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Possible links between the lag 
structure in visual cortex and visual 
streams using fMRI
Bo-yong Park1,2, Won Mok Shim2,3, Oliver James2 & Hyunjin Park   2,4

Conventional functional connectivity analysis using functional magnetic resonance imaging (fMRI) 
measures the correlation of temporally synchronized brain activities between brain regions. Lag 
structure analysis relaxes the synchronicity constraint of fMRI signals, and thus, this approach might 
be better at explaining functional connectivity. However, the sources of the lag structure in fMRI are 
primarily unknown. Here, we applied lag structure analysis to the human visual cortex to identify the 
possible sources of lag structure. A total of 1,250 fMRI data from two independent databases were 
considered. We explored the temporal lag patterns between the central and peripheral visual fields in 
early visual cortex and those in two visual pathways of dorsal and ventral streams. We also compared 
the lag patterns with effective connectivity obtained with dynamic causal modeling. We found that 
the lag structure in early visual cortex flows from the central to peripheral visual fields and the order 
of the lag structure flow was consistent with the order of signal flows in visual pathways. The effective 
connectivity computed by dynamic causal modeling exhibited similar patterns with the lag structure 
results. This study suggests that signal flows in visual streams are possible sources of the lag structure in 
human visual cortex.

Functional magnetic resonance imaging (fMRI) is a powerful tool that measures brain activities by detecting 
changes in blood-oxygen-level-dependent (BOLD) signals. Functional connectivity analysis using resting-state 
fMRI (rs-fMRI) is the representative method for quantifying complex brain networks using the BOLD fluctu-
ations1–3. The current functional connectivity studies are based on the assumption that the brain activities are 
temporally synchronized4,5. However, previous studies found asynchronous intrinsic activities in rodent brain 
using voltage-sensitive dye imaging and optical imaging6–9. They observed that the brain activity in one region 
propagates to other regions with variable temporal delay6–9. These studies suggest that the brain activities could be 
modeled using the appropriate temporal lags6–9. Mitra et al. expanded the concept of temporal lag to jointly con-
sider the lag patterns among many brain regions in human4,5. They computed the lag structure in fMRI signals by 
calculating time delayed cross correlations between the time series of every voxel4,5. Mitra et al. hypothesized that 
the infra-slow neural processes might cause the temporal lag of the fMRI signal, which contradicts many existing 
studies assuming that fMRI signal is affected by the high-frequency neural activity filtered through a hemody-
namic process5,6,10,11. However, whether the lag structure actually reflects the neural signal is still controversial11.

A previous animal study found traveling waves with delay patterns in cat and monkey brains by giving invasive 
stimuli to their visual cortex12. Another study found a significant association between the propagation pattern of 
the neuronal calcium and BOLD signals in mouse, directly implying that BOLD signals reflect neural processes6. 
Previous animal studies demonstrated a direct relationship between BOLD and neural signals6,12. However, none 
have explored the direct links between the lag structure in fMRI signals and neural processes in the human brain. 
Only a few studies of lag structure that indirectly explored the temporal lag patterns for the human brain exist4,5,13. 
Thus, the possible sources of temporal lag patterns in the human brain are primarily unknown.

In this study, we applied the lag structure approach to the fMRI signals of the human visual cortex to identify 
the possible sources of lag structure in the human visual cortex. We chose the visual cortex as it is a well-studied 
region14–19, and will allow us to use the results from established studies to possibly explain the lag structure in the 
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visual cortex. A previous study reported the lag patterns in the human visual cortex using magnetoencephalog-
raphy (MEG) and found that the stimuli in the central visual field revealed earlier onset latencies in the primary 
visual cortex (V1) compared to the stimuli in peripheral visual field20. The results suggested that the central visual 
field of V1 might respond earlier to the stimuli than the peripheral visual field20. They also observed that the 
information from the early visual cortex propagated to the higher visual areas in two different visual pathways of 
dorsal and ventral streams indicating the temporal lags in visual cortex might be associated with visual streams20. 
Thus, we focused on identifying the factors that could explain the lag structure in the human visual cortex by 
comparing the lag structure between the central and peripheral visual fields in the early visual cortex and that 
between the two visual pathways of dorsal and ventral streams. To validate the reliability of the lag structure anal-
ysis, we compared the lag structure results with dynamic causal modeling (DCM)21–25. DCM is still controversial, 
but it is one of the few well-known approaches to estimate directional interactions (i.e., effective connectivity) 
between different brain regions. We hypothesized that if the order of lag structure flow reflected the order of flow 
in visual streams, a similar order of flow might appear in the results of effective connectivity obtained with DCM.

