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Deletion of tumour necrosis factor 
α receptor 1 elicits an increased 
TH17 immune response in the 
chronically inflamed liver
Laura Berkhout1, Roja Barikbin1, Birgit Schiller1, Gevitha Ravichandran1, Till Krech2, 
Katrin Neumann1, Gabriele Sass1,3 & Gisa Tiegs1

Tumour necrosis factor α receptor 1 (TNFR1) activation is known to induce cell death, inflammation, 
and fibrosis but also hepatocyte survival and regeneration. The multidrug resistance protein 2 knockout 
(Mdr2−/) mice are a model for chronic hepatitis and inflammation-associated hepatocellular carcinoma 
(HCC) development. This study analysed how the absence of TNFR1 mediated signalling shapes 
cytokine and chemokine production, immune cell recruitment and ultimately influences liver injury 
and fibrotic tissue remodelling in the Mdr2−/− mouse model. We show that Tnfr1−/−/Mdr2−/− mice 
displayed increased plasma levels of ALT, ALP, and bilirubin as well as a significantly higher collagen 
content, and markers of fibrosis than Mdr2−/− mice. The expression profile of inflammatory cytokines 
(Il1b, Il23, Tgfb1, Il17a), chemokines (Ccl2, Cxcl1, Cx3cl1) and chemokine receptors (Ccr6, Cxcr6, Cx3cr1) 
in livers of Tnfr1−/−/Mdr2−/− mice indicated TH17 cell infiltration. Flow cytometric analysis confirmed 
that the aggravated tissue injury in Tnfr1−/−/Mdr2−/− mice strongly correlated with increased hepatic 
recruitment of TH17 cells and enhanced IL-17 production in the injured liver. Moreover, we observed 
increased hepatic activation of RIPK3 in Tnfr1−/−/Mdr2−/− mice, which was not related to necroptotic 
cell death. Rather, frequencies of infiltrating CX3CR1+ monocytes increased over time in livers of 
Tnfr1−/−/Mdr2−/− mice, which expressed significantly higher levels of Ripk3 than those of Mdr2−/− mice. 
Overall, we conclude that the absence of TNFR1-mediated signalling did not improve the pathological 
phenotype of Mdr2−/− mice. It instead caused enhanced infiltration of TH17 cells and CX3CR1+ 
monocytes into the injured tissue, which was accompanied by increased RIPK3 activation and IL-17 
production.

Chronic liver disease (CLD) is a major global health burden and cause of 2% (>1*106 annually) of all deaths 
worldwide (2010)1. In addition, CLD is often the basis for equally lethal secondary pathologies including pul-
monary and cardiac manifestations, hepatorenal syndrome and most prominently, hepatocellular carcinoma 
(HCC)2–4. CLD progresses through distinct phases such as initial injury, subsequent inflammation and fibrotic 
remodelling which over time culminates in irreversible cirrhosis, mostly independent of the cause5. However, the 
underlying inflammatory and regenerative processes vary, depending on the type of injury and the interplay of 
cytokines and chemokines with resident as much as recruited immune cell populations, which in turn determine 
the disease severity and pace of progression. It has been shown that acute and chronic hepatic inflammation, 
fibrotic tissue remodelling, and potential tumorigenesis is in part promoted by tumour necrosis factor α (TNFα) 
signalling through TNFα receptor 1 (TNFR1), and to a lesser degree through activation of TNFR26,7 The sig-
nalling pathways of both TNF receptors have considerable overlap, with TNFR1 being expressed ubiquitously 
and responsible for most of the pro-inflammatory, cytotoxic and apoptotic effects of TNFα, while TNFR2 is 
primarily found on the hematopoietic cell compartment and lacks the intracellular death domain which induces 
TNFR1-dependent cell death8.
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Numerous agents targeting TNFα signalling are currently used for treating patients with a variety of inflam-
matory pathologies9. While anti-TNFα therapy is considered to be relatively safe, it still renders patients par-
tially immunosuppressed and consequently more susceptible to secondary infections and possibly cancer due to 
impaired anti-tumour immunity10. Thus, it has been implied, that targeting TNFR1 signalling exclusively, while 
upholding some of the physiological functions of TNFα signalling through TNFR2, would be a more compre-
hensive therapeutic approach11,12. In order to investigate the distinct effects of TNFR1 signalling during chronic 
inflammation, we crossbred multidrug resistance protein 2 knockout (Mdr2−/−) mice with Tnfr1−/− mice, creat-
ing double knockout Tnfr1−/−/Mdr2−/− mice. The Mdr2 gene encodes a P-glycoprotein which transports phos-
phatidylcholine into the bile. In the absence of phosphatidylcholine primary bile salts have increased detergent 
activity, damaging the membranes of surrounding hepatocytes13. This constant damage leads to the production 
of pro-inflammatory cytokines, including TNFα, immune cell infiltration into the injured liver, and progressive 
fibrotic tissue remodelling14,15.

