop brain-machine 

interface (BMI) applications, the challenge is how to design online detection algorithms that 

can quickly and reliably detect these changes (Hu et al. 2017). Previously, we have designed 

and tested several algorithms in an off-line setting (Chen et al. 2017a, Chen et al. 2017b). 

However, for online BMI applications, we need to consider several important issues: first, 

the limited sample size for training a complex model; second, the nonstationarity of data 

induced by the irregular animal behavior; third, the spike sorting noise and multiu-nit 

activity that affect the overall signal-to-noise ratio (SNR) (Goodman & Johnson 2008, Fraser 

et al. 2009); and fourth, the mixed selectivity of neuronal tuning. The first issue involves 

non-global optimization in model estimation, especially in the presence of a large number of 

neurons and shorter recording duration. In this paper, we aim to address the remaining three 

issues in the application of detecting pain signals from neuronal ensemble spike activity.

Pain is a common experience in life, but pain mechanisms in the brain remain poorly 

understood. In patients, pain remains defined by verbal reports. The challenge is to identify 

the most relevant brain areas or neural ensembles underlying pain behavior. Identification of 

such neural ensembles could effectively provide a “neural code” for pain. A number of 

human neuroimaging studies identify several brain regions that respond to pain stimuli, 

including the anterior cingulate cortex (ACC) and primary somatosensory cortex (S1) (Vogt 

2005, Perl 2007, Bushnell et al. 2013, Vierck et al. 2013). Neurophysiological recordings of 

ACC and S1 from rodent experiments also confirm these findings (Kuo & Yen 2005, Zhang 
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et al. 2011, Chen et al. 2017a, Zhang et al. 2017). Detection of pain signals from neural 

recordings has direct clinical applications. First, it can be used for assessment of anesthetic 

drugs for pain management. Second, it can be used for pain treatment. This demand-based 

pain neuromodulation de-pends critically on timely identification of the pain sig-nal and 

ultrafast neuromodulation. Optogenetic stim-ulations have provided an effective way for 

neuromoduation in rodent experiments (Daou et al. 2013, Lee et al. 2015, Gu et al. 2015, 

Iyer et al. 2016, Copits et al. 2016). Importantly, a BMI for achieving closed-loop pain 

control requires timely and precise detection of pain signals. This has motivated us to use 

animal models to study the pathophysiology of pain (Xu & Brennan 2011, Zhang et al. 

2017).

Ensemble learning, in either supervised or unsupervised form, is an active research topic in 

machine learning (Kittler et al. 1998, Liu & Yao 1999, Dietterich 2000, Kuncheva 2004, 

Raykar et al. 2010). In short, ensemble learning is aimed to combine a set of possibly 

“weak” learners (predictors, classifiers, detectors, etc.) to form a more accurate “meta 

learner” in decision making. In unsupervised ensemble learning, the decision is made 

without the labeled data (Parisi et al. 2014, Jaffe et al. 2015). To date, unsupervised learning 

methods have not been widely adopted in BMI applications. Unlike supervised learning 

methods, unsupervised learning methods do not required many labeled examples for 

training, and thus are less prone to overfitting. In our current application of interest, it is 

worthy emphasizing several key differences from the standard methods in the literature. 

First, in ensembles of unsupervised classifiers, the samples are independent, identically 

distributed (i.i.d.); whereas the samples in our application are temporal correlated 

multivariate time series. Second, in traditional ensemble learning, the predictors or 

classifiers are often derived from different models; whereas in our application, the detectors 

may be drawn from the same model family. Third, a new consensus decision rule can be 

derived based on the detection results derived from two simultaneously recorded brain 

regions.

The detection performance in BMI applications is assessed by detection latency and 

accuracy. While the issue of detection speed has been treated elsewhere (Hu et al. 2018), 

here we focus our investigation on detection accuracy (sensitivity and specificity), indicated 

by false positive (FP) and false negative (FN) rates. In the context of detecting pain signals, a 

great challenge arises when neurons show mixed tuning selectivity in response to pain 

(noxious) stimuli and non-pain (non-noxious) stimuli. Therefore, we aim to design a robust 

and reliable strategy to detect pain signals under various experimental conditions.

To meet this research goal, we propose a generic ensemble detection framework for 

detecting acute pain signals. Specifically, a set of independent “weak” change-point 

detectors are constructed from independent ob-servations or trials, from which we construct 

a meta detector with custom decision rules to improve detection accuracy. The individual 

change-point detectors are derived from either unsupervised or supervised learning. We 

validate our method using computer simulations and in vivo experimental recordings from 

freely behav-ing rats. Through computer simulations, we systematically investigate the 

impact of cell specificity, mixed selectivity of neuronal tuning, SNR, and trial-by-trial 

variability on the performance of ensembles of change-point detectors (ECPDs). In an 
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experimental investigation for detecting acute pain signals, our contribution includes three 

aspects of innovations: (i) integrating multiple models trained by preceding trials; (ii) 

integrating multiple brain regions from S1 and ACC population spikes, using either single or 

multiple models; and (iii) integrating information from ensemble spikes and LFP based on 

multiple brain regions.

2 Materials and Methods

2.1 Animal Behavior and Physiological Recordings

All experimental studies were performed in accordance with the New York University 

School of Medicine (NYU-SOM) Institutional Animal Care and Use Committee and the 

National Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals to 

ensure minimal animal use and discomfort. Male Sprague-Dawley rats were used in all 

experiments. Several types of noxious and non-noxious stimuli were used in our 

investigations. One type of acute thermal pain stimulus was delivered by a blue (473 nm 

diode-pumped solid-state) laser with varying laser intensities (50–250 mW) (Chen et al. 

2017a, Zhang et al. 2017). Another type of acute mechanical pain stimulus was a pin prick. 

The intertrial intervals between consecutive laser stimulations varied between 1 to 2 

minutes.

Animals freely explored in a plastic chamber of size 38 × 20 × 25 cm3. One video camera 

(120 frame per second) was used to continuously record the animal behavior. A common 

characterization of an animal’s pain behavior is its latency to paw withdrawal, and the 

duration of paw licking (Cheppudira 2006). We con-structed custom tetrode or stereotrode 

arrays, or used bundled silicon probes to record neural activity from the rat ACC or S1 areas, 

or simultaneously from both regions. Using a Plexon (Dallas, TX) data acquisition system, 

the spikes were thresholded from high-passed (>300 Hz) local field potentials. Similar to the 

real-time BMI setup, the spikes were further sorted online based on spike waveform features 

such as peak amplitude, energy, and principal components. We used all sorted units, 

including all putative pyramidal neurons and interneurons, in our subsequent analysis. 

According to the unit response property, we define three classes of units: Class 1 consists of 

pain-modulated units, Class 2 consist of non-pain-modulated units, and Class 3 consists of 

non-response units. In our empirical observations (Chen et al. 2017a), the proportion of 

Class 1 units varies in each recording session (15–20%).

