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Predicting protein-peptide 
interaction sites using distant 
protein complexes as structural 
templates
Isak Johansson-Åkhe, Claudio Mirabello & Björn Wallner   

Protein-peptide interactions play an important role in major cellular processes, and are associated with 
several human diseases. To understand and potentially regulate these cellular function and diseases it 
is important to know the molecular details of the interactions. However, because of peptide flexibility 
and the transient nature of protein-peptide interactions, peptides are difficult to study experimentally. 
Thus, computational methods for predicting structural information about protein-peptide interactions 
are needed. Here we present InterPep, a pipeline for predicting protein-peptide interaction sites. It is 
a novel pipeline that, given a protein structure and a peptide sequence, utilizes structural template 
matches, sequence information, random forest machine learning, and hierarchical clustering to 
predict what region of the protein structure the peptide is most likely to bind. When tested on its 
ability to predict binding sites, InterPep successfully pinpointed 255 of 502 (50.7%) binding sites in 
experimentally determined structures at rank 1 and 348 of 502 (69.3%) among the top five predictions 
using only structures with no significant sequence similarity as templates. InterPep is a powerful tool 
for identifying peptide-binding sites; with a precision of 80% at a recall of 20% it should be an excellent 
starting point for docking protocols or experiments investigating peptide interactions. The source code 
for InterPred is available at http://wallnerlab.org/InterPep/.

Protein-protein interactions are a fundamental part of all major biological processes. A particularly interesting 
class of protein-protein interactions are those involving interaction including intrinsically disordered regions. 
These regions are often the size of small peptide fragments 5 to 25 residues long1 and part of proteins involved 
in regulation, recognition, and signaling requiring dynamic and specific responses2,3. When investigating 
these interactions, it is common practice to isolate the binding motif of the disordered region and analyze the 
binding as a protein-peptide interaction4,5. Protein interactions involving disordered regions, as well as other 
protein-peptide interactions, are frequently associated with various human diseases such as cancer, cardio-
vascular disease, amyloidosis, and neurodegenerative diseases6,7. It has also been shown that protein-peptide 
interactions can be regulated using small molecules8–10, making them prime candidates as drug targets. Thus, 
understanding the structural details of protein-peptide interactions is fundamental for our understanding of 
complex cellular processes and complex diseases, and in addition they can provide a basis for rational drug design 
to modify protein-peptide interactions.

Experimental methods for determining protein-protein interactions in molecular detail, such as x-ray crystal-
lography, cryo-EM, and NMR, are both difficult and time-consuming11. High-throughput methods that measure 
binary interaction, such as affinity-purification mass spectrometry, yeast-two-hybrid, and BioID12–14 are lacking 
in molecular detail. Thus, many computational methods have been developed to predict protein complex interac-
tions15. There are both methods that predict binary interactions from the amino acid sequence16 or by combining 
other sources of information17, as well as methods that predict the complete 3D-structure of a complex using 
sequence- and profile-based alignments18,19 or structural alignments20,21 to libraries of interacting proteins of 
known structure.

Methods that utilize structural alignments have proved to be especially successful in the latest 
CASP12-CAPRI22. These methods search through the Protein Data Bank23 for interacting complexes structurally 
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similar to both query proteins, and work well when both partner proteins are well-ordered protein structures. 
However, for modeling protein-peptide interactions these methods cannot be used, since the interaction in this 
case is between an ordered partner and a smaller, relatively flexible, peptide fragment. Instead, methods that try 
to dock the peptide onto the ordered partner have been applied to this problem with some success for very short 
peptides (≤4 residues)24. The success for larger peptides is limited due to the large number of peptide conforma-
tions and binding poses that needs to be sampled25–27.