Results
Lag structure in early visual cortices.  In the current study, we analyzed 655 rs-fMRI data with a fast 
repetition time (TR) of 0.72 s from the Human Connectome Project (HCP) database26. We first explored the lag 
structure between central and peripheral visual fields in early visual cortices of V1 and secondary visual cortex 
(V2). The V1 and V2 were divided into the anterior and posterior subregions using the connectivity-based par-
cellation approach27. The anterior and posterior subregions were well matched with peripheral and central visual 
fields, respectively27. The temporal lags between the anterior and posterior subregions of V1 and V2 (i.e., anterior 
V1 [V1A], posterior V1 [V1P], anterior V2 [V2A], and posterior V2 [V2P]) were computed. As the regions of 
interest (ROI) sets consisted of two regions (V1A/V1P and V2A/V2P), a total of 1,310 (=2 × 655) propagation 
paths were possible for V1 and V2, respectively. Among the 1,310 possible paths, the path that propagated from 
the left V1P to V1A was observed 1,078 times (mean temporal lag = 0.2453 s), 930 times from the right V1P to 
V1A (mean temporal lag = 0.2707 s), 934 times from the left V2P to V2A (mean temporal lag = 0.2903 s), and 930 
times from the right V2P to V2A (mean temporal lag = 0.3504 s). The results showed that the pattern of the tem-
poral lag primarily propagated from the posterior (i.e., central visual field) to the anterior (i.e., peripheral visual 
field) subregion of V1 and V2 (Fig. 1A,B) consistent with the previous study20.

Comparison with visual streams.  In addition to the central and peripheral visual fields, we applied the lag 
structure approach to the regions of the two visual pathways and compared with the order of the signal flows in 
dorsal and ventral streams, respectively. The dorsal stream consisted of five ROIs of V1, V2, dorsal V3 (V3d), V3A, 
and V5/middle temporal complex (MT+), and thus a total of 3,275 (=5 × 655) propagation paths were possible. 
Similarly, 2,620 (=4 × 655) propagation paths were possible for the ventral stream (V1, V2, ventral V3 [V3v], and 
V4v). The most frequently observed path of the left dorsal stream was observed 284 times, and it started from V1 
and propagated to V2, V3d, V3A, and V5/MT+ (Table 1 and Fig. 1C). The same path was observed 224 times 
with the second-highest frequency in the right hemisphere (Table 1 and Fig. 1C). In the ventral stream, the path 
that propagated from V1 to V2, V3v, and V4v was observed 307 times with the second-highest frequency for the 
left hemisphere, and 247 times with the third-highest frequency for the right hemisphere (Table 1 and Fig. 1D). 
The top three frequently observed propagation paths in the dorsal and ventral streams are plotted in Fig. 2. The 
propagation paths that were the same as the visual streams were not observed with the most frequency, but they 
were observed in the top three frequent cases. The results suggest that the visual streams could be possible sources 
of lag structure in the human visual cortex.

spDCM results in early visual cortices and visual streams.  To validate the reliability of the lag struc-
ture analysis, spectral DCM (spDCM) was performed to the same ROI sets. In the early visual cortices (i.e., V1 
and V2), the strength of the effective connectivity from V1P to V1A was higher than that from V1A to V1P 
(Fig. 3A, t = 53.06 and p < 0.001 for the left hemisphere, t = 16.60 and p < 0.001 for the right hemisphere). The 
same patterns were identified between V2A and V2P (Fig. 3B, t = 23.37 and p < 0.001 for the left hemisphere, 
t = 46.76 and p < 0.001 for the right hemisphere).