The experimental recordings from 3 rats selected for our current study are summarized in 

Table 1. The 50 mW laser stimulation and van Frey are negative controls (for assessing FP), 

whereas 150 or 250 mW laser stimulation and pin prick are positive controls (for assessing 

TP).

2.2 Model-based Method for Change-point Detection

Our model-based method for change-point detection is based on state space analysis (Chen 

2015, Chen et al. 2017a). Let yk = [y1,k, . . . , yC,k]⊤ denote a C-dimensional population 

vector, with each element consisting of the neuronal spike count within the k-th time bin or 
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the interval [(k−1)Δ, kΔ) (where is the temporal bin size). The latent univariate variable zk ∈ 
ℝ represents an un-observed common input that drives neuronal ensemble spiking activity.

2.2.1 Poisson linear dynamical system—Pain is an abstract and emotional 

experience, and thus pain signals are hidden and evolve dynamically in time. We consider a 

latent variable model known as Poisson linear dynamical system (PLDS) to link the pain 

stimulus to neural activity (Chen et al. 2017a), where the spike activity of a population of C 
neurons are assumed to be drawn from the following generative model:

zk = azk − 1 + ∈k (1)

yk ∼ Poisson exp czk + d Δ (2)

where the univariate (latent) variable zk represents the hidden common input that drives the 

neuronal population firing rate. The dynamics of the latent variable is governed by Eq. (1), 

which describes a first-order autoregressive (AR) model (0 < |a| < 1) driven by a zero-mean 

Gaussian noise process ∈k ∈ N (0, σ2
∈). The parameters c and d are unconstrained. Based 

on maximum likelihood estimation, we use an expectation-maximization (EM) algorithm to 

estimate the unknown state variables z1:T and parameters Θ = {a, c, d, σ∈} from a set of 

observations y1:T. Details are referred to previously published materials (Macke et al. 2015, 

Chen et al. 2017a)

2.2.2 Online recursive filtering—In online BMI applications, once the model 

parameters are identified, we use a recursive (forward) filter to estimate the latent state 

variable (Chen et al. 2017a, Chen et al. 2017b):

zk k − 1 = azk − 1 k − 1 (3)

Qk k − 1 = a2Qk − 1 k − 1 + σ∈

2
(4)

yk k − 1 = exp czk k − 1 + d Δ (5)

Qk k
−1 = Qk k − 1

−1 + cTdiag yk k − 1 c (6)
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zk k = zk k − 1 + Qk kcT yk − yk k − 1 (7)

where Qk|k = Var[ˆzk|k] denotes the filtered state variance. In our online filtering algorithm, 

we set the initial condition zˆ0|0 = 0 and Q0|0 from the pretrained model.

2.2.3 Criterion for change-point detection—The change of ensemble spike activity 

is defined with respect to a predefined baseline, which is often referred to as a short 

relatively stationary duration (e.g., 4–5 s) before the stimulus presentation. From the online 

estimate zˆk|k, we compute the Z-score with respect to the baseline: 

Z−score =
zk k − mean of zbaseline

SD of zbaseline
 and convert it to probability (Chen & Wang 2016, Chen et 

al. 2017a):

Ρ Z − score > θ0 = 1 − ∫
−∞

θ0 1
2π

e
−u2

2 du (8)

The Z-score during the baseline is called Zbaseline. The criterion of Z-score change is 

determined by a statistical threshold θ0 depending on the significance level. When P= 0.05, 

θ0 = 1.65; when P = 0.01, θ0 = 2.33; when P= 0.001, θ0 = 3.08. Therefore, it is concluded 

that a change-point occurs when Z-score−CI > θ0 or Z-score+ change-point occurs when Z-

score−CI > θ0 or Z-score+ CI < −θ0, where the CI denotes the confidence interval derived 

from the posterior variance of zk k: 2 Qk k
SD o f zbaseline

.The algebraic sign of the Z-score is 

irrelevant due to the sign ambiguity of zk k  in model estimation.

Therefore, the estimated PLDS model defines a single model-based detector for change 

points. Unless specified otherwise, we use P < 0.05 as the significance criterion.

2.3 Ensembles of Change-point Detectors

In our application, the above-described PLDS model defines a single detector for change 

points. Given N independent detectors, at any moment, from Eq. (8) we can derive a 

probability of significance change from each detector. In general, assume that the j-th 

detector produces a probability of change at time k: P(ωj,k|y0:k) with a prior probability Pj, 

then based on the “product rule”, the joint decision rule for ωk ∈{0,1} (1 denotes a change 

and 0 no change) can be formulated mathematically as follows:

Pr ωk = 1 = ∏
j = 1

N

P ω j, k y0:k P j (9)
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In the case of using non-informative priors, Pj is set to be equal among N detectors.

Alternatively, we can use ensemble averaging of independent models based on the “sum 

rule”:

Pr ωk = 1 = ∑
j = 1

N
α jP ω j, k y0:k (10)

where {αj } denotes a set of weights associated with each expert. The joint decision is 

constructed by a lin-ear combination of experts. Identification of the weights can be 

achieved by supervised learning using labeled data. However, when the labeled data are 

limited, this approach is impractical in BMI applications.

Similar to classification (Kittler et al. 1998), we may design different decision rules for 

detection, such as the greedy rule and majority vote rule. The greedy rule claims a change 

point as long as one detector predicts the change. The majority vote rule states the class ωk = 

0/1 that receives the largest number of votes is selected as the consensus or majority vote, 

assuming equal prior probabilities. Such a group decision based on the ensembles of change-

point detectors (ECPDs) is known as the committee decision.

In our experimental context, we have a set of in-dependent model detectors. By using a 

majority vote rule, we expect to improve the robustness and accuracy of change-point 

detection.

2.4 Combining Two Brain Regions

Among many brain regions, the S1 and ACC are two of the most studied areas for 

nociceptive and pain perception (Kuo & Yen 2005, Vogt 2005, Bushnell et al. 2013). The S1 

encodes the sensory component of pain, whereas the ACC encodes the aversive component 

of pain. However, neither of these areas is pain-specific; they may encode other sensory or 

emotional responses to non-noxious (somatosensory or sensory) stimuli (Urien et al. 2018). 

In our preliminary investigations, we found that S1 and ACC populations have different 

degrees of sensitivity and specificity for encoding pain stimuli (Chen et al. 2017a). In 

general, S1 tends to have high sensitivity for noxious stimuli, but it can also cause false 

alarms for non-noxious stimuli. On the other hand, ACC tends to have mixed selectivity or 

conjunctive coding for a va-riety of stimuli related to emotion, nociception and anticipation. 

Therefore, it is important to design specific rules for detecting acute pain based on their 

response properties. The optimality of the rule may depend on the experiment and specific 

simultaneously recorded S1 and ACC ensemble spike activities.