The sampling problem can remedied to some degree by coarse-graining using side-chain centroids like in 
Rosetta FlexPepDock25 or the CABS force field in CABS-dock27. Another way to tackle the sampling problem 
is to first predict the peptide binding site on the protein surface28–32. If successful, docking methods can focus 
the attention to the predicted binding site instead of wasting time on sampling incorrect binding sites. In addi-
tion, experiments can be directed towards the predicted binding site and the functional effects of the interac-
tion can be studied. PepSite28,29 is a method that predicts the peptide binding sites by describing he preferred 
binding environment for peptide residues in protein-peptide interactions with known structure using a spatial 
position-specific scoring matrix (S-PSSM) that can be used to scan the protein surface for candidate binding 
sites for peptide residues. More recent methods, PeptiMap30 predicts peptide binding by adapting the fragment 
mapping (FTmap) for ligand peptide binding site prediction33 to peptide binding characteristics, PEP-SiteFinder31 
combines peptide 3D conformation generation and fast rigid body docking, and ACCLUSTER32 clusters surface 
residues that have good chemical interactions with amino acid probes.

Other methods combine both the peptide binding site prediction with peptide-protein docking into one 
pipeline. GalaxyPepDock34 performs template-based docking using templates from a database of experimentally 
determined peptide-protein structures and builds models using molecular docking, while PIPER-FlexPepDock35 
combines coarse-grained mass-sampling of the protein receptor surface using PIPER36 with molecular docking of 
the peptide using Rosetta FlexPepDock25, and HPEPDOCK37,38 uses a modified protocol from MDock39,40 to dock 
a wide range of peptide conformations by shape complementarity before energy minimization.

PeptiMap30, PEP-SiteFinder31, HPEPDOCK37, and ACCLUSTER32 are unfortunately available only as web 
servers with limited programmatical access. Similarly, PIPER-FlexPepDock35 is only available either through a 
web-server or an expensive license. In fact, to the best of our knowledge the only software that is currently avail-
able as stand alone download is GalaxyPepDock34, and even this method is distributed with precompiled execut-
ables, meaning it only runs on a select few system architectures. The lack of method availability clearly hinders 
progress in the field and makes it difficult to benchmark against these methods.

In this study, we present InterPep, a novel protein-peptide interaction site prediction pipeline that predicts 
which residues on the surface of a target protein are most likely to interact with a given peptide fragment. It is 
based on the hypothesis that, if a protein-peptide interaction exists within the PDB describing a similar interac-
tion surface, that interaction surface can be used as a template to model the interaction. Apart from the use of 
machine learning another difference to previous studies is that we expand the possible templates for interaction 
from protein-peptide to any protein-protein interaction. This is a reasonable assumption since protein-peptide 
interactions adopt the same structural motifs as monomeric protein folds upon binding41. Recent studies have 
suggest that the protein-protein interaction space in current PDB is close to complete42,43, indicating that it could 
potentially be possible to model the majority of protein-peptide interactions using structural templates.

The complete InterPep pipeline runs mass structural alignments to find interaction templates, ranks these 
templates with a random forest classifier using both structural and sequence information, and outputs both 
a predicted per residue probability and an amino acid preference profile for the interaction. Both these types 
of information could potentially be used as constraints in local protein-peptide docking, such as by Rosetta 
FlexPepDock25.

The performance of InterPep demonstrates the strength of a structural template-based approach to investi-
gate protein-peptide interactions. Even though InterPep certainly can be used to model ordered interactions, we 
believe that best use-cases will be modeling of interactions with disordered regions, i.e an ordered protein inter-
acting with a disordered partner. These interactions are immensely important but yet extremely difficult to study. 
The approach can easily be modified and extended to include other types of ligand binding, such as binding of 
phosphorylated targets and saccharides. InterPep is developed using only freely available software, and the source 
code is available for download, see link above.