The effective connectivity (obtained with spDCM) of the regions in the visual streams showed primarily con-
sistent patterns with the results of the lag structure. In the dorsal stream, the strengths of the effective connec-
tivity were consecutively organized except the connection between V1 and V2 (Fig. 3C, V1–V2: t = −14.44 and 
p < 0.001, V2 − V3d: t = −0.03 and p = 0.9787, V3d − V3A: t = 10.53 and p < 0.001, V3A − V5/MT+: t = 6.97 
and p < 0.001 for the left hemisphere, V1 − V2: t = −23.26 and p < 0.001, V2 − V3d: t = 3.38 and p < 0.001, 
V3d − V3A: t = 2.54 and p = 0.0128, V3A − V5/MT+: t = 16.80 and p < 0.001 for the right hemisphere). 
The connectivity with positive t-values and small p-values could be the results from the flow of signal in the 
visual streams. Similar patterns were found in the ventral streams (Fig. 3D, V1 − V2: t = −13.62 and p < 0.001, 
V2 – V3v: t = −0.77 and p = 0.4660, V3v – V4v: t = 8.60 and p < 0.001 for the left hemisphere, V1 – V2: t = −15.51 
and p < 0.001, V2 – V3v: t = 3.34 and p = 0.0011, V3v – V4v: t = 4.40 and p < 0.001 for the right hemisphere). The 
patterns of the effective connectivity were primarily consistent with those of the lag structure analysis, suggesting 
the visual streams might be the possible sources of the lag structure.

Replication of the results with the independent dataset.  The lag structure analysis was performed 
on the independent dataset of 595 participants with fast TR (0.645 s) obtained from the Enhanced Nathan Kline 
Institute-Rockland Sample (NKI-RS) database28 to validate our results. The order of temporal lag propagation 
paths between the anterior and posterior subregions of V1 and V2, and that of the dorsal and ventral streams 
are reported in Table S1 and Fig. S1. The total possible propagation paths between the subregions of V1 and V2 
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were 1,190 (=2 × 595). The temporal lag propagated from the posterior to the anterior subregions for bilateral 
V1 and V2 (Fig. S1A,B). Among 1,190 possible paths, 864 cases were observed for the left V1 (mean temporal 
lag = 0.2366 s), 846 cases for the right V1 (mean temporal lag = 0.2404 s), 778 cases for the left V2 (mean temporal 
lag = 0.2506 s), and 767 cases for the right V2 (mean temporal lag = 0.2656 s). The results of temporal lag prop-
agation for visual streams are primarily consistent with our primary results. Among a total of 2,975 (=5 × 595) 
possible paths for the dorsal pathway, the path that was consistent with the dorsal stream was observed 135 
times for the left hemisphere, and 137 times for the right hemisphere (the third and fourth highest frequencies, 
respectively) (Table S1 and Fig. S1C). For the ventral pathway, the path that was consistent with the ventral stream 
was observed 265 times for the left hemisphere, and 328 times for the right hemisphere (the second-highest 
frequency) among a total of 2,380 (=4 × 595) possible paths (Table S1 and Fig. S1D). The top three frequently 
observed propagation paths in the dorsal and ventral streams are plotted in Fig. S2. The results are primarily 
similar to the primary results derived from the HCP data. Further, spDCM was applied to the Enhanced NKI-RS 
data and exhibited consistent results as derived from the HCP data (Fig. S3). The results in the early visual cortices 
are as follows: V1A–V1P: t = 2.86 and p = 0.0133, V2A − V2P: t = 1.96 and p = 0.0762 for the left hemisphere, 
V1A − V1P: t = −7.17 and p < 0.001, V2A − V2P: t = 9.29 and p < 0.001 for the right hemisphere. The results in 
the dorsal stream are as follows: V1 − V2: t = 1.56 and p = 0.1534, V2 − V3d: t = 9.19 and p < 0.001, V3d − V3A: 
t = 6.43 and p < 0.001, V3A − V5/MT+: t = 0.79 and p = 0.4306 for the left hemisphere, V1 − V2: t = −2.25 and 
p = 0.0451, V2 − V3d: t = 13.52 and p < 0.001, V3d − V3A: t = 2.29 and p = 0.0451, V3A − V5/MT+: t = 2.00 
and p = 0.0747 for the right hemisphere. The results in the ventral stream are as follows: V1 − V2: t = 1.34 and 
p = 0.2173, V2 − V3v: t = 1.58 and p = 0.1534, V3v − 4v: t = 2.26 and p = 0.0451 for the left hemisphere, V1 − V2: 
t = −1.09 and p = 0.2903, V2 − V3v: t = 2.25 and p = 0.0451, V3v − V4v: t = −1.17 and p = 0.2747 for the right 
hemisphere. We conclude that our results are well replicated with the independent dataset.