In addition to Eqs. (9) and (10), we consider an unsupervised learning method without 

labeled data. Specifically, we employ a decision rule based on a time-varying cross-

correlation function (CCF) between the Z-scores Zk from two brain regions
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CCFk = 1 − ρ CCFk − 1 + ρ Zk
ACC m Zk

S1 n
(11)

where 0 < ρ < 1 is a forgetting factor, 0.5 ≤ m, n ≤ 1 are the scaling exponents (default value: 

0.5). The smaller the forgetting factor ρ, the smoother the CCF curve. The purpose of 

scaling exponent is to control the impact of high/low Z-score values. For instance, a smaller 

exponent will magnify the impact of Z-score smaller than 1, while reducing the impact of a 

higher Z-score. Equation (11) assumes that when two Z-score traces follow a consistent 

trend, the CCF will increase in absolute value, and otherwise will stay at the baseline level. 

Since the Z-score estimate has uncertainty, we use the lower or upper bound of Zk—the 

choice depends on the algebraic sign: we use its lower bound for a positive Zk and use its 

upper bound for a negative Zk.

Similarly, we can compute the Z-score of CCF relative to the same baseline. We also track 

the CCF area above the threefold SD of baseline statistics. The area value will accumulate as 

long as the CCF is above the threshold, and will reset to 0 when the CCF is below the 

threshold. When the accumulated area value exceeds a predefined threshold θ, we declare 

the change point. The choice of θ depends on m, n and ρ. As expected, changing the 

threshold will affect the sensitivity and specificity of detection accuracy.

2.5 Size of Buffering Window

In online ensemble detection, a practical issue is how long we need to wait between different 

detection de-cisions? For an ensemble of N detectors, assuming the first moment that a 

detector crosses the significant threshold is time k, we need to make a joint decision within a 

buffering window [k + τ] based on the remaining N − 1 detectors. Naturally, there is a trade-

off between the de-tection latency and accuracy wherein—increasing the duration of 

buffering window increases the accuracy in ensemble detection, but decreases the detection 

speed.

In the case of single-region ensemble detection, we optimize the buffering window size τ 
depending on the brain region (S1 or ACC) and the total number of units. Based on our 

empirical studies, a general rule of thumb is when the number of units is large we will use a 

small τ, and we will use a smaller τ in the S1 than in the ACC. In the case of double-region 

ensemble detection (based on the CCF), we set 0 ≤ τ ≤ 4 (i.e., up to 200 ms).

2.6 Integration of Spikes and LFP

In addition to neural ensemble spike activity, LFPs also provide important information about 

the pain signal, in both time and frequency domains. Unlike spikes, LFPs represent the 

aggregate subthreshold activity of neurons in a localized area and are relatively stable over 

time (Buzsaki et al. 2012). Theta (4–11 Hz) and gamma (30–100 Hz) oscillations play an 

important role in sensory processing; theta and gamma activities in the S1 and ACC have 

been shown to be involved in pain perception in rodents and humans (Gross et al. 2007, 

Taesler & Rose 2016, Harris-Bozer & Peng 2016, Peng et al. 2017). Our preliminary 

investigation has shown that the theta and high-gamma bands of LFP in the rat ACC contain 
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information that distinguishes noxious from non-noxious stimuli (Zhang et al. 2018). In 

addition, pain-evoked event-related potentials (ERPs) have been suggested as a possible 

biomarker for pain. ERPs can be triggered by evoked or spontaneous pain, which are 

associated with behaviors such as paw withdrawal, paw licking, and tail flicking 

(Cheppudira 2006, Deuis et al. 2017). Therefore, detecting pain-evoked ERPs from LFP 

recordings provides a read out of neurophysiological signature for pain signals.

Here, we formulate the detection problem of ERPs as an outlier detection or one-class 

classification problem (Scholkopf & Smola 2001), where the training samples are generated 

from the band-passed (2–20 Hz) ERP trace using a fixed-duration window. We apply 

discretewavelet transform (DWT) (Mallat 2008) to extract important ERP features, and 

further train these features with a one-class support vector machine (SVM). The ERP 

training samples are collected from independent datasets. To extract the low-dimensional 

ERP feature, we employ the compact orthogonal Daubechies (D4) wavelet, which has 

nonlinear phase responses. The number of decomposition levels is determined based on the 

dominant frequency components of the ERP (3–5 Hz, with corresponding mean period 250 

ms). We use the LibSVM MATLAB toolbox (www.cise.ntu.edu.tw/∼colin/libsvm/) and 

employed the radial basis function (RBF) kernel. In addition, we impose an amplitude 

threshold criterion (>3 SD of raw LFP baseline) in ERP detection.

In an online setting, we use a 250-ms moving window to predict the pain-evoked ERP. Once 

the SVM detector is constructed for the LFP signal, we apply a similar strategy of ECPDs 

and integrate the informa-tion from both spikes and LFP.

3 Empirical Experimental and Computational Observations

3.1 Mixed Selectivity of S1 and ACC Neuronal Responses to Noxious and Non-noxious 
Stimuli

In our preliminary experiments, we have obtained empirical observations about the single S1 

and ACC neu-ronal responses to pain (e.g., laser stimulation, pin prick) or non-noxious (e.g., 

touch, van Frey of 2 g) stimuli. For convenience, we define three classes of neurons: neu-

rons that respond to pain stimuli (Class 1), neurons that respond to non-pain stimuli (Class 

2), and neu-rons that respond to neither stimulus (Class 3). Among the Class 1, units that 

significantly increase firing rates in response to pain stimuli are classified as positively-

modulated units, and units that significantly decrease firing rates in response to pain stimuli 

are referred to as negatively-modulated units.

In our tested datasets, we have also observed units from subsets of S1 or ACC neurons that 

respond to both pain and non-pain stimuli (i.e., these units belong to both Class 1 and Class 

2). See Fig. 1 for two representative examples of neuronal responses for spike rasters and 

peristimulus time histogram (PSTH). When neurons respond to non-pain stimuli, there is 

usually a higher degree of trial-by-trial variability (e.g., Fig. 1B, right panel) compared to 

their pain stimulus responses.
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3.2 Trial Variability in Population Response to Pain Stimuli

At both single cell and population levels, neuronal re-sponses may be highly variable 

between trials within the same recording session (Chen et al. 2017a). As an illustrated 

example, we trained a total of 25 PLDS models based on 25 trials of pain stimulus (150 mW 

laser stimulation, 10 s per trial; Session 1 in Table 1). To test trial variability, we then apply 

each model to all 25 pain stimulus trials to detect the change points induced by pain stimuli, 

yielding a binary 25-by-25 matrix, with 1 and 0 representing true positive (TP) and false 

negative (FN), respectively (Fig. 2). A high percentage of 1’s in the matrix entries imply that 

the robustness of the model despite the data non-stationarity. In this example, 74% of entries 

in the TP/FN matrix show TPs and 72% of entries in the FP/TN matrix show TNs. Across 

each column of the TP/FN matrix in Fig. 2A, the majority of entries show agreement in TPs, 

justifying the use of majority rule. Notably, the entries of the banded upper diagonal 

(containing models trained from previ-ous 3 trials) are predominantly TPs. If a model is very 

poor, it will fail most good trials (e.g., the 7th row of TP/FN matrix). Similarly, we use the 

trained models to test non-pain stimulus trials (50 W laser stimulation) and report the FP/TN 

(Fig. 2B). Across each column of the FP/TN matrix, the majority of entries also show 

agreement in TNs.