Methods
Dataset.  To develop and evaluate InterPep, a dataset of known protein-peptide interactions was constructed 
using Protein Data Bank23 (May 19, 2016). The dataset consisted of structures containing interactions between 
one larger protein chain and a smaller poly-peptide chain of 5 to 25 residues acquired through NMR or X-ray 
crystallography with a resolution of at least 3 Å. To make sure all protein-peptide interactions within the dataset 
were biologically significant and not simply crystal contacts or close in space because of other binding partners 
rather than direct interaction, the shared surface between the peptide and the protein had to be at least 400 Å2, 
which approximately corresponds to a peptide of 5 to 10 residues along the protein surface (semi-exposed). 
Examples include 1BC544 (433 Å2, 5 residues) and 1C9I45 (409 Å2, 9 residues). The peptide length and shared sur-
face area requirements were based on the molecular recognition feature (MoRF) definitions from Mohan et al.1. 
Peptides of these lengths have been observed to be disordered when unbound, representing intrinsically disor-
dered and difficult-to-predict peptides or regions. The size of the shared surface was calculated with NACCESS46. 
Furthermore, to focus on surface interactions, rather than on cases where the peptide is a requirement for proper 
folding of the receptor protein, any case where the peptide was buried by more than 60% were filtered. To ensure 
common proteins were not overrepresented within the dataset, the longer of two protein chains were clustered at 
30% sequence identity, using BLASTCLUST47. The final dataset consisted of 502 protein-peptide interactions, and 
is freely available at http://wallnerlab.org/InterPep.
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Several of the protein-peptide complexes in the dataset are taken from multi-chain structures containing 
addititional protein chains. This was a deliberate choice, since when investigating protein-peptide interactions 
it is often not known if the receptor protein oligomerize or interacts with additional proteins. As such, it is 
important for a protein-peptide interaction site predictor not to falsely predict protein-protein interaction sites. 
When testing InterPep and other methods, no knowledge of any protein-protein interaction sites was utilized in 
order to test their capability to predict the correct site, in the presence of potentially disturbing noise from other 
protein-protein interaction sites.

Interaction Template Library.  An interaction template library was constructed using all pairs of interact-
ing chains from the PDB (May 19, 2016), defined as two chains with any heavy atom within 6 Å. Templates where 
the receptor was less than 25 residues large were removed, as was templates from files with excessive number of 
chains, such as complete virus capsid structures. For NMR structures, only the first model was included. The 
interaction template library consisted of 402,102 template pairs of interacting protein chains.

Protein 3D-models for training and benchmarking.  To investigate the impact of model quality of 
the target protein and to determine whether InterPep is robust enough to work on modeled structures rather 
than on native structures, a set of structural models derived from the protein sequences of the protein-peptide 
interaction dataset set was constructed. These models were produced using HHblits48 with E-value cutoff at 10−2 
and maximum pairwise identity of 90%, to search against the uniprot20_2016_02 database to build the Hidden 
Markov Model profiles, which were then used to search against the PDB23 database clustered at 70% sequence 
identity. To ensure having models of varying quality, up to eight alignments per target were chosen and modeled 
by MODELLER49. In total, 1,617 models for all targets were constructed in this way.

InterPep construction.  The complete InterPep pipeline is outlined in Fig. 1. It consists of four distinct steps: 
1. Mass Structural Alignment, 2. Feature Extraction, 3. Random Forest Classification, and 4. Clustering, described 
in detail below.

Mass Structural Alignment.  In the first step, the target protein is structurally aligned using TM-Align50 to every 
protein chain in each pair from the Interaction Template Library described above. Any alignment with a TM-score 
≥0.5, which is the cutoff value for a significant structural match51, is used as a potential template for the target 
protein-peptide interaction. The alignment of the residues from the template involved in protein-protein interac-
tion to the equivalent residues in the target protein, gives a template for a potential interaction surface in the target.

Feature Extraction.  In the second step, features relevant to protein-peptide interactions are calculated for 
each template. The features used by InterPep are summarized in Table 1, and are described in detail in the 
Supplementary Information.

Random Forest Classification.  In the third step, the extracted features are used in a random forest classifier to 
separate correct and incorrect templates. Templates were considered correct if at least 80% of the interaction site 
residues suggested by the template where correct. Other cutoffs where also tried, including training regressional 
random forest to predict the fraction of correct residues, but classification was superior (see Supplementary 
Information). The random forest is implemented using scikit-learn52 with 100 trees and no depth limit. To avoid 
overfitting, a maximum of N  features were considered in each branching, where N  is the total number of fea-
tures. The random forest was trained using jack-knifing to estimate the performance. The jack-knifing was per-
formed such that when testing on one protein-peptide pair, templates from all other targets, except those which 
matched with a TM-score ≥0.5 to the test protein, were used for training. In addition, to avoid biasing the data 
toward common structural motifs, when training the Random Forest every protein-peptide pair could only con-
tribute up to 2,000 randomly selected templates to the training data. The output of the random forest for a given 
template is the probability that the template is correct, given by the definition above.