We previously demonstrated that TNFR1 expression depends on the extent of inflammation in the 
Mdr2−/−model16. Loss or inhibition of TNFR1 has previously been shown to be protective in mouse models of 
acute liver injury17,18. In contrast, TNFR1 is also known to induce cytoprotective processes, and the complete 
absence of TNFR1 signalling reduces the hepatic regenerative capacity and pro-survival signalling through dimin-
ished activation of NFκB in the injured liver19–21. While during tissue injury, an accurate regenerative response 
is essential to restore tissue integrity, reduced proliferation in a setting of chronic inflammation might prevent 
tumour development. We established the Tnfr1−/−/Mdr2−/− mouse model in order to determine how TNFR1 
shapes the immune response during bile acid-induced CLD and affects overall disease severity and progression.

Results
The absence of TNFR1 increases tissue injury and fibrotic remodelling in the Mdr2−/− mouse model.  
In order to evaluate how the absence of TNFR1 signalling during chronic liver inflammation influences tissue 
injury and subsequent fibrosis in der Mdr2−/− mouse model, we used 12-week-old female mice of the respec-
tive genotypes (unless specified otherwise). Female Mdr2−/− mice exhibit an increased pathological phenotype, 
allowing for a more detailed analysis of the underlying processes22. We chose 12-week-old mice to see both, active 
inflammation and pronounced fibrosis.

We observed increased tissue injury in Tnfr1−/−/Mdr2−/− mice, defined by increased plasma levels of alanine 
aminotransferase (ALT) and alkaline phosphatase (ALP) (Fig. 1A,B). Both markers for liver injury were increased 
in Mdr2−/− mice compared to C57Bl/6 (WT) mice, but still significantly higher in Tnfr1−/−/Mdr2−/− mice, while 

Figure 1.  Absence of TNFR1 increased tissue injury in the Mdr2−/− mouse model. (A) ALT and (B) ALP levels 
determined in plasma of WT (n ≥ 4), Tnfr1−/− (n ≥ 6), Mdr2−/− (n ≥ 9), and Tnfr1−/−/Mdr2−/− (n ≥ 9) mice.  
(C) Quantification of the hepatic hydroxyproline content of mice described in A. (D) Relative hepatic expression  
of Acta2, Col1a1, Col3a1, Mmp2, Mmp9, Timp1, and Timp2 of mice described in A, determined by RT-qPCR. 
(E) Representative images (10x) of Sirius Red stained tissue sections of mice described in (A). *P ≤ 0.05, 
***P ≤ 0.001, ****P ≤ 0.0001.
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Tnfr1−/− mice showed no increase of either enzyme. Further evidence of increased cholestatic liver injury in 
Tnfr1−/−/Mdr2−/− mice were significantly increased plasma levels of bilirubin accompanied with decreased levels 
of plasma cholesterol in direct comparison to Mdr2−/− mice (Supplementary Fig. 1A,B).

To assess fibrogenesis, we quantified the hepatic collagen content by measuring hydroxyproline in liver tis-
sue samples of the respective genotypes (Fig. 1C). While the hydroxyproline contents of Tnfr1−/− mice were 
comparable to WT animals, Mdr2−/− mice had significantly increased levels of hydroxyproline compared to the 
WT mice. Interestingly, the hydroxyproline content of Tnfr1−/−/Mdr2−/− mice was further significantly elevated 
compared to Mdr2−/− mice. Collagen deposition is the direct result of fibrotic remodelling in response to pro-
longed tissue injury. In line with that, we observed significantly increased gene expression of various markers of 
fibrosis, including genes for α-smooth muscle actin (Acta2), collagen type 1 (Col1a1) and type 3 (Col3a1), matrix 
metalloproteinases (Mmp) 2 and Mmp9 as well as tissue inhibitors of MMPs (Timp) 1 and Timp2 in the livers of 
Tnfr1−/−/Mdr2−/− mice compared to Mdr2−/− mice (Fig. 1D). The representative Sirius Red stained tissue sections 
presented in Fig. 1E clearly show that WT and Tnfr1−/− mice displayed healthy liver parenchyma, with red stained 
collagen deposition restricted to the basement membrane of the vasculature. Mdr2−/− and Tnfr1−/−/Mdr2−/− mice 
showed, increased Sirius Red positive areas with cholestatic features such as ductular reactions around portal 
tracts. Overall, we found that the absence of TNFR1 had no beneficial effect on disease pathology, but instead 
enhanced tissue injury and fibrotic remodelling in the Mdr2−/− mouse model.