Note that in an online BMI setting, we can only use previously trained models to test the 

current trial. As such, this predicted detection performance will be less accurate than the off-

line detection result (i.e., estimated from the current trial), and the trial-by-trial variability 

will inevitably affect the predicted detection performance.

3.3 Constraints on Computing Time and Data

For online BMI experiments, we often train the model on the fly based on previous trials. 

For a fixed model size, it costs more CPU time to train the model with more data or trials 

(Fig. 3A). Typically, it CPU time scales linearly with the size of training samples. Therefore, 

with real-time constraint on CPU and memory storage, it is more desirable to train each 

model with small number of trials. Our proposed strategy of ECPDs uses multiple models, 

each trained with one single experimental trial.

In addition, with a fixed computing time constraint or the same amount of training time, the 

ECPDs may produce better detection performance (e.g., TP, FN or AUROC) than the single-

model detection trained with multiple experimental trials (Fig. 3B). Therefore, the 

constraints on computing and memory resources in online BMI experiments favor the 

ensemble detection strategy.

4 Results

4.1 Computer Simulations

4.1.1 Setup 1: Impact of trial variability and SNR—First, we investigate the impact 

of trial-by-trial variability on model estimation and detection. We generate population spike 

trains of C = 24 units using a PLDS model with assumed ground truth. Each trial lasts 10 s 

and consists of 4 pain-modulated units (all positively modulated), with randomly generated 

vector c and d in Eq. (2). The values c and d are set within a predefined range to keep the 
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Poisson spike count at each time bin less than 8. The duration of pain stimulus is 2 s. To cre-

ate trial variability, we simulate different configurations where the specified number of 

coefficients in vector c as-sociated with the pain-modulated neurons vary across trials. 

Without the loss of generality, we define

Class 1: pain-modulated unit index ∈ {1, 2, 3, 4}

Class 2: non-pain-modulated unit index ∈ {5, 6}

Class 3: non-responsive unit index ∈ {7, 8, . . . , }

In the remaining computer simulations, we will use this terminology to distinguish the three 

classes of neurons.

For the TP experiment, we train n = 100 mod-els using all 100 randomly generated trials. 

Next, we apply all models to detect changes in all trials, yield-ing a n × n matrix for each 

dataset. We compute the average detection results based on either single detector or ECPDs 

using the majority vote. In this case, the testing set and training set are identical. The de-

tailed results are summarized in Table 2 and Fig. 4A. As seen in the table, at nearly all 

configurations, the ECPDs based on the majority vote improves the detec-tion accuracy in 

TP. In the case of low trial variability (Datasets 1–4), the single model already achieves a 

good performance, so the difference between the single model and ensemble methods is 

small. In the medium (Datasets 5–10) and high (Datasets 11–14) variability trials, we see 

varying degrees of improvement in the en-semble method. Generally, the degree of 

improvement is greater in the presence of higher trial-by-trial vari-ability. In an extreme 

condition where all Class-1 units are varying across trials (i.e., the highest trial variability for 

Class-1 units), the performance of single model drop dramatically, and the performance of 

ensemble method is even worse. For Dataset 15 (the extreme high trial variability), the TP 

rate of ensemble detection is worse than that of the single-model detection due to lack of 

“consistency” across trials, implying a very low SNR. In addition, among all 400 trials of 

high variability (Datasets 11–14), about 75% of trials benefit from the majority vote rule 

(i.e., number of models detect-ing TP is greater than 50), whereas 25% of trials fail, 

consistent with the averaged TP rate (i.e., the mean of 51%, 69%, 84%, 84%) in Table 1. 

Furthermore, these 400 high-variability trials are tested from 100 trained models, change 

points of 288 trials can be detected by more than 50 models (Fig. 4B), suggesting the 

beneficial use of majority vote rule. Put together, this finding implies that ensemble 
detection may improve the TP rate in the context of online experiment.

To investigate the impact of noise on change-point detection, following the simulation setup 

1, we add in-dependent Poisson noise to population spike activity across time and units. We 

vary the noise variance or equivalently the SNR = 10 log10 son mean is equal to variance), 

where the SNR is as-sumed constant across trials. We repeat the experiment in simulation 

setup 1 and compare the TP rate be-tween the single-model detector and ECPDs. As seen in 

Fig. 5, ECPDs outperform the single-model detector at medium and high trial variabilities 

with varying SNRs; however, the superiority of ensemble learning is lost in the presence of 

high trial variability together with very low SNR (i.e., −5 dB and 0 dB). Therefore, ensem-

ble detection has a poor performance due to the high trial-variability in both “signal” and 

“baseline”, since a higher variance in baseline will decrease the Z-score and make it harder 
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to cross the significance threshold. Put together, this finding implies that ensemble detection 
may work robustly for a wide range of practical BMI conditions, given varying degrees of 
trial variability and medium-to-high SNR.

4.1.2 Setup 2: Impact of mixed selectivity—Next, we use a similar setup but with 

fewer units (C = 12) to assess the FP rate in change point detection. In the training trials, it is 

assumed that two Class-2 units fire in response to a presumed non-painful stimulus (0.5 s 

duration) during the baseline with probability q, and these two Class-2 units do not overlap 

with the four Class-1 units mentioned above. We vary the probability q ∈ {0.1, 0.25, 0.5, 1} 

and simulate n = 100 training and testing trials. In the testing trials, we generate pop-ulation 

spike responses with only “positive” responses from these two Class-2 units, whereas the 

firing rates of remaining 10 units are the same as baseline. We train 100 models from all 

training trials and test them on all 100 testing trials, from which the FP rate is computed 

using either single detector or ECPDs. As seen in Table 3, ECPDs significantly reduce the 

FP rate based on the majority vote for a wide range of q values lower than 1. An example is 

shown in Fig. 6. In an extreme condition when q = 1, the model cannot distinguish between 

Class-1 and Class-2 neuronal responses, resulting in degraded performance in ensemble 

detection. This finding implies that ensemble detection may potentially reduce the FP rate in 
the presence of Class-2 units given a “noisy” baseline.

4.2 Neuroscience Experiments for Detecting Acute Pain Signals

Furthermore, we validate our approach using experimental recordings from freely behaving 

rats under the experimental protocol described in Section 2.1. To assess the detection 

performance, we compute the TP and FP rates, as well as the AUROC (area under receiver 

operating characteristic) statistic. For computing the TP/FP statistics, we use the data within 

the period [0, 3] s, where 0 denotes the laser or stimulus onset.

4.2.1 Detection from single ACC or S1 region—In single-model detection, we use 

the model trained from one preceding trial to predict the current trial. For ECPDs we use 

three models trained from three preced-ing pain-stimulus trials to predict the current trial. 