Clustering.  In the fourth and final step, the potential interaction surfaces are clustered using hierarchical clus-
tering utilizing the SciPy package53, and the average method for calculating distances to clusters. The distance 
between two potential interaction surfaces is calculated as the mean of the distances between the coordinates 
for each residue in the different surfaces. The distance cutoff is determined automatically through the elbow 
method54. The highest predicted probability among the templates in a cluster defines the score of that cluster 
(cluster score).

The top 10% of all templates within the highest scoring cluster are then combined through a weighted average 
to produce the individual local residue scores that make up the final prediction. The weights are the probabilities 
predicted by the random forest for the templates, and local score measures the likelihood of each residue to be 
involved in a protein-peptide interaction. Hierarchical clustering and the 10% cutoff were utilized in favor of cal-
culating a weighted average over all structures to ensure that strong and correct signals were not hidden by many 
weak ones, and to make the final prediction more robust to random outliers and fragmented templates by basing 
it on an ensemble of predictions.

InterPep score.  For every prediction method, it is important to have a score that correlates with the confidence 
in the predictions. In InterPep, the global score is designed to measure the confidence in the prediction, and is 
defined by combining the cluster score with the highest local score using a weighted mean, selecting the weights 
0.61 for cluster score and 0.39 for local score maximized the correlation to 0.63 for the quality of prediction as 
measured by Matthew’s Correlation Coefficient (MCC) between correct and incorrect template residues, Fig. 2a. 
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The global score has the advantage that it combines the confidence in the predicted area measured by the cluster 
score with the confidence of the predictions in that area measured by the local score, and should thus represent 
the confidence in the prediction as a whole. As cluster score indirectly describes the maximum quality of the tem-
plates available, it is natural that it also has the highest weight. The distribution of precisions (fraction of correct 
residues) for different score thresholds shows that the global score is a good estimate of performance, see Fig. 2b. 
For global score above 0.4 the majority of the predictions have precisions above 60% increasing to 80%, with very 
few predictions with precision less than 50% for global score above 0.7.

Evaluation Criteria.  Throughout the paper, a binding site counts as successfully identified if at least 50% of 
the residues of the predicted interaction-site overlaps the true interaction-site, i.e. if the prediction has a PPV of at 
least 0.5. This metric will reward methods for pin-pointing the center of interaction, rather than making sweeping 
attempts at predicting as large sites as possible.

Results and Discussion
Development of InterPep.  The overall method has been described in Methods. Below we describe, bench-
mark, and validate some of the design choices that were made during the development of InterPep.

Interaction Template Library Analysis.  InterPep relies on finding interaction templates that can be used to model 
a particular protein-peptide interaction. As such, the set of interaction templates, or the interaction template 
library, available to InterPep sets the boundaries for the prediction. Relevant questions in this regard are how 
many protein-peptide interactions can be modelled by such templates, and if protein-protein interaction tem-
plates can be used to model protein-peptide interactions? To answer these questions, the full interaction template 
library (see Methods) was divided into a peptide-binding and a non-peptide-binding part, and the possibility of 

Figure 1.  Overview of the InterPep pipeline.
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using perfect combinations of templates from the full, peptide and non-peptide parts to model protein-peptide 
interaction was assessed. Perfect combinations of templates for the different template libraries were constructed 
by fitting all templates available to the correct answer using linear regression, as shown in the equation below:

β β β β ε→ = → + → + → + … + → + →y x x x xi i1 1 2 2 3 3

Feature Name
Number of 
parameters

Length

Target Peptide 1

Target Protein Chain 1

Aligned Template Chain 1

Aligned Segment 1

Aligned Interacting Residues 1

Alignment Quality

Target TM-Score 1

Template TM-Score 1

RMSD 1

Aligned Region Complexity

Contact Order 1

Longest aligned α-helix 1

Amino Acid Composition Distance

Between Target Peptide and Template Peptide 1

Between Target Protein and Template Protein 1

Secondary Structure

Target Peptide (predicted) 3

Peptide Template Surface 3

Surface Information

Relative Exposure of Interaction Surface 1

Conservation of Interaction Surface 1

Template Peptide Information

Mean Sequential Distance 1

Median Sequential Distance 1

Summed representative lengths 1

Model Information (optional)

Model Quality measured by Sequence 
Identity of Alignment 1

Table 1.  Summary of the features used by InterPep.