The absence of TNFR1 alters the cytokine and chemokine milieu in the injured liver.  TNFα 
mediated signalling is essential for several inflammatory pathways, mediating the production and/or release of 
multiple cytokines and chemokines23. We therefore asked whether absence of TNFR1 signalling would affect the 
cytokine response in the chronically inflamed liver. Figure 2A shows that Tnfr1−/−/Mdr2−/− mice have signifi-
cantly increased hepatic gene expression of Il1b (Il-1β), Il23 (Il-23), Tgb1 (Tgfβ1), and Il7a (Il-17A) compared 
to Mdr2−/− mice. Furthermore, the expression of the gene (Rorc) encoding for transcription factor RAR-related 
orphan receptor gamma t (RORγt), was significantly up-regulated in livers of Tnfr1−/−/Mdr2−/− mice compared to 
all other genotypes. Furthermore, Tnfr1−/−/Mdr2−/− mice expressed high levels of the chemokines CC-chemokine 
ligand 2 (Ccl2), showed significantly up-regulated hepatic gene expression of C-X-C motif chemokine ligand 1 
(Cxcl1), and expressed significantly increased levels of C-C motif chemokine receptor 6 (Ccr6) as well as C-X-C 
motif chemokine receptor 6 (Cxcr6) compared to WT, Tnfr1−/−, and Mdr2−/− mice (Fig. 2B). Overall, the expres-
sion analysis showed that the absence of TNFR1 strongly influenced the cytokine and chemokine milieu in the 
chronically inflamed liver of the Mdr2−/− background. Considering the cytokine profile presented above includ-
ing Il-17A as well as increased Rorγt expression indicating the presence of TH17 cells in the liver of Tnfr1−/−/
Mdr2−/− mice, we decided to further analyse accumulation of TH17 cells in the liver.

The absence of TNFR1 signalling leads to increased infiltration of TH17 cells into the injured liver.  
In line with the observation that the absence of TNFR1 leads to an altered microenvironment rich in cytokines 
and chemokines known to be involved in the recruitment and activation of TH17 cells, flow cytometric anal-
ysis revealed an increased frequency of IL-17A-expressing TH17 cells in the livers of Tnfr1−/−/Mdr2−/− mice 
(Fig. 3A,B, gating strategy in Supplementary Fig. 2A). For WT, Tnfr1−/−, and Mdr2−/− mice, we observed only 
negligible frequencies of hepatic TH17 cells. Furthermore, ex vivo stimulation of liver derived non-parenchymal 
cells (NPCs) with phorbol 12-myristate 13-acetate (PMA) & ionomycin revealed that hepatic immune cells 
derived from Tnfr1−/−/Mdr2−/− mice produced significantly more IL-17A than hepatic NPCs from Mdr2−/− mice 
(Fig. 3C). While ex vivo IL-17A production by Mdr2−/− NPCs was not associated with the degree of tissue injury, 
as defined by plasma levels of ALT (Fig. 3D), it was apparent that production of IL-17A in livers of Tnfr1−/−/
Mdr2−/− mice, was directly correlated with the extent of tissue damage (Fig. 3E).