Discussion
The existence of the temporal lag patterns in the fMRI signals was demonstrated in the previous studies4,5,13. 
Those studies suggested that the latency of fMRI signals could be attributed to the neural processes rather than 
the hemodynamic response delays4,5. However, the quantitative demonstration of the link between the neural 
processes and the lag structure is insufficient. In our study, we applied the lag structure analysis to the human 

Figure 1.  The patterns of the temporal lag among ROIs. (A) The visualization of the temporal lag propagation 
path between V1A and V1P and (B) V2A and V2P. (C) The visualization of the temporal lag propagation path 
of the dorsal and (D) ventral streams. The most visible parts are marked with yellow dotted circles. A, anterior; 
P, posterior; L, left hemisphere; R, right hemisphere.
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visual cortex and found that the fMRI signal propagates from the posterior to the anterior subregions of V1 and 
V2, suggesting the central visual fields receive the information earlier than the peripheral visual fields consistent 
with the previous study20. In addition, we compared the lag structure results in the visual cortex with the dorsal 
and ventral streams. The temporal lag patterns were not exactly the same as the order of signal propagation in two 
visual streams, but they showed similar patterns. As an additional validation, we performed spDCM to estimate 
the strengths of the effective connectivity among the ROI sets, and the results from spDCM are similar to those 
from the lag structure. The results might imply that the neural signal flow in the visual streams might be the pos-
sible sources of the lag structure of fMRI signals in the human visual cortex. A previous review paper noted that 

Stream Frequency Propagation paths and temporal lag (s)

Left dorsal

1st (284 times)
V1 V2 V3d V3A V5/MT+

−0.3806 −0.2428 −0.0813 0.0671 0.4945

2nd (257 
times)

V2 V1 V3d V3A V5/MT+

−0.2695 −0.1833 −0.0499 0.1188 0.4980

3rd (187 times)
V2 V3d V1 V3A V5/MT+

−0.2362 −0.1537 −0.0651 0.0860 0.4655

Right dorsal

1st (231 times)
V3d V3A V2 V1 V5/MT+

−0.3620 −0.2285 −0.0538 0.1449 0.7259

2nd (224 
times)

V1 V2 V3d V3A V5/MT+

−0.3393 −0.1937 −0.0642 0.0691 0.4935

3rd (189 times)
V2 V1 V3d V3A V5/MT+

−0.3268 −0.2212 −0.1057 0.0601 0.5335

Left ventral

1st (381 times)
V2 V1 V3v V4v

−0.1972 −0.0845 0.0739 0.2317

2nd (307 
times)

V1 V2 V3v V4v

−0.1952 −0.1118 0.0542 0.1901

3rd (251 times)
V1 V2 V4v V3v

−0.1884 −0.0967 0.0739 0.1915

Right ventral

1st (501 times)
V2 V1 V3v V4v

−0.2126 −0.0837 0.0397 0.2513

2nd (348 
times)

V2 V3v V1 V4v

−0.2006 −0.0772 0.0272 0.2198

3rd (247 
times)

V1 V2 V3v V4v

−0.2113 −0.1185 0.0373 0.2262

Table 1.  The top three frequently observed propagation paths in dorsal and ventral streams. The regions and 
corresponding mean temporal lag values (unit in seconds) were reported. The paths that showed the same 
propagation order with visual streams were reported in bold italic.