Figure 2.  (a) Correlation between InterPep global score and prediction quality measured as Matthew’s 
Correlation Coefficient between the local score and native contacts, for different ways of combining the cluster 
score and highest local score. The weight for the local score is k and cluster score 1 − k. Optimal weight is found at 
k = 0.39. (b) Distribution of precision of predictions for different InterPep score cutoff values.
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where →y  is a vector representation of the target protein containing binary values denoting which residues are 
involved in protein-peptide interaction in the native structure and which are not, →xz is the interaction vector of 
template z, βz is a constant, i is the total number of templates, and ε→ is a vector of errors. All β are assigned values 
so that the total error ε|→| is as small as possible. ε→ = → − →p y  gives the best possible prediction available, and is 
a prediction vector similar to the local score from InterPep.

A binding site was considered correctly identified if it had at least 50% overlap with native interaction site. 
All templates with BLAST E < 0.001 to the targets had been removed from the Interaction Template Library 
prior to this analysis. As can be seen from Table 2, there are templates available to model the majority of the 
targets (81.3%) from the test set using all interactions in the template library. By restricting the library to only 
non-peptide-binding templates, it is still possible to model 67.3% of the targets. This increases to 73.5% when 
instead using only peptide-binding templates. However, the fact that it is possible to model a substantial propor-
tion of the peptide interactions with the non-peptide interaction templates and that more targets can be modeled 
using all templates (both peptide and non-peptide) supports the hypothesis that protein-protein interfaces can be 
used to predict protein-peptide interfaces.

Comparison to Established Methods.  The performance of InterPep was benchmarked against other 
established methods. There are several published methods that potentially could be included in a benchmark. 
However, as most of them are only available as web servers with limited or even blocked programmatical access, 
we only included the following methods that could actually run on the full benchmark set: PepSite229, PeptiMap30, 
and GalaxyPepDock34, of these the latter is available as stand alone download, while the other two allows pro-
grammatical web access. In addition, two reference methods were also included, one method using surface con-
servation (Surf-Cons) calculated using Rate4Site55 for surface residues, and one method similar to InterPep, but 
with the random forest classifier score replaced with the TM-score from TM-align (InterPep-TMonly).

Template library
# protein-peptide interactions that 
can be modeled

All templates 408 (81.3%)

Only peptide-binding templates 369 (73.5%)

Only non-peptide templates 340 (67.7%)

Random 54 (10.8%) σ = 5.85

Total sites 502 (100.0%)

Table 2.  Number of true sites which can be described as combinations of templates. Number of peptide 
interactions found in the test set containing 502 interaction sites, depending on the used template library. All 
templates correspond to all templates in the interaction library, Only peptide-binding templates is the subset of 
all templates that involve peptide interactions, Only non-peptide templates is the subset of all templates that do 
not involve peptides, Random is what would be expected by chance, and was generated by randomly predicting 
n number of residues on the surface of the protein as interacting, where n is the number of interacting residues 
in the native structure, Total is the total number of sites in the test set. No templates matching the target with 
BLAST E < 0.001 were used.

Method
# protein-peptide interaction 
sites (maximum recall)

# protein-protein 
interaction sites

InterPep* 255 (50.7%) 32 (14.2%)

PeptiMap 230 (45.8%) 39 (17.3%)

GalaxyPepDock* 218 (43.4%) 24 (10.6%)

PepSite2** 176 (35.0%) 54 (23.9%)

InterPep-TMonly* 160 (31.9%) 48 (21.2%)

Surf-Cons 118 (23.5%) 32 (14.2%)

Random 54 (10.8%) σ = 5.9 20 (8.8%) σ = 2.6

Total sites 502 (100.0%) 226 (100.0%)

Table 3.  Number of correct sites identified. The number of target pairs where the correct peptide-binding site 
was identified in the top scorer (cluster for InterPep) for the different methods. #protein-peptide interaction sites 
measures the number of predictions that hit a protein-peptide interaction site, while #protein-protein interaction 
sites measures the number of predictions that hit a protein-protein interaction site that is an interaction but not 
the correct protein-peptide interaction site. Random is what would be expected by chance, and was generated 
by randomly predicting n number of residues on the surface of the protein as interacting, where n is the number 
of interacting residues in the native structure. Total is the total number of sites in the test set. *For template 
methods, no templates matching the target with BLAST E < 0.001 were used. **To make sure PepSite2 was not 
disadvantaged for longer peptides, it was run with a sliding window of size 10 for the whole peptide and the best 
prediction was chosen.