Figure 7 shows a noxious stimulus example from the ACC recording, and Figure 8 shows a 

non-noxious stimulus example from the S1 recording. Results of all single-region recording 

sessions are summarized in Table 4. It is seen from the table that the ECPDs improves the 

AU-ROC statistic compared to the single-model detector. For the TP and FP statistics, the 

performance of ensemble detection either improves or remains unchanged, which may 

depend on the recording region, the number and characteristic of the units.

4.2.2 Detection from joint ACC and S1 regions—Next, we focus on simultaneous 

recordings of ACC and S1 ensemble spike activity (Sessions 5–7 in Table 1). We compare 

seven detection methods: (i) Single ACC or S1 detector trained from previous 1 trial; (ii) 

Single ACC or S1 detector trained from previous 3 trials; (iii) Single detector with merged 

ACC and S1 activity trained from the previous 1 trial; (iv) Single detector with merged ACC 

and S1 activity trained from the previous 3 trials; (v) Ensemble of 3 detectors associated 

with model (i) and (iii); (vi) Two detectors (ACC+S1) based on the CCF criterion; (vii) 

Ensemble of 3 or 9 detectors as-sociated with model (vi). Note that by using the same 
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amount of data, models (ii) and (iv) are compared with model (v) to determine whether the 

result improvement is due to the ensemble strategy or due to the use of more data.

Single vs. double brain region detection.: We first illus-trate the benefit of using the CCF 

between the ACC and S1 activities based on two single models derived from each area 

separately. Specifically, integrating in-formation from these two brain regions improves the 

TP rate. One example of using 150 mW laser stim-ulation is shown in Fig. 9. In this 

example, we track the area above the CCF threshold and determine the change point based 

on a predefined threshold (Fig. 9D). The optimal value of threshold θ is determined empiri-

cally from the data (typically 1.5–2), depending on the trade-off between sensitivity and 

specificity. Moreover, integrating double-region information also reduces the FP rate. An 

example of such using 50 mW laser stim-ulation is shown in Fig. 10. In this example, the 

area above the ACC threshold is very small (Fig. 10D).

Single-model vs. ensemble detection on double regions.: Furthermore, we investigate if 

using additional models from each region may further boost the detection per-formance or 

enhance the robustness (as assessed by the AUROC statistic). For S1 and ACC regions, 

assuming each region produces N = 3 models trained by three preceding trials, we may have 

two possible options. The first option is to pair S1 and ACC models within indi-vidual trials, 

yielding three CCFs. The second option is to consider all possible pairs within and between 

trials, yielding a total of N 2 = 9 CCFs. We compare the AU-ROC statistics between the 

single-model and ensemble detection methods, using single regions only or double regions. 

In the ensemble method, we also compare the ECPDs using either 3 or 9 ensembles in 

detection. The results are summarized in Tables 5 and 6. In all results, we set the forgetting 

factor ρ = 0.6, m = n = 0.5. As seen in the table, the ECPDs strategy by combin-ing 

ensemble detection and double-region CCFs signif-icantly improves the ROC performance 

compared to the single-model or ensemble detection using one region alone. The benefit of 

ensemble detection using double-region recordings for reducing the FP rate is illustrated in 

Fig. 11.

Result comparison on AUROC, TP and FP.: From Table 5, for both single or ensemble 

detection, it is noted that using more data generally improves the AUROC performance. In 

the case of single region (S1 or ACC), adding more trials in single detectors has a 

comparable performance with the ECPDs. However, in the case of double regions, the 

ECPDs is consistently better than the single detector based on the same amount of data. 

Overall, the best AUROC performance is produced by the ECPDs using double regions (i.e., 

the last two rows of Table 5). The second optimal performance is given by two single 

detector models (ACC+S1, separate de-coding, each with 3 trials), which is consistently 

better than the result of one single detector model (ACC+S1, merged decoding).

When comparing the AUROC performance using the same amount of data, the proposed 

ECPDs still have advantage for the sake of real-time BMI applications. From a 

computational point of view, our proposed ensemble detection strategy requires a model up-

date based on the previous 1 trial, whereas the double-region single detector strategy would 

requires a model update based on the previous 3 trials. From a memory point of view, our 

ensemble strategy requires storing 2 models and updating 1 model with single-trial 
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recordings, which is preferred compared with updating a single model using 3-trial 

recordings previously stored.

In terms of TP and FP, several points in Table 6 are noteworthy:

– When the number of S1 or ACC units is small, the single-model detection 

performance using one brain region alone is rather poor. Generally, the S1 has 

higher sensitivity and FP rates; the ACC has lower TP rates. In addition, the TP 

or FP performance of ensemble detection shows little change or may even 

degrade.

– The single-model detection based on double-region recordings generally 

improves the TP and FP rates compared with their single-region counterparts.

– For double-region recordings, ensemble detection fur-ther improves the single-

model detection in TP and FP rates, achieving a good trade-off between high TP 

and low FP rates.

– In general, if the TP/FP rate of single-model detec-tors is greater than 50%, then 

the ensemble detec-tion will further improve the TP/FP rate. However, if the 

TP/FP of single-model detectors is very poor at the first place (e.g., <50%), then 

the ensemble de-tection will mostly likely degrade the TP/FP rate.

It is also noted that even the best results of Sessions 5 and 6 may be unsatisfactory for the 

targeted detection goal in BMI experiments. The reason may be due to an insufficient 

number of recorded units in each region, thereby limiting the detection performance based 

on the ACC or S1 alone. This reasoning was partially confirmed with the result of Session 7 

in Table 6. Mean-while, the results from single-region recording sessions (see Table 5) also 

show that increasing the unit yield im-proves the overall detection performance of S1 or 

ACC in all categories.

4.2.3 Selection of free hyperparameters—In the double-region detection rule, 

several hyperpa-rameters: m, n, ρ (forgetting factor), and θ (threshold) need to be 

determined. The exponent parameters m and n are used to scale up or down the Z-score 

value, we suggest using 0.5. The forgetting factor ρ determines the smoothness of CCF 

curve, but the detection result is robust with respect to a wide range of ρ, we use ρ = 0.6 and 

find that it works well in all experimental recordings.

The choice of threshold θ determines the TP, FP and AUROC statistics. In practice, we 

systematically vary θ and select its optimal value based on the ROC curve (the nearest point 

closest to the upper left corner). Our empirical observations have shown that a threshold be-

tween 1.5 and 2 yields good overall performances (see Table 6).

To test the generalization of these hyperparameters, we use the ROC curve to identify the 

optimal val-ues from one recording session, and then apply them to another recording 

session. The results are shown in Table 7. Comparing the results in Tables 6 and 7, it is 

found that the results are similar or nearly identical, suggesting that these parameters are 

quite robust across different recording sessions.
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4.3 Detection by integration of spikes and LFP

To illustrate the benefit of integrating multi-modal information from ensemble spikes and 

LFP, we test our ensemble detection strategy on one recording session (Session 7). To 

further improve the TP and FP rates, we apply the designed ERP detector independently to 

the ACC and S1 regions. For a fair comparison, we use only a single model for each region. 