Figure 2.  The top three frequently observed propagation paths in dorsal and ventral streams. (A) The ROIs of 
dorsal and ventral streams. (B) The top three frequently observed paths according to the temporal lag values 
are plotted with different colors. The temporal lag value in V1 was set to zero and those for other regions were 
moderated. The paths that were consistent with the order of the visual streams are reported with arrows.
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linking the lag structure of the fMRI signals with neural activities was an important question11. Our results partly 
answered the question and reinforced the previous argument that the lag structure of fMRI signals reflects the 
neural processes at least for the visual cortex4,5,11. Our results might shed new insight into linking the temporal lag 
of fMRI signals and neural processes in the human brain.

Our lag structure analysis found that the propagation paths in the visual cortex were similar to the signal 
flows in visual streams. However, we also found several signal propagation paths that were different from the 
signal flows in visual streams. To see whether these propagation paths were related to the noise, we added white 
Gaussian noise to the original time series data and performed the lag structure analysis. Three levels of noise were 
considered at signal-to-noise ratio (SNR) of 8, 5, and 1 dB. The signal propagation path consistent with signal 
flows in visual streams stayed stable as the noise was added, but we observed new propagation paths inconsistent 
with the main results (Table 1) especially in the dorsal stream (Tables S2–S4). The results might indicate that the 
signal propagation paths inconsistent with the visual streams might be affected by the measurement noise.

In addition to the lag structure and spDCM analyses, we performed a zero-lag correlation analysis of the time 
series between V1 and other visual areas in two visual streams. This was to confirm whether a simple zero-lag 
correlation would be able to capture the lag structure related information. We found that the zero-lag correlation 
values showed a decreasing trend with respect to the order of signal flows in visual streams (Fig. S4). The decreas-
ing trend was evident in the ventral stream, but such a trend was only observed for V5/MT+ in the dorsal stream. 
One possible explanation could be that the signal propagated along the visual streams and changed its shape, thus 
a simple zero-lag correlation might not fully capture the shape change.

We chose two visual streams for comparison with the lag structure of fMRI signals, as they are the well-studied 
representative neural pathways in the human visual cortex14. The dorsal stream is known as the “where” pathway 
that processes the location information of objects, and it propagates from the early visual cortices (V1 and V2) to 
the dorsal regions of the extrastriate visual cortices (V3d, V3A, and V5/MT+)14,29–32. The ventral stream is known 
as the “what” pathway that processes the information regarding object recognition and identification14,29–32. 

Figure 3.  The mean strengths of the effective connectivity among the ROIs. Values are reported with a mean 
(SD) format. (A) The effective connectivity between V1A and V1P and (B) V2A and V2P. (C) The effective 
connectivity of the ROIs in the dorsal and (D) ventral streams. Between the two ROIs, the red line indicates the 
stronger strength of the effective connectivity while the blue line indicates the weaker connectivity strength. 
Black lines indicate the strengths of the effective connectivity that did not show significant differences between 
the two ROIs. The widths of the lines represent the strengths of the effective connectivity. If the thicker lines or 
red lines are shown on the left-hand side of the figures, subsequently they are consistent with the known signal 
flow in the visual streams. A, anterior; P, posterior; L, left hemisphere; R, right hemisphere.

https://doi.org/10.1038/s41598-019-40728-x


6Scientific Reports |          (2019) 9:4283  | https://doi.org/10.1038/s41598-019-40728-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

Unlike the dorsal stream, the ventral stream projects from the early visual cortices to the ventral regions of the 
extrastriate visual cortices (V3v and V4v)14,29–32. By investigating the relationship between the lag structure in 
the early visual cortices and the visual streams, we demonstrated the possible source of lag structure in human 
visual cortices. The source identification of temporal lag patterns in other neural pathways such as sensorimotor, 
auditory, and dopamine-related pathways is left for future studies.

To support and validate our results, we performed the same analyses to the two independent datasets from 
the HCP and NKI-RS databases. We found that the order of the signal propagation derived from the two data-
bases was primarily consistent. Our results are well replicated with the independent dataset. The age distribution 
between the two databases was different. The participants in the HCP database were young adults (age range 
between 22 and 36), while those in the Enhanced NKI-RS database consisted of people from a wide age range 
(between 6 and 86). The lag structure analysis revealed robust results regardless of the age, suggesting the high 
reproducibility across a wide age span.