https://doi.org/10.1038/s41598-019-38498-7
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Since some methods give very few predictions and some very similar predictions for the different targets we 
restricted the analysis to the first ranked prediction for each target. For each method, the top-1 prediction for each 
targets of the dataset was analysed in Precision-Recall curve, see Fig. 3, where the overall precision of the method 
is plotted against what fraction of true hits that are found for varying thresholds. Unfortunately, even though 
PeptiMap calculates several scores that could potentially be used as threshold cutoffs30, none of these scores are 
available to the user and thus PeptiMap could only be represented by a single point. PepSite2 only allows pep-
tides 10 residues long or less, so as to make sure PepSite2 was not disadvantaged for longer peptides, it was run 
with a sliding window of size 10 for the whole peptide and the best prediction was chosen for each target. Also, 
Surf-Cons can sometimes predict several different binding sites on the same target, in these cases only the best 
was included.

Overall, InterPep performed best of all methods considered, with a consistently larger precision over 5% recall 
compared to all other methods, see Fig. 3. For 20% recall, InterPep has a precision of 80%, compared to 73% for 
GalaxyPepDock, 61% for Pepsite2, 36% for InterPep-TMonly, and 26% for Surf-Cons. InterPep also has the high-
est maximum recall of all methods: 50.7% corresponding to 255 out of 502 targets, tabulated in Table 3 for easier 

Figure 3.  Precision-recall measuring the ability of different methods to correctly identify the correct binding 
sites at top-1. Precision is the fraction of predictions so far made which have been correct. Recall is the fraction 
of targets for which the correct site has been identified. The curves stop when predictions are made for all targets 
at the line Precision = Recall, since only one prediction per target is considered.

Figure 4.  Model quality versus difference in InterPepM precision for model and native. The differences in 
precision have a mean of −0.138, and a standard deviation of 0.38. The uninteresting cases where predictions 
for both native and model structures produced a 0 precision result were not included.

https://doi.org/10.1038/s41598-019-38498-7
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reference. Note that PeptiMap, which did not provide a score to be used for a curve in Fig. 3 has a slightly higher 
maximum recall compared to GalxyPepDock, 45.8% vs. 43.4% corresponding to 230 and 218 correct predictions, 
respectively.

Table 3 also reports the number of times a protein-protein interaction site is incorrectly predicted to be a 
protein-peptide site. Interestingly, all methods have a significantly higher (P < 10E-5) number of these types of 
mistakes than would be expected by chance, except GalaxyPepDock (P = 0.25). GalaxyPepDock is using a tem-
plate database from PeptiDB56 that only contains protein-peptide interactions, thus it should be less likely to find 
protein-protein interaction sites compared to other template-based methods, e.g. InterPep and InterPep-TMonly 
that actually directly use protein-protein interactions as templates. However, the inclusion of protein-protein 
interaction-templates improved the maximum recall for InterPep and 60 of the 255 interfaces correctly identified 
by InterPep used a protein-protein interaction-site as template for the interaction.

The fact that InterPep performs much better than InterPep-TMonly clearly indicates that the random for-
est classifier in InterPep is much better at ranking predictions compared to TMscore alone. Still, even tough 
InterPep-TMonly does a poor job in ranking predictions between targets, it achieves a decent maximum recall 
of 31.9% (160/502 correct predictions) comparable to PepSite2 with 35% (176/502 correct predictions). The rea-
son why TM-score is not a good discriminator by itself is of course that a high TM-score, ergo a close structural 
match, is important, but is not alone sufficient, to classify a prediction as correct, and additional information 
about the peptide and sequences are needed to make the prediction more accurate. This also explains why 
InterPep-TMonly makes mistakes by finding more protein-protein interaction sites compared to InterPep (48 
vs. 32), as without additional information about the template and peptide it is impossible to tell the difference 
between protein-protein and protein-peptide interaction templates using only TM-score, see Table 3.