Figure 2.  Absence of TNFR1 alters the cytokine and chemokine milieu in the injured liver. Relative hepatic 
expression levels of (A) Il-1β, Il-23, Tgfβ1, Il-17A, Rorγt and (B) Ccl2, Cxcl1, Ccr6, Cxcr6 of WT (n ≥ 7), 
Tnfr1−/− (n ≥ 7), Mdr2−/− (n ≥ 5), and Tnfr1−/−/Mdr2−/− (n ≥ 6) mice determined by RT-qPCR. *P ≤ 0.05, 
**P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001.
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TNFR1 ablation has been shown to diminish the regenerative capacity of the liver due to reduced NFκB 
activity, which leading to reduced levels of IL-6, and consequently to insufficient STAT3 activation20,21. However, 
IL-17 is also known to be involved in the onset of regeneration by inducing the production of IL-6 and IL-22, 
both potent inducers of STAT324. In line with that, Legendplex analysis revealed robust IL-6 concentrations in 
the plasma of Tnfr1−/−/Mdr2−/− mice and significantly higher plasma levels of IL-22 compared to Mdr2−/− mice 
(Supplementary Fig. 3A). In line with that, several genes encoding for proliferation markers including proliferat-
ing cell nuclear antigen (PCNA), Cyclin A2 (CCNA2) and cyclin-dependent kinase 1 (CDK1) were significantly 
increased in livers of Tnfr1−/−/Mdr2−/− mice (Supplementary Fig. 3B). Since Mdr2−/− mice are a mouse model 
of inflammation induced tumour development, and IL-17 has been closely associated with strong induction of 
regeneration and angiogenesis in the tumour microenvironment, we analysed the gene expression of known HCC 
tumour markers in Tnfr1−/−/Mdr2−/− mice25,26. We observed up-regulated gene expression of tumour markers 
including tumour necrosis factor α induced protein (Tnfaip; A20), secreted phospho protein 1 (Ssp1, OPN) and 
α-feto protein (Afp) (Supplementary Fig. 3C) in 12-week-old Tnfr1−/−/Mdr2−/− mice27,28. Overall, we observed 
that TH17 cells and their signature cytokines are increased in the injured livers of Tnfr1−/−/Mdr2−/− mice (Fig. 3), 
while hepatic gene expression of markers of regeneration and possibly tumour development appeared to be rather 
activated rather than impaired in the absence of TNFR1 (Supplementary Fig. 3).

The absence of TNFR1 leads to necroptosis-independent activation of RIPK3 in the chronically 
inflamed liver.  TNFR1 contains an intracellular death domain which can induce several forms of cell death 
including apoptosis and necroptosis23. Therefore, reduced cell death in the livers of Tnfr1−/−/Mdr2−/− compared 
to Mdr2−/− mice had to be expected. As our data indicated the opposite effect, we analysed apoptotic cell death 
by measurement of activated caspase-3 (western blot), but failed to observe significant differences between 
Mdr2−/− and Tnfr1−/−/Mdr2−/− mice (data not shown). We investigated gene expression levels of the known 
mediators of necroptosis, namely receptor interacting protein kinase 1 (Ripk1) and 3 (Ripk3). While Ripk1 was 
slightly elevated in Tnfr1−/−/Mdr2−/− mice, a significant increase of hepatic Ripk3 expression was observed in 
Tnfr1−/−/Mdr2−/− mice compared to Mdr2−/− mice (Fig. 4A). Necroptosis is mediated by the necrosome, a cyto-
solic complex consisting of RIPK1, RIPK3 and the mixed lineage kinase domain like pseudokinase (MLKL). 

Figure 3.  Absence of TNFR1 signalling leads to increased infiltration of TH17 cells into the injured liver. (A) 
Representative dot plots and (B) quantification of flow cytometric analysis of TCRβ+CD4+IL17+ TH17 cell 
populations in the livers of WT (n ≥ 5), Tnfr1−/− (n ≥ 6), Mdr2−/− (n ≥ 6), and Tnfr1−/−/Mdr2−/− (n ≥ 5) mice 
determined by flow cytometry. (C) Concentration of IL-17 in the supernatant of NPCs re-stimulated with PMA 
& ionomycin for 4 h of mice described in (A). (D) Correlation between IL-17 production of re-stimulated NPCs 
with plasma ALT levels of Mdr2−/− and (E) Tnfr1−/−/Mdr2−/− mice. r: correlation coefficient, R2: coefficient of 
determination. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001.
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We performed western blot analysis of phosphorylated RIPK3 and MLKL in order to investigate their activa-
tion state in the injured liver. We demonstrated increased RIPK3 activation in livers of Tnfr1−/−/Mdr2−/− mice 
compared to Mdr2−/− mice (Fig. 4B). However, the opposite effect was observed for phosphorylated MLKL 
(Fig. 4B). Since MLKL is indispensable for necroptosis, these findings suggest a necroptosis-independent role 
of RIPK3 during chronic liver injury in the absence of TNFR1. Morriwaki et al. were among the first to describe 
a necroptosis-independent function of RIPK3 by showing that RIPK3 activity is involved in cytokine produc-
tion in a CX3CR1+ monocytic cell population29. Gene expression analysis revealed increased Cx3cr1 and Cx3cl1 
expression in livers of Tnfr1−/−/Mdr2−/− mice compared to Mdr2−/− mice (Fig. 4C). Correlation analysis showed 
that animals in which hepatic Ripk3 expression was increased also expressed higher levels of the chemokine 
receptor Cx3cr1 (Fig. 4D). In order to further investigate a possible role of RIPK3 activity in the monocytic 
cell compartment, we sorted hepatic CD11b+CX3CR1+ as well as CD11b+CX3CR1− monocytes and analysed 
Ripk3 expression by qRT-PCR. Although no differences in the hepatic frequencies of both cell populations were 
observed in 12-week-old Tnfr1−/−/Mdr2−/− mice and Mdr2−/− mice (Fig. 4E,F, gating strategy in Supplementary 
Fig. 2B), we detected significantly increased expression of Ripk3 in CD11b+CX3CR1+ monocytes derived from 
livers of Tnfr1−/−/Mdr2−/− compared to those derived from Mdr2−/− mice (Fig. 4G). These results implicate that 
the absence of TNFR1 mediated signalling leads to increased Ripk3 expression in CX3CR1+ monocytes, and to 
an overall induction of RIPK3 activity in the chronically inflamed livers in the Mdr2−/− background, which is not 
associated with necroptotic cell death.