Combining the SVM detector for ACC/S1 evoked-ERP detection (Section 2.6) with the 

spike-based CCF detector trained from the previous one trial, we employ the ensemble 

detec-tion strategy using a majority vote rule (i.e., two out of three detectors). One trial 

example of 250 mW laser stimulation is illustrated in Fig. 12. As a result, by combining 

decisions from multiple (spike+LFP) inde-pendent detectors, the TP and FP rates are 88% 

and 29%, respectively—which are comparable with the re-sults derived from another 

ensemble detection strategy based on multiple ACC+S1 spike-only models (last row in Table 

6). In contrast, the single model-based detec-tion strategy based on spike alone has the TP 

rate of 76% and FP rate of 53%; on the other hand, LFP-alone detection depends on the 

exact decision strat-egy, and often suffers from a high false discovery rate during baseline 

(see Fig. 12C). Notably, in this figural example, detection latency based on evoked-ERPs is 

improved from 1 s to 800 ms. Therefore, integration of multi-modal information using an 

ensemble detection strategy may improve not only the detection accuracy but also the 

detection latency.

5 Discussion and Conclusion

In this paper, we have proposed an ensemble strat-egy of combining independent change-

point detectors to achieve an ensemble or committee decision for change-point detection. 

While the individual detector can be derived from either unsupervised or supervised 

learning, the generic ensemble detection framework may accommodate multiple trials, 

multiple brain regions and multiple detection methods based on different signal modalities. 

The ensemble detection that integrates in-formation from both S1 and ACC regions produce 

the best detection performance, as validated by several experimental recordings. Depending 

on the quality of neu-ronal data, we can optimize the free hyperparameters to obtain an 

optimal trade-off between the detection accuracy and latency, and between the sensitivity 

and specificity.

For real-time BMI applications, the ensemble detection strategy (for either single or double 

regions) is appealing from both computational and memory consid-erations, as compared 

with the single-model detection using the same amount of data. Overall, the ECPDs can 

improve the robustness of detection at the mini-mum computational and memory cost.

More specifically, several points on the ensemble de-tection strategy are highlighted here:

– ECPDs allow us to use more data given the same amount of training time (Fig. 

3).

– Given the same amount of training time, EPCDs outperform single detectors in 

scenarios with high trial variability (or non-stationarity), low SNR, and mixed 

selectivity of neuronal responses (Figs. 4–6).
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– ECPDs outperform or perform at least as well as single detectors based on based 

on the same amount training data (Table 5) or less training time (Fig. 3B). This 

is true for single and double-region decoding.

– ECPDs can be beneficial when integrating neural recordings from spikes and 

LFP (Fig.12).

5.1 Integration of S1 and ACC for Pain Detection

In the present experiment, we have formulated the de-tection of pain signals as a change-

point detection problem. In this context, integrating information from the S1 and ACC for 

detecting pain signals is critical. Previous neuroimaging and physiological data have 

suggested that the S1 and ACC are the two most important brain regions in responding pain 

stimuli. Specifically, S1 encodes the sensory-discriminative component of pain, and ACC 

encodes the affective-emotional component. Since there is no single brain region with pain-

specific or pain-exclusive neuronal responses, it is critical to record two (or more) brain 

regions with complementary information, where their ensemble spikes and LFPs are both 

important for detecting pain signals.

5.2 Computational Consideration

For ensemble learning or committee decision, the selec-tion of decision rule is important to 

the ultimate de-tection accuracy, especially in TP and FP. In BMI ap-plications, we may 

adapt our choices depending on the SNR or practical need. To improve the online detection 

speed, we can use the particle filter or sequential Monte Carlo methods (Hu et al. 2018). 

When Monte Carlo sampling is employed and the number of ensemble de-tectors is large, it 

may pose a computational challenge in BMI applications. For instance, to train a PLDS 

model with 50 units and 15-s data points, it often takes around 30 s to run the EM algorithm 

for 500 itera-tions (written in custom C code, Intel i7–4700 quad-core CPU processor 3.4 

GHz and 32 GB RAM). For a further computational speedup, we may consider mod-ern 

digital signal processing (DSP) technologies with optimized libraries.

There is also a trade-off between the detection accu-racy (FP, FN) and latency. According to 

our ensemble strategy (for either single or double regions), the detec-tion accuracy is 

improved at the expense of longer de-tection latency. On the other hand, if we aim to shorten 

the detection latency (using a shorter observation duration), the FP or FN rate will likely 

increase. Specifi-cally, we need to optimize the free hyperparameters to achieve the desired 

performance (section 4.2.3).

5.3 Unit Stability

In chronic neural recordings (e.g., multiple recording sessions within one day), we will 

encounter non-stationary issues, such as the change in unit firing rate due to neural plasticity 

or adaptation, electrode drifts, and unit instability. Unit instability issue is referred to the 

phenomenon that new spike waveforms emerge that do not match previously identified 

templates, or old units may disappear in a later stage. The current online spike sorting is 

mostly based on template matching, where the templates are pre-identified during baseline 

calibration prior to stimulus presentation.
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For any disappeared unit that has been assigned with a weighting coefficient in vector c, we 

can reset the weighting coefficient to 0. For any emerged new units, we either ignore their 

spikes or merge them with neigh-boring units with the closest waveform (treated as the 

multiunit activity) and retrain the model parameters.

Currently, we are improving the custom micro drive design (2 × 32 channels, Session 7) and 

the unit yield (>50 units). The increase in unit yield may also pose more practical 

considerations in computational speed and unit selection (e.g., removal of non-informative 

units). With more units simultaneously recorded from the ACC and S1, we expect to further 

improve the TP and FP rates based on an ensemble detection strategy. In addition, we are 

developing a software interface to monitor the online-sorted unit activity in BMI 

experiments.
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Fig. 1. 
Examples of single S1 and ACC neuronal responses to noxious (pain) stimulus (pin prick) 

and non-noxious stimulus (von Frey, 2g). (A) One S1 unit’s spike raster (top) and peri-

stimulus time histogram (PSTH, bottom) to pin prick (left) and van Frey (right). (B) One 

ACC unit’s spike raster and PSTH to pin prick and van Frey.
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Fig. 2. 
(A) Detection results of the true positive (TP) matrix. Each entry of the matrix denote the 

detection re-sult from one model (row) applied to one trial (column). Black/white color 

denotes TP/FN. (B) Detection results of the false positive (FP) matrix. Black/white color 

denotes FP/TN. In both panels, the red banded diagonal marks the results using models 

trained from previous 3 trials.
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Fig. 3. 
(A) CPU time scales linearly with the number of training data/trials. Here a total of 50 EM 

iterations are run for model estimation of 28 rat ACC units (from Session 7). (B) 
Comparison of TP between single-model and ensemble detection with a fixed CPU time 

constraint in model training.
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Fig. 4. 
Result of simulation setup 1. (A) Comparison of average performance between the single 

detector and ECPDs using the majority vote under low (with 3 invariant units), medium 

(with 2 invariant units) and high (with 1 invariant unit) trial-by-trial variability. (B) 
Histogram of the number of high-variability trials (Datasets 11–14, 400 trials in total) that 

can be detected as TPs. Each trial is tested with 100 trained models. The trials that benefit 

from the majority vote are located within the right half of distribution (i.e., support > 50).
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Fig. 5. 
Comparison of the average TP rate between the single model detector and ECPDs (shaded 

bars) under different SNR levels and trial-by-trial variabilities (computer simulation setup 

1).
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Fig. 6. 
An example of simulation setup 2. (A) Simulated spike count observations of C = 12 units. 