In this study, data from two independent databases were used. Participants of the HCP database kept their 
eyes open looking at a cross-hair on a screen during the scan26 while those of the Enhanced NKI-RS database 
kept their eyes open without any visual fixation33. Our results showed the signal propagation paths of the HCP 
data were more similar to the signal flows in two visual streams compared to those of the Enhanced NKI-RS data 
(Table 1 and S1, Figs 2, 3, S2 and S3) in terms of the observed frequency of the paths consistent with the visual 
streams. The results might suggest that the neural signal flows in the visual cortex became more active when 
a visual stimulus was given and that led to lag patterns of fMRI to be more consistent with the visual streams. 
Furthermore, the lag patterns might be altered by the degree of visual stimulus. Exploring the lag patterns using a 
richer visual stimulus such as watching a movie is an interesting topic which might provide further insights into 
possible sources of lag structure in visual cortex. This is left for future work.

Our study has a few limitations. First, it is known that the conventional temporal resolution of fMRI is rela-
tively slow in capturing fast neural signals34. Previous studies explored the lag structure using fMRI with typical 
TR settings (approximately 2–3 s)4,5,35. To handle the issue of the temporal resolution, in this study, we used the 
fMRI data with TRs of 0.72 s and 0.645 s that are relatively faster than the typical TR. However, they are still slow 
to directly measure the neural activities; thus, future studies using fMRI data with a much faster TR is required 
for validation. Second, the temporal delays we observed were relatively slow and it could be due to measuring a 
venous blood flow that is slower than the neural process or a bona fide low-frequency phenomenon in the visual 
cortex. Distinguishing between the two possible explanations is an important question that needs further studies. 
Third, we resampled the fMRI data into 6 mm3 voxels for the efficient computation of a voxel-wise lag structure. 
The original dimensions of the fMRI data were 91 × 109 × 91 (=902,629 voxels), and the dimensionality-reduced 
data was of size 30 × 36 × 30 (=32,400 voxels). The 6 mm3 voxels was adopted in the previous studies, and it could 
be an appropriate voxel scale to compute the lag structure4,5,13. Fourth, we could not define V1 and V2 by retinot-
opy mapping owing to the limitation of the HCP and the Enhanced NKI-RS databases. Thus, we used the atlas of 
the anterior and posterior subregions of V1 and V2 defined using the HCP data in our previous study27. Our pre-
vious study showed that the anterior and posterior subregions of V1 and V2 were retinotopically mapped to the 
peripheral and central visual representations, respectively27, thus providing the rationale for using the predefined 
atlas. In future studies, we will collect large-scale retinotopic data to better define the visual areas.

In this study, we aimed to identify the possible sources of the lag structure in the human visual cortex using 
fMRI with fast TR settings. We found that the fMRI signal propagated from the posterior to the anterior sub-
region of early visual cortices suggesting the central visual fields process the brain information earlier than the 
peripheral visual fields. We also found that the patterns of the lag structure were similar with the dorsal and ven-
tral pathways, suggesting that the visual streams might be the possible sources of the lag structure in the human 
visual cortex. The results of the lag structure were compared to those from effective connectivity computed with 
spDCM, and both results were similar. Our study suggested a possible link between the temporal lag of fMRI 
signals and neural processes in the human brain.

Methods
Subjects and imaging data.  This retrospective study was approved by the Institutional Review Board (IRB) 
of Sungkyunkwan University, and it was performed in full accordance with the local IRB guidelines. Informed 
consent was obtained from all participants. The T1-weighted and T2-weighted structural MRI and rs-fMRI data 
of 1,206 participants were provided by the HCP database26. All MRI data were scanned using a Siemens 3T 
scanner housed at the Washington University. The image acquisition parameters of structural MRI data were 
as follows: number of slices = 256; voxel resolution = 0.7 mm3; flip angle = 8°; field of view (FOV) = 224 × 224 
mm2; TR = 2,400 ms for T1-weighted and 3,200 ms for T2-weighted MRI data; echo time (TE) = 2.14 ms for 
T1-weighted and 565 ms for T2-weighted MRI data. The image acquisition parameters of the rs-fMRI data were 
as follows: number of slices = 72; voxel resolution = 2 mm3; flip angle = 52°; FOV = 208 × 108 mm2; TR = 720 ms; 
TE = 33.1 ms; number of volumes = 1,200. Participants were asked to maintain their eyes opened during the 
scan26. Participants with drug ingestion, color vision diseases, and family history of mental diseases were 
excluded. Participants without complete T1-weighted, T2-weighted, and rs-fMRI data were also excluded. Finally, 
655 participants (56% females) were enrolled in this study. The mean age of the finally selected participants was 
28.69 years with a standard deviation (SD) of 3.66 (ranging between 22 and 36).