CX3CR1+ monocytes and TH17 cells accumulate in livers of Tnfr1−/−/Mdr2−/− mice over time.  
While Ripk3 expression was increased in hepatic CD11b+CX3CR1+ monocytes of 12-week-old Tnfr1−/−/Mdr2−/− 
mice, we did not determine increased amounts of these cells at that age. In order to rule out time-dependent 
effects, we also analysed CD11b+CX3CR1+ cells in livers of 24-week-old Mdr2−/− and Tnfr1−/−/Mdr2−/− mice 
via flow cytometry. Here observed an increased frequency of CD11b+CX3CR1+ monocytes in livers of Tnfr1−/−/
Mdr2−/− mice compared to Mdr2−/− mice (Fig. 5A,B, gating strategy in Supplementary Fig. 2C). In addition, 
over time the TH17 cell population equally increased in Tnfr1−/−/Mdr2−/− mice, and much less in Mdr2−/− mice 
(Fig. 5C,D). In summary, the differences in the hepatic immune cell composition of Tnfr1−/−/Mdr2−/− versus 
Mdr2−/− mice became increasingly apparent over time.

Discussion
Chronic inflammation of the liver, mostly independent of the underlying pathology, has several major conse-
quences including cirrhosis, liver failure and HCC development4. Therefore, the search for treatment options that 
specifically suppress pathological inflammatory processes, while retaining the physiological immune surveillance, 
continues. Numerous studies have shown that specific ablation of TNFR1 has beneficial effects on epithelial cell 
death, inflammation and fibrosis in acute and chronic hepatitis6,7,17. These results imply that specifically targeting 
of TNFR1 may be more favourable compared to targeting total TNFα-mediated signalling. However, multiple 
studies also showed that TNFα-mediated signalling via TNFR1 is critical for hepatocyte proliferation and regen-
eration20,21. Furthermore, preconditioning with TNFα has proven to be protective against ischemia/reperfusion 
injury30. The collective data presented in this study clearly demonstrate that the constitutive ablation of TNFR1 
in a mouse model of chronic liver inflammation does not improve the pathological phenotype. Instead, elevated 
plasma levels of ALT and ALP combined with a higher hepatic collagen content clearly showed increased tissue 
injury and fibrogenesis in Tnfr1−/−/Mdr2−/− mice compared to the Mdr2−/− mice. Due to the complete absence of 
phospholipids in bile, tissue injury in the Mdr2−/− mouse model is in part driven by progressive cholestasis and 
impaired cholesterol excretion14. Increased levels of plasma bilirubin accompanied with a decreased cholesterol 
output observed in Tnfr1−/−/Mdr2−/− mice indicated a manifestation of cholestatic features in the absence of 
TNFR1. Subsequent analysis revealed distinct differences in the pathology of Tnfr1−/−/Mdr2−/− and Mdr2−/− 
mice on cellular and molecular level.