The first 10-s sample points define the a training trial, whereas the last 10-s samples define a 

test trial that consists of a non-pain stimulus during [10, 11] s. (B) The Z-score trace derived 

from the PLDS model trained from 3 preceding trials (n−1, red; n − 2, green; n − 3, blue). In 

this example, only 1 out of 3 models detects FP. Shaded area denotes the baseline for 

computing the Z-score. Horizontal dashed lines denote the ±1.65 threshold.
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Fig. 7. 
(A) Spike count observations of C = 32 ACC units (session 1). Time 0 denotes the onset of 

150 mW laser stimulation. (B) Z-score statistics derived from PLDS models trained from 3 

preceding trials (n − 1, red; n − 2, green; n − 3, blue). In this example, 2 out of 3 models 

detect the change. Shaded area denotes the baseline period ([−4, −1] s) for computing the Z-

score. Vertical red and black lines denote the laser onset and paw withdrawal, respectively. 

Horizontal dashed lines denote the ±1.65 threshold.
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Fig. 8. 
(A) A trial example of spike count observations from C = 43 S1 units (session 3). Time 0 

denotes the onset of 50 mW laser stimulation. (B) Z-score statistics derived from PLDS 

models trained with 3 preceding trials. Model trained from the preceding trials (n − 1, red; n 
− 2, blue; n − 3, magenta). In this example, 1 out of 3 models detects FP. Shaded area 

denotes the baseline period ([−4, −1] s) for computing the Z-score. Horizontal dashed lines 

denote the ±1.65 threshold.
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Fig. 9. 
(A) A trial example of rat ACC and S1 population spike count observations with 150 mW 

laser stimulation. (B) Z-score curves derived from ACC (green), S1 (blue) and their merged 

activities (magenta). Horizontal dashed lines denote the ±1.65 threshold. Vertical red and 

black lines denote the laser onset and paw withdrawal, respectively. (C) Z-scored CCF 

derived from both regions based on different values of forgetting factor ρ; m = n = 0.5. 

Horizontal dashed lines indicate the mean±3SD threshold computed from the CCF during 

baseline (shaded area). (D) Tracking the area of CCF outside of the mean±3SD threshold in 

panel C (ρ = 0.6). Dashed line indicates θ = 1.6.
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Fig. 10. 
(A) A trial example of rat ACC and S1 population spike count observations with 50 mW 

laser stimulation at time 0. (B) Z-score curves derived from ACC (green), S1 (blue) and their 

merged activity (magenta). Horizontal dashed lines denote the ±1.65 threshold. (C) Z-scored 

CCF derived from both regions based on different values of the forgetting factor ρ; m = n = 

0.5. Horizontal dashed lines indicate the mean±3SD threshold computed from the CCF 

during baseline (shaded area). (D) Tracking the area of CCF curve above the mean±3SD 

threshold in panel C (ρ = 0.6).
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Fig. 11. 
A trial example of ensemble detection based on simultaneous ACC and S1 recordings. (A) 
population spike count observations with 50 mW laser stimulation at time 0. (B) Z-scored 

cross-correlation function (CCF) based on trained models from preceding 3 (N − 1, n − 2 

and n − 3) trials. In all examples, ρ = 0.6, m = n = 0.5. Horizontal dashed lines indicate the 

mean±3SD threshold. (C) The area of three CCF curves above their respective mean±3SD 

thresholds in baseline. Color matches the color from respective models in panel B. In this 

example, only 1 out of 3 models detects FP.
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Fig. 12. 
A single-trial example of ensemble detection based on simultaneous ACC and S1 

recordings. (A) population spike count observations with 250 mW laser stimulation at time 

0. The band-passed (2–20 Hz) LFP traces from the ACC (red) and S1 (blue) are overlaid 

over the ensemble spike count observations. (B) Z-scored cross-correlation function (CCF) 

based on single models derived from the previous one trial. ρ = 0.6, m = n = 0.5. Horizontal 

dashed lines indicate the mean±3SD threshold. Shaded area represents the baseline. Vertical 

line (∼ 1 s) indicates the time of detection upon reaching the area threshold. (C) Pain-evoked 

ERP detection using the SVM for the ACC (red) and S1 (blue) areas. Based on the majority 

vote, the detection latency of pain signals is around 800 ms
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Table 1

Summary of experimental recording sessions. Two numbers in the 4th column are referred to the numbers of 

trials associated with simulation of two laser intensities or two stimuli, respectively.

Session Region Pain stimulus # trials # units Electrode

1 ACC 50/150 mW laser 25/25 32 stereotrode (32 channels)

2 ACC 50/150 mW laser 25/25 34 stereotrode (32 channels)

3 S1 50/250 mW laser 30/30 43 silicon probe (32 channels)

4 S1 50/250 mW laser 30/30 36 silicon probe (32 channels)

5 ACC+S1 50/250 mW laser 18/19 10+7 tetrode (32 channels)

6 ACC+S1 pin prick/von-frey 20/24 12+9 tetrode (32 channels)

7 ACC+S1 50/250 mW laser 20/20 28+24 silicon probe (64 channels)
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Table 2

Summary of simulation experiments (setup 1, C = 24). The smaller the number of invariant Class-1 units, the 

higher trial-variability within a specific data set. Datasets 1–4: low trial variability; Datasets 5–10: medium 

trial variability; Datasets 11–14: high trial variability. Each dataset consists of 100 Monte Carlo trials.

Dataset #invariant
Class-1
units

invariant
Class-1 units

TP
(single)

TP
(ensemble)

1 3 1, 2, 3 95% 98%

2 3 1, 2, 4 93% 94%

3 3 1, 3, 4 96% 96%

4 3 2, 3, 4 95% 95%

5 2 1, 2 75% 86%

6 2 1, 3 79% 87%

7 2 1, 4 85% 88%

8 2 2, 3 87% 93%

9 2 2, 4 77% 81%

10 2 3, 4 84% 86%

11 1 1 52% 51%

12 1 2 56% 69%

13 1 3 67% 84%

14 1 4 75% 84%

15 0 46% 34%
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Table 3

Summary of simulation experiments (setup 2, C = 12). A higher probability q implies a lower SNR in the 

baseline period among the training trials. Each dataset consists of 100 Monte Carlo trials.