InterPep on Model Structures.  Thus far, InterPep has only been trained and benchmarked on native struc-
tures. Of course, in a real case scenario it is more than likely the prediction needs to be performed using modeled 
structures, simply because the native structure does not exist for the protein target of interest. It is therefore 
important to benchmark and assess the performance also on modeled structures.

Models of the native structures were constructed (see Methods) and used as input to the InterPep pipeline. 
The ability of InterPep to predict the correct binding sites of model structures was only slightly lower than for 
native structures, correctly identifying 49.8% protein-peptide interaction sites in models compared to 50.7% 
for native structures, see Table 4. Since InterPep was only trained on native structures it seems to suffer a minor 
performance loss when dealing with model structures. To circumvent this problem, InterPep was retrained using 
both native and modelled structures (InterPepM). InterPepM also includes the sequence identity between the 
target and the model template as an additional feature of model quality, for the random forest classification step. 
The retrained version performs slightly better for models (52.2% vs. 49.8%), and slightly worse on native struc-
tures (48.4% vs. 50.7%). In addition, the InterPepM score correlates slightly better with performance (MCC) for 
the model structures than the original InterPep trained only for native structures (R = 0.530 vs. R = 0.523, see 

Tested on natives Tested on models

InterPep 255 (50.7%) 805 (49.8%)

InterPepM 243 (48.4%) 844 (52.2%)

Total sites 502 (100.0%) 1617 (100.0%)

Table 4.  Number of correct protein-peptide interaction sites identified. The number of target pairs where the 
correct peptide-binding site was identified in the top cluster, when trained on native structures or on native and 
model structures, and tested on native and model structures, respectively.

Figure 5.  Bar graphs showing the relative importances of the features, calculated by reduction of gini impurity 
at relevant branchings. These are the mean importances calculated between all trees of the forest.
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Supplementary Information). This indicates that there is a difference in how the random forest evaluates tem-
plates depending on whether they originate from alignments to modelled or native structures.

Finally, we investigated whether InterPepM performance on native and modelled structures was related to the 
quality of the models, e.g. whether InterPep performs well for the native structure, and whether poor performance 

Figure 6.  Examples of InterPep predictions shown in native structures. The target protein chain is blue, 
peptides interacting with the targets are green, and other chains present in the native structure are gray. No 
information on these additional chains was given during the prediction process. InterPep predictions (a,c,e, 
and g); the residues of the target protein chain are colored by InterPep prediction values, with red representing 
strong confidence in interaction, and blue representing no confidence in interaction. The correct peptide 
interactions (b,d, and f); the residues of the target protein chain which interact with a peptide are marked 
in red the rest is in blue. Note that all images are of the native structure, and only colored by the prediction 
from InterPep. InterPep does not predict the structure of complexes, but rather which residues are likely to be 
involved in interaction.
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could be attributed to poor model quality. We analyzed the difference in precision between the models and their 
corresponding native structure as a function of the quality of the modelled structures measured by S-score57, see 
Fig. 4. We found that there was very small correlation between model quality and the difference in performance 
between model and native (R = 0.10), and that the difference in performance was often minor (mean = −0.14). 
This is good news, since it means that the predictions are robust to modelling errors. However, it is also appar-
ent that when comparing the global InterPep score of the natives to their respective models, the predictions for 
models that have worse InterPep score than the native also have a significantly (P < 1E-5) larger performance 
difference (mean = −0.26) compared to models with InterPep score better than native (mean = −0.12), lending 
further credibility to the global InterPep score.

Since neither InterPep nor InterPepM is universally better, the InterPep pipeline is distributed with both ver-
sions, and depending on what input data is available the appropriate version can be selected.

Feature Importance Analysis.  To get an idea of the degree to which the different features influence the 
prediction, the relative importance of each feature used by the random forest classifier in InterPep was estimated 
by Gini impurity (see Supplementary Information for details on how this is calculated). These relative feature 
importances are shown in Fig. 5.