First, the divergent cytokine and chemokine profiles in livers of both mouse lines should be noted. Elevated 
hepatic gene expression levels of Il-1β, Il-23, Tgfβ1, Il-17A, and Rorc in Tnfr1−/−/Mdr2−/− mice implied TH17 cell 
accumulation in the inflamed liver, which was later confirmed via flow cytometry. The roles of IL-1β and TGFβ1 
in TH17 cell differentiation have been described extensively in vitro and in vivo31,32. IL-23 mediated signalling has 
been shown to be essential for stabilizing TH17 cell gene signature (Rorγt, IL-17A), down-regulation of repressive 
factors (Il2, Il12) and the induction of TH17 cell pathogenicity33. Tnfr1−/−/Mdr2−/− mice showed up-regulated 
gene expression of several chemokines and chemokine receptors involved in TH17 cell recruitment including 
Ccl2, Ccr6, and Cxcr634–37.

In addition, we observed increased hepatic expression of Cx3cr1 in livers of Tnfr1−/−/Mdr2−/− mice which 
was proportional to the increased hepatic gene expression of Ripk3. CX3CR1/L1 is known especially for its role 
in the recruitment of leucocytes including macrophages and T cell subsets38. While direct recruitment of TH17 
cells via CX3CR1 has not been reported, TH17 cells are diminished in Cx3cr1−/− mice, used in a model of col-
lagen induced arthritis39, and T cell specific CX3CR1 deficiency reduced TH17 cell polarization and impaired 
IL-17A production in vitro40. We therefore speculate that the increased TH17 response observed in livers of 
Tnfr1−/−/Mdr2−/− mice is associated with the observed increase of Cx3cr1 gene expression and accumulation of 
CX3CR1+ monocytes over time. This assumption is supported by the fact that CX3CR1+ monocytes are essential 
for the induction of commensal-specific TH17 cells in the gut41, the primary site where the TH17 cell response 
is controlled42. An increasing body of evidence further emphasizes the role of the gut-liver axis in a variety of 
inflammatory hepatic pathologies, including primary sclerosing cholangitis (PSC), a chronic cholestatic liver 
disease for which Mdr2−/− mice are used as a disease model43–45. Eighty percent of PSC patients also suffer 
from inflammatory bowel disease (IBD), and recent reports have shown that Mdr2−/− mice display increased 
gut permeability and sensitivity to dysbiosis46,47. Interestingly our data showed that in the absence of TNFR1 
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CD11b+CX3CR1+ monocytes express higher levels of Ripk3, which is concomitant with an overall increase of 
hepatic RIPK3 activation in Tnfr1−/−/Mdr2−/− mice compared to Mdr2−/− mice. Previous reports showed that 
RIPK3 has necroptosis-independent immune modulatory functions in gut derived monocytes. Moriwaki et al. 

Figure 4.  Absence of TNFR1 leads to necroptosis independent activation of RIPK3 and CX3CR1+ monocyte 
recruitment into the chronically inflamed liver. (A) Relative hepatic expression levels of Ripk1, Ripk3 
determined by RT-qPCR in tissue samples of Mdr2−/− (n ≥ 3), and Tnfr1−/−/Mdr2−/− (n ≥ 4) mice. Western 
blot of (B) phosphorylated RIPK3 (P-RIPK3) and MLKL (P-MLKL) with respective GAPDH as loading control 
in livers of mice described in A. Each line depicts one animal. The samples for the P-RIPK3 and P-MLKL 
WBs were derived from the same experiment and gels/blots were processed in parallel. Images of the full 
length blots are presented in Supplementary Fig. 4. (C) Relative hepatic expression levels of Cx3cr1 and Cx3cl1 
determined by RT-qPCR in liver tissue samples of mice described in (A). (D) Correlation of hepatic expression 
levels of Ripk3 with Cx3cr1 of Tnfr1−/−/Mdr2−/− mice. (E) Representative dot plots and (F) quantification of 
flow cytometric analysis of CD11b+CX3CR1+ and CD11b+CX3CR1- cell populations in the livers of mice 
described in (A). (G) Relative expression of Ripk3 in CD11b+ and CD11b+CX3CR1+ cells of Mdr2−/− and 
Tnfr1−/−/Mdr2−/− mice determined by RT-qPCR. M: kDa marker, r: correlation coefficient, R2: coefficient of 
determination. *P ≤ 0.05, **P ≤ 0.01.