Dataset prob. q TP
(single)

FP
(single)

FP
(ensemble)

16 1.0 85% 44% 25%

17 0.5 85% 27% 0%

18 0.25 84% 16% 0%

19 0.1 84% 9% 0%
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Table 5

Comparison of AUROC statistics for change-point detection based on double-region recordings (Sessions 5 

and 6). The best result in each column is shown in bold font. Cases 1–4 are based on single-region detection; 

Cases 5–10 are based on double-region detection. Cases 6,9,10 are based on our proposed ensemble detection 

approach, with increasing complexity. Case 6 treats ACC+S1 as a single region, whereas Cases 9 and 10 treat 

ACC and S1 separately. Cases 8 and 9 are based on the same amount of training data; Cases 5 and 7 are based 

on the same amount of training data.

Case
Session

5 6 7
Region

1 ACC (single, 1 trial) 0.66 0.63 0.61

2 ACC (single, 3 trials) 0.76 0.67 0.58

3 S1 (single, 1 trial) 0.74 0.59 0.58

4 S1 (single, 3 trials) 0.74 0.61 0.66

5 ACC+S1 (merged, single w/ 1 trial) 0.78 0.59 0.65

6 ACC+S1 (merged, ensemble of 3 models) 0.78 0.61 0.75

7 ACC+S1 (single, each w/ 1 trial) 0.84 0.67 0.67

8 ACC+S1 (each w/3 trials) 0.89 0.69 0.64

9 ACC+S1 (each w/ensemble of 3 models) 0.91 0.70 0.81

10 ACC+S1 (each w/ensemble of 9 models) 0.90 0.67 0.84
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Table 6

Comparison of TP and FP statistics (Sessions 5 and 6) based on varying statistical criteria or thresholds. Here, 

θ0 denotes the Z-score threshold, and θ denotes the threshold for the cumulated area of CCF above the mean

±3SD statistic in baseline. In all single detectors, only 1 preceding trial is used to train the model; whereas in 

all ECPDs, the ensemble of 3 models is used. The optimal choice is shown in bold font.

Session 5
P < 0.05 (θ0 = 1.65) P < 0.01 (θ0 = 2.33) P < 0.001 (θ0 = 3.08)

TP FP TP FP TP FP

ACC (single) 31% 27% 25% 13% 13% 7%

ACC (ensemble) 31% 7% 25% 0% 13% 0%

S1 (single) 88% 40% 63% 33% 50% 20%

S1 (ensemble) 88% 40% 69% 20% 63% 20%

ACC+S1 (merged, single) 88% 53% 81% 33% 63% 20%

ACC+S1 (merged, ensemble) 88% 53% 81% 20% 63% 20%

θ = 1 θ = 1.6 θ = 2

TP FP TP FP TP FP

ACC+S1 (separate, single) 63% 27% 56% 13% 56% 13%

ACC+S1 (separate, ensemble) 75% 13% 75% 7% 63% 7%

Session 6
P < 0.05 (θ0 = 1.65) P < 0.01 (θ0 = 2.33) P < 0.001 (θ0 = 3.08)

TP FP TP FP TP FP

ACC (single) 41% 14% 24% 5% 18% 5%

ACC (ensemble) 29% 10% 18% 5% 12% 0%

S1 (single) 100% 67% 71% 50% 59% 42%

S1 (ensemble) 100% 57% 71% 48% 53% 48%

ACC+S1 (merged, single) 100% 71% 71% 52% 53% 38%

ACC+S1 (merged, ensemble) 100% 71% 76% 48% 47% 43%

θ = 1 θ = 1.6 θ = 2

TP FP TP FP TP FP

ACC+S1 (separate, single) 71% 48% 65% 43% 59% 38%

ACC+S1 (separate, ensemble) 76% 43% 71% 38% 65% 33%

Session 7
P < 0.05 (θ0 = 1.65) P < 0.01 (θ0 = 2.33) P < 0.001 (θ0 = 3.08)

TP FP TP FP TP FP

ACC (single) 59% 35% 41% 35% 24% 24%

ACC (ensemble) 59% 6% 35% 6% 24% 6%

S1 (single) 24% 12% 6% 0% 6% 0%

S1 (ensemble) 18% 6% 6% 0% 0% 0%

ACC+S1 (merged, single) 58% 35% 47% 35% 35% 18%

ACC+S1 (merged, ensemble) 53% 24% 35% 12% 18% 0%
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Session 5
P < 0.05 (θ0 = 1.65) P < 0.01 (θ0 = 2.33) P < 0.001 (θ0 = 3.08)

TP FP TP FP TP FP

θ = 1 θ = 1.6 θ = 2

TP FP TP FP TP FP

ACC+S1 (separate, single) 76% 53% 71% 47% 71% 47%

ACC+S1 (separate, ensemble) 88% 29% 65% 24% 53% 18%
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Table 7

Testing generalization in cross-section analysis using simultaneous recordings of two brain regions (Sessions 5 

and 6). In this case, the optimal hyperparameters θ0 and θ are determined from one session (based on the ROC 

curve) and tested on the other session.

Session 5→Session 6 Session 6→Session 5

TP FP TP FP

ACC+S1 (merged, single) 100% 76% 88% 53%

ACC+S1 (merged, ensemble) 100% 71% 88% 53%

ACC+S1 (separate, single) 65% 43% 56% 13%

ACC+S1 (separate, ensemble) 71% 38% 75% 7%

J Comput Neurosci. Author manuscript; available in PMC 2020 February 01.


	Abstract
	Introduction
	Materials and Methods
	Animal Behavior and Physiological Recordings
	Model-based Method for Change-point Detection
	Poisson linear dynamical system
	Online recursive filtering
	Criterion for change-point detection

	Ensembles of Change-point Detectors
	Combining Two Brain Regions
	Size of Buffering Window
	Integration of Spikes and LFP

	Empirical Experimental and Computational Observations
	Mixed Selectivity of S1 and ACC Neuronal Responses to Noxious and Non-noxious Stimuli
	Trial Variability in Population Response to Pain Stimuli
	Constraints on Computing Time and Data

	Results
	Computer Simulations
	Setup 1: Impact of trial variability and SNR
	Setup 2: Impact of mixed selectivity

	Neuroscience Experiments for Detecting Acute Pain Signals
	Detection from single ACC or S1 region
	Detection from joint ACC and S1 regions
	Single vs. double brain region detection.
	Single-model vs. ensemble detection on double regions.
	Result comparison on AUROC, TP and FP.

	Selection of free hyperparameters

	Detection by integration of spikes and LFP

	Discussion and Conclusion
	Integration of S1 and ACC for Pain Detection
	Computational Consideration
	Unit Stability

	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Fig. 9
	Fig. 10
	Fig. 11
	Fig. 12
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7