An independent dataset of the T1-weighted and rs-fMRI data were obtained from the Enhanced NKI-RS 
database for validation28. The T1-weighted and rs-fMRI data were scanned using a 3T Siemens Magnetom Trio 
Tim scanner. The image acquisition parameters of the T1-weighted structural data were as follows: number of 
slices = 176; voxel resolution = 1 mm3; flip angle = 9°; FOV = 250 × 250 mm2; TR = 1,900 ms; TE = 2.52 ms. The 
image acquisition parameters of the rs-fMRI data were as follows: number of slices = 40; voxel resolution = 3 mm3; 
flip angle = 60°; FOV = 222 × 222 mm2; TR = 645 ms; TE = 30 ms; number of volumes = 900. Participants were 
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asked to keep their eyes open during MRI scanning33. Participants without T1-weighted and rs-fMRI data were 
excluded from a total of 650 participants. Finally, 595 participants (61% female) of mean age 38.52 with SD 22.79 
(ranging between 6 and 86) were enrolled in this study.

Image preprocessing.  The HCP data were already processed with minimal preprocessing steps using FSL 
and FreeSurfer software36–38. The structural MRI data were processed as follows: Gradient nonlinearity and b0 
distortions were corrected. The T1-weighted and T2-weighted structural MRI data were registered onto the 
Montreal Neurological Institute (MNI) standard space. The skull was extracted by warping the MNI brain mask 
to the individual’s brain. The rs-fMRI data were processed as follows: Gradient distortions and head motions 
were corrected. The low-resolution fMRI data were registered onto the high-resolution structural MRI data, and 
subsequently onto the MNI standard space with 2 mm isotropic voxel resolution. The magnetic field inhomoge-
neity was corrected, and the skull was extracted by applying the MNI brain mask to the individual subject spaces. 
An intensity normalization of value 10,000 was applied to the four-dimensional (4D) fMRI data. The artificial 
components including head motion, cardiac and breathing cycles, and scanner artifacts were removed using 
FMRIB’s ICA-based X-noisefier (FIX) software39. The left-to-right and right-to-left phase-encoded rs-fMRI data 
were averaged40.

The Enhanced NKI-RS data were preprocessed using AFNI and FSL software36,41. The T1-weighted struc-
tural MRI data were processed as follows: The magnetic field inhomogeneity was corrected and the skull was 
removed. The rs-fMRI data were processed as follows: The volumes of the first 10 s were discarded to allow the 
magnetic field to be saturated. The volumes with large head movements (frame-wise displacement > 0.5 mm) 
were removed42. The slice timing and head motion were corrected and then intensity normalization of the all 4D 
volumes was applied with a value of 10,000. The fMRI data were registered to the T1-weighted structural MRI 
data and subsequently onto the MNI standard space. Nuisance variables including white matter, cerebrospinal 
fluid, head motion, and cardiac- and breathing-related contributions were removed using the FIX software39. A 
bandpass filter with 0.009–0.08 Hz and spatial smoothing with full-width at half-maximum of 6 mm were applied.

Regions of interest.  The ROIs were defined within the visual cortex (V1, V2, V3d, V3v, V3A, V4v, and V5/
MT+) using the JuBrain atlas (Fig. S5)43. We divided the V1 and V2 atlases into the anterior (i.e., peripheral visual 
field) and posterior (i.e., central visual field) subregions using the connectivity-based parcellation approach to 
compare the lag structure between the peripheral and central visual fields27. Nine ROIs (V1A, V1P, V2A, V2P, 
V3d, V3v, V3A, V4v, V5/MT+) were used in this study (Fig. S5).