https://doi.org/10.1038/s41598-019-40324-z


7Scientific Reports |          (2019) 9:4232  | https://doi.org/10.1038/s41598-019-40324-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

demonstrated that RIPK3 mediates injury-induced production of IL-1β and IL-23 in a CX3CR1+ monocytic pop-
ulation during dextran sulfate sodium induced colitis29. Moreover, they showed that RIPK3 is essential for initiat-
ing tissue repair via induction of IL-22. This is in line with our observation of significantly increased plasma levels 
of IL-22 in Tnfr1−/−/Mdr2−/− mice and robust expression of several markers of regeneration such as Pcna, Ccna2, 
and Cdk1. This finding is in contrast to previous reports showing that TNFR1 is essential for successful initiation 
of liver regeneration, via the NFκB, IL-6, STAT3 axis21. However, TH17 cells are known to produce high levels 
of IL-22 whereas IL-17 has been shown to induce IL-6 production via multiple pathways including AKT and 
NFκB activation48–50. In line with that, we did not observe significantly reduced plasma levels of IL-6 in Tnfr1−/−/
Mdr2−/− mice. We therefore hypothesize that hepatic regeneration of Tnfr1−/−/Mdr2−/− mice may be maintained 
by the increased numbers of TH17 cells and their production of IL-17A and IL-22 in the injured liver of Tnfr1−/−/
Mdr2−/− mice. While compensatory proliferation during chronic tissue injury is essential to retain tissue integrity, 
it is also the basis for tumour development51. It has to be noted that none of the animals used in this study showed 
macro- or microscopic signs of tumorous tissue, neither at 12- nor at 24-weeks of age. However, we analysed the 
hepatic expression of genes known to be up-regulated in HCCs and found that Tnfr1−/−/Mdr2−/− mice expressed 
significantly more A20, OPN, and Afp than Mdr2−/− mice27,28,52. Considering that Tnfr1−/−/Mdr2−/− mice dis-
played a more severe pathology and active proliferation, we speculate that during chronic liver inflammation 
ablation of TNFR1 has rather a detrimental than a beneficial effect on tumour development. Overall, we conclude 
that the absence of TNFR1 signalling exacerbates the pathological phenotype of Mdr2−/− mice, demonstrated by 
increased liver injury presumably due to increased IL-17A mediated signalling. Moreover, the increased disease 
severity in Tnfr1−/−/Mdr2−/− mice compared to Mdr2−/− is associated with a divergent cytokine and chemokine 
milieu which consequently leads to an altered immune cell composition enriched in TH17 cells and increased 
recruitment of CX3CR1+ monocytes over time. This study implies several interesting paths for future research, 
including a closer look on the role of TNFR1 on cellular and microbial homeostasis in the gut, the organ respon-
sible for TH17 cell priming. It would further be of high interest to further elucidate the interplay of TNFR1 and 
RIPK3, and how targeted neutralization of one of the signalling molecules shaped immune modulatory functions 
of the other.

Material and Methods
Mice.  For the phenotypical analysis of Tnfr1−/−/Mdr2−/−mice, a C57/BL6 background was chosen. The 
Mdr2−/− (C57BL/6.129P2-Abcb4tm1Bor) mice were kindly provided by Daniel Goldenberg (Jerusalem, Israel). 
The Tnfr1−/− (C57BL/6-Tnfrsf1atm1Imx/J) mice were kindly provided by Volker Vielhauer (Munich, Germany). 
The Tnfr1−/−/Mdr2−/− mice were generated by cross-breeding of homozygous specimen of the single knockouts. 

Figure 5.  CX3CR1+ monocyte and TH17 cells accumulate in livers of Tnfr1−/−/Mdr2−/− mice with 
disease progression. (A) Representative dot plots and (B) quantification of flow cytometric analysis of 
CD11b+CX3CR1+ cell populations in the livers of 24-week-old Mdr2−/− (n ≥ 3), and Tnfr1−/−/Mdr2−/− (n ≥ 6) 
mice determined by flow cytometry. (C) Representative dot plots and (D) quantification of flow cytometric 
analysis of TCRβ+CD4+IL-17+ TH17 cell populations in the livers of mice described in (A,B) determined by 
flow cytometry. **P ≤ 0.01.
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Successful knockout was confirmed via PCR analysis of DNA isolated from tail biopsies. All mice received human 
care according to the FELASA guidelines implemented by National Institutes of Health. All mice received care 
according to the FELASA guidelines. The animal protocols were approved by the Hamburg Federal Authority for 
Health and Environment and are in accordance with the legal and ethical requirements in Germany. Mice were 
housed in IVC cages under controlled conditions (22 °C, 55% humidity, and 12-hour day-night rhythm) and fed 
a standard laboratory chow (LASvendi, Soest; Altromin, Lage, Germany).