Of the five most important features, two describe length and mean sequential distance of the peptide template, 
and the other three describe the quality of the structural alignment between the target and template, see Fig. 5. 
Since the first two features describe how long and how continuous the peptide template is, they can be used to 
distinguish between whether the interaction partner in the template is a smaller peptide fragment or a longer 
protein. Indeed, analyzing the splits of these features indicates that a more peptide-like interaction partner for the 
template means the random forest will generally grant a higher score: 64% of all branchings on peptide template 
length favored smaller templates, and 56% of branchings on mean sequential distance in the peptide template 
also favored lower values. This, together with the importance of these features, indicates that peptide-binding 
templates are more favorable than protein-binding templates when modeling protein-peptide interactions.

Additionally, since structure has been shown to be more conserved than sequence58, and is intrinsically linked 
to function59, it is no surprise that features regarding how well the target structurally matches a template should 
be ranked as important; 56% of TM-score branchings prefer higher TM-score, and 55% of RMSD branchings 
prefer low RMSDs.

It should be noted that counting label distribution at branchings only allows a very rough and generalized 
estimate of how a forest estimates a feature, as the total prediction trees are much more complex, e.g. in how the 
different branchings affect others further down the trees.

Prediction Examples.  Three examples of final predictions from InterPep are shown in Fig. 6, to further 
highlight the strengths and weaknesses of the method. The first example illustrates a high-scoring prediction 
(InterPep = 0.84) in Fig. 6a, the structure is colored from red to blue based on the local InterPep score, where red 
represents regions predicted to be peptide interacting. This is a highly accurate prediction with both high precision 
and recall of 0.92 and 0.85 respectively, and the predicted peptide-binding region closely resembles the correct 
peptide-binding region from the native structure shown in red in Fig. 6b. It only failed to predict the interaction 
of the loop close to the N-terminal of the peptide and incorrectly predicted a loop interaction near the C-terminal 
of the peptide. The next example illustrates another high, but not extreme, InterPep score (InterPep = 0.73), pre-
diction in Fig. 6c. In this case the interaction surface is correctly identified, i.e. it has very a high precision of 1.00, 
but is only partly predicted, i.e. it has a low recall of 0.36, compared to the much larger correct surface illustrated in 

Figure 7.  Fraction of correctly predicted binding sites when using the top ranked clusters. The red dotted line marks 
how many of the sites that are possible to describe using templates from the PDB, as previously shown in Table 2.
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the native complex Fig. 6d. The last example illustrates lower scoring InterPep predictions (InterPep = 0.46–0.42) 
and is shown in Fig. 6e and g. In this case, the target protein is a homo dimer, and the highest ranked InterPep pre-
diction is actually the dimer interface rather than the true protein-peptide-binding site, see Fig. 6e and f. The top 
prediction incorrectly predicts the dimer interface to be the peptide interface. If we know the details of the dimer 
interface of this protein, and know or suspect the peptide is not competing with it, it would be natural to explore 
other predictions based on lower ranked clusters when analyzing the results. As can be seen in Fig. 6g, the second 
to highest ranked interface is in the same area as the correct peptide-binding interface, even though the prediction 
is slightly off the mark, which results in low precision and recall of 0.33 and 0.10, respectively. This example high-
lights that when using InterPep it is wise to evaluate more than only the highest scoring prediction, especially if 
the lower scoring predictions have similar scores. In general, it is possible to improve the detection of correct sites 
from 50.7% for first ranked to 69.3% for the top five ranked predictions, see Fig. 7.

Conclusions
Overall, InterPep has proven a powerful tool for protein-peptide interaction site prediction. We show that a 
majority (81.3%) of protein-peptide interactions in the test set have structural templates without significant 
sequence similarity, and that a large proportion (67.7%) of the protein-peptide interactions actually have tem-
plates from protein-protein interactions. The InterPep pipeline, designed to take advantage of this, successfully 
identified half (50.7%) of the binding sites at top-1 and a majority (69.3%) among the top-5 using only structures 
with low sequence similarity as templates. In addition, the confidence score from InterPep correlates fairly well 
(0.63) with the precision of the prediction as measured by MCC for the predictions. By training InterPep also on 
modelled structures the performance is maintained for cases when the native structure is missing. In fact, the 
quality of the model did not turn out to be a determining factor for performance. InterPep is available as open 
source, and should be a useful tool in protein-peptide interaction analysis, providing possible guidelines for initial 
experiments or analysis of results. It should also be possible to use the results from InterPep as restraints to build 
3D models of protein-peptide interaction.
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