Lag structure in early visual cortices.  The conventional connectivity analysis was performed by calcu-
lating the Pearson correlation between the time series of different voxels4,5. Unlike the traditional approach, the 
lag structure analysis was computed by calculating the cross correlation between two different time series with 
variable temporal delays, and is represented in Equation (1)4,5.

∫τ τ= + ⋅C
T

x t x t dt( ) 1 ( ) ( ) (1)x x i ji j

Cx xi j
 is the cross-covariance function with respect to the temporal lag τ between the time series x of voxels i and j. 

To capture the sub-TR temporal delays, the time series was interpolated with the sampling frequency of 30 Hz. 
The temporal lag τ is determined, where Cx xi j

 exhibits a positive or negative extremum value4,5. The cross correla-
tion might reveal multiple extrema points; however, the time series of the fMRI signal is typically aperiodic, and 
thus it always yields a single extremum point4,5. To compute the lag structure between the central and peripheral 
visual fields (Fig. 4A), the cross correlation was computed throughout the voxels of the posterior and anterior 
subregions of V1 and V2. The temporal lag values were entered into a temporal delay (TD) matrix (Fig. 4B)4,5. The 
TD matrix is anti-symmetric, as the propagation from voxel i to j is the inverse of the propagation from voxel j to 
i. It is shown that the temporal delay of hemodynamic responses is typically 5 s to 6 s; thus, we set the TD matrix 
threshold as 5 s44–47. We transformed the voxel-wise TD matrix to the region-wise TD matrix by averaging the 
temporal lag values, as shown in the Fig. 4C. Temporal lags were initially computed on a voxel level, compared to 
region level, to perform measurements closer to a neuronal level. The rows of the region-wise TD matrix were 
sorted with respect to the temporal lag values, and several possible propagation paths were generated (Fig. 4D). 
The possible propagation paths were collected across all subjects and the most frequently observed path was con-
sidered as the significant path.

Comparison with visual streams.  To compare the lag structure in the visual cortex with the order of signal 
propagation in the dorsal and ventral streams (Fig. 4A), we defined two ROI sets. The first ROI set consisted of 
V1, V2, V3d, V3A, and V5/MT+ to represent the dorsal stream; the second ROI set consisted of V1, V2, V3v, 
and V4v to represent the ventral stream48,49. The lag structure was computed for the two ROI sets, and they were 
compared with the known order of signal propagation in the visual streams.

Dynamic causal modeling.  To compare the lag structure results with those from spDCM, we performed 
spDCM using statistical parametric mapping (SPM) 12. The spDCM was performed to the early visual cortices 
and the ROI sets in two visual streams21–25. The spDCM that estimates the neuronal dynamics and hemodynamic 
responses in the spectral domain was used as described in Equation (2) 22.

ν
θ Σ

= +
= +



~

x Ax
y h x e e N( , ) , (0, ), (2)h
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where x is the hidden neuronal state for each ROI, A is the effective connectivity that represents the causal rela-
tionships between ROIs, and v is the endogenous neural fluctuations. The BOLD signal y is modeled using a 
nonlinear hemodynamic response function h that consisted of neuronal state x and parameters θh

25, and additive 
noise e. The spDCM was performed between the central and peripheral visual fields of early visual cortices (i.e., 
V1 and V2, respectively) and the ROI sets of the dorsal and ventral stream. The strengths of the effective connec-
tivity were averaged across all subjects. The mean connectivity strength from region A to B was compared to that 
from region B to A using two-sample t-tests. The p-values were corrected using the false discovery rate.

Data Availability
Part of the data is available from the HCP website (https://www.humanconnectome.org/). The HCP Institutional 
Data Access/Ethics Committee grants access to researchers who meet the criteria for access to the data. Another 
part of the data is available from the NKI website (http://fcon_1000.projects.nitrc.org/indi/enhanced/). We con-
firm that both HCP and NKI grants data access upon agreement with the data use policy.
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