Determination of plasma enzymes and cytokines.  Liver damage was assessed by measuring plasma 
enzyme activity of alanine aminotransferase (ALT) and alkaline phosphatase (ALP) as described previously16. 
Plasma levels of IL-6 and -22 were determined via Legendplex (Biolegend, San Diego, CA) according to manu-
facturer’s instruction.

Hydroxyproline assay.  Assays were performed as described previously53.

Immunohistochemistry.  Sirius Red staining was as described previous54. Images were taken with a 
BZ-9000 microscope (Keyence, Osaka, Japan). Sirius Red positive areas were quantified with BZ-II Analyzer 
software (Keyence, Osaka, Japan).

Flow cytometry.  Immune cell composition was determined via flow cytometry. Cells were analysed with 
LSRFortessa (BD bioscience, Franklin Lake, NJ). Obtained data were interpreted using FlowJo (BD bioscience, 
Franklin Lake, NJ) software. Antibodies are summarized in Table 1. The gating strategy for identifying the differ-
ent hepatic immune cell subsets is depicted in Supplementary Fig. 2A,C.

Fluorescence-activated cell sorting.  A single cell suspension of hepatic NPCs was generated using stand-
ard laboratory techniques. Cells were stained with an antibody cocktail described in Table 1B. CD11b+CX3CR1+ 
and CD11b+CX3CR1− were sorted with a FACSAria III cell sorter (BD bioscience, Franklin Lake, NJ) using 
FACSDiva software (BD bioscience, Franklin Lake, NJ). The gating strategy is depicted in Supplementary Fig. 2B.

Ex vivo re-stimulation of hepatic non-parenchymal cells NPCs and determination of cytokine 
production.  Isolated NPCs from the liver, were re-stimulated with phorbol-12-myristate-13-acetate (PMA) 
(50 ng/ml) and ionomycin (1 µg/ml) for 4 h at 37 °C. Supernatant was collected and stored at −20 °C. Cytokines 
were quantified with Legendplex (Biolegend, San Diego, CA) according to manufacturer’s instruction. For analy-
sis of TH17 cells via flow cytometry, brefeldin A (50 ng/ml) and monensin (1 µg/ml) were added for intracellular 
cytokine accumulation.

Detection of messenger RNA by quantitative real-time reverse transcriptase polymerase chain 
reaction (RT-qPCR).  Isolation of total RNA, complementary DNA synthesis, and RT-qPCR were performed 
as described previously16. Oligonucleotides were obtained from Metabion International AG (Steinkirchen, 
Germany) and are summarized in Table 2.

Protein isolation from mouse liver and western blot analysis.  Tissue lysates were prepared as 
described previously16. Semi-quantitative evaluations were performed using VersaDoc M Imaging System, 4000 
MP (Bio-Rad, Hercules, CA). Antibodies are summarized in Table 1.

Statistical Analysis.  Statistical analyses were performed using graphpad prism 7 software (GraphPad 
Software, La Jolla, CA). All data are presented as mean ± SEM. For comparisons between 2 groups either a 

Target Fluorophore/Host Clone Distributed by

Flow cytometry

T cells

TCR (β chain) Pe-Cy7 H57–597 BioLegend, San Diego, CA

CD4 FITC RM4–5 B BioLegend, San Diego, CA

IL-17 Alexa Fluor 700 TC11–18H10.1 BioLegend, San Diego, CA

Monocytes

CD45 BV570 30-F11 BioLegend, San Diego, CA

CD11b Alexa Fluor 700 M1/70 BioLegend, San Diego, CA

CX3CR1 BV785 SA011F11 BioLegend, San Diego, CA

Fluorescence-activated cell sorting

CD11b PerCp-Cy5.5 M1/70 BioLegend, San Diego, CA

CX3CR1 BV785 SA011F11 BioLegend, San Diego, CA

Western blot

RIPK3-P goat EPR9516(N)-25 Abcam, Cambridge, UK

MLKL-P goat EPR9515(2) BD Pharmigen, San Jose, CA

GAPDH goat polyclonal Santa Cruz, Dellas, TX

Table 1.  Antibodies.
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students’s t-test or when applicable a non-parametric Mann-Whitney test were used. For comparisons of more 
than 2 groups a one-way ANOVA with Tukey’s post-hoc test was used. Correlation between 2 parameters were 
determined via Spearman non-parametric correlation test. Outliers were identified applying the ROUT method. 
*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001. Asterisks above columns represent significance of the dif-
ference compared to WT.

The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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