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Abstract

Background: Patients with peripheral artery disease (PAD) are at risk of major adverse cardiac 

and cerebrovascular events (MACCE). There are no readily available risk scores that can 

accurately identify which patients are most likely to sustain an event, making it difficult to identify 

those who might benefit from more aggressive intervention. Thus, we aimed to develop a novel 

predictive model – using machine learning methods on electronic health record (EHR) data – to 

identify which PAD patients are most likely to develop MACCE.

Methods and Results: Data were derived from patients diagnosed with PAD at two tertiary 

care institutions. Predictive models were built using a common data model (CDM) that allowed for 

utilization of both structured (coded) and unstructured (text) data. Only data from time of entry 

into the health system up to PAD diagnosis were used for modeling. Models were developed and 

tested using nested cross-validation. A total of 7,686 patients were included in learning our 

predictive models. Utilizing almost 1,000 variables, our best predictive model accurately 

determined which PAD patients would go on to develop MACCE with an area under the curve 

(AUC) of 0.81 (95% Confidence Interval, 0.80-0.83).

Conclusions: Machine learning algorithms applied to data in the EHR can learn models that 

accurately identify PAD patients at risk of future MACCE, highlighting the great potential of EHR 

to provide automated risk stratification for cardiovascular diseases. Common data models that can 

enable cross-institution research and technology development could potentially be an important 

aspect of widespread adoption of newer risk-stratification models.
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Introduction

Ninety-six percent of acute care hospitals in the United States have adopted Electronic 

Health Record (EHR) technology as of 2015, up from just 9% in 2008 1. Though billing and 

administrative tasks have been the focus of EHR systems, the large amount of granular, 

observational patient data offer unprecedented opportunities for data mining and analysis. In 

particular, the combination of advanced statistical methods and data volume provide an 

opportunity for stakeholders to build new technologies that can automate portions of health 

care such as early detection of adverse drug reactions, predictions of in-hospital mortality, 

wound healing, and risk stratification for heart failure readmissions 2-5.

Risk stratification using EHR data, in particular, has been of increasing interest for many 

investigators 6. With only a limited number of well-validated risk stratification scores 7-10, 

the use of EHR data from tens of thousands of patients may produce predictive models that 

can more accurately discriminate between patients at high and low risk of disease 

development or progression. However, as Goldstein and investigators report in a meta-

analysis of EHR-based risk stratification models, researchers often do not take full 

advantage of the diversity of data available in the EHR 6. Frequently, model development 

will only use a handful of variables pre-emptively identified by investigators, and/or only 

utilize coded data such as lab values or diagnosis codes. This limitation in data usage may 

unduly limit the accuracy of predictive models, especially where complex non-linear 

interactions are involved, even if the models are developed using data from thousands of 

patients.

In previous work, we demonstrated that using a database of patients with and without PAD, 

machine learning algorithms could accurately identify patients with PAD who were 

previously undiagnosed 11. Such approaches allow for the automatic identification of 

patients, require less active management by health care professionals directly, and can 

considerably shift the paradigm of health care delivery from a reactionary practice to a 

proactive one 12, 13. Though this prior work demonstrated the ability to identify undiagnosed 

PAD patients, the data were derived from a well-structured prospectively collected database. 

Patients included in our predictive models had complete data across hundreds of phenotypic 

and genomic variables and were prospectively followed for years with accurate 

ascertainment of outcomes from hours of chart review and patient interviews and phone 

calls.

Real-world EHR data do not come as neatly packaged. Despite the volume, data may be 

missing or mislabeled, and patients may drop out of the data set at varying lengths of time. 

In the current work, we evaluate the feasibility of machine learning algorithms in identifying 

risk of future adverse cardiovascular events in patients diagnosed with PAD using EHR data. 

Note that when finding undiagnosed PAD patients, the disease in question is already present 

(but is unrecognized and untreated). For risk stratification, we use the portion of the record 

up to PAD diagnosis to predict the probability of the event’s (MACCE) occurrence in the 

future--making it a much harder problem.
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We hypothesized that using observational EHR data and supervised machine learning, we 

would be able to learn predictive models that could accurately identify which PAD patients 

would go on to have a major adverse cerebrovascular and cardiovascular event prior to their 

occurrence. Accurate identification of patients at risk offers the possibility of managing 

high-risk patients differently. Therefore, accurate prediction is the first-step towards 

personalized care, particularly when treatment alternatives exist 14.

Methods

Data Source

Data were derived from the EHR of two tertiary care hospitals. Only de-identified patient 

records were utilized and the requirement for informed consent was waived. To ensure data 

de-identification only pertinent clinical data without protected health information (PHI) were 

extracted from the overall clinical data warehouse. Specifically, we extracted non-negated 

terminology, codes and results for each patient and used unique patient identifier codes 15. 

Metadata including dates and locations of visits (e.g. inpatient, outpatient) were also 

retrieved and stored. Our Institutional Review Boards approved the study. Due to data 

privacy considerations the clinical data are not available to researchers outside of our 

institutions for purposes of reproducing the results. However, the software used in these 

analyses are publicly available 16, 17.

EHR data included all adults treated as outpatients and inpatients at Stanford Health Care 

(SHC) between 1995 and 2015 and between 1980 and 2015 at Mount Sinai School of 

Medicine (MSSM). Data included International Classification of Diseases, version 9 

(ICD-9) codes, Current Procedural Terminology (CPT) codes, lab test values, prescription 

medications, vital signs and unstructured clinical notes. In order to combine and analyze 

these disparate data types across different institutions we chose to perform data 

standardization using the Observational Medical Outcomes Partnership Common Data 

Model (OMOP CDM), version 5 18. The common data model also allowed us to coerce 

enough structure into the EHR data to enable more efficient use of machine learning 

algorithms.

Common Data Model

A common data model allows for translation of different forms of observational data from 

different institutions into a cohesive database structure. This is achieved by defining broad 

concepts, their expected value units and rules as to how similar concepts will be mapped into 

one unifying concept. For example if “serum blood glucose” is used at one institution and 

“blood sugar” at another, they would fall into the broader category of “blood glucose 

measurement” in the common data model with units converted to “mg/dL” no matter what 

the initial units at each institution are. Common data models can thus allow for more rapid 

analysis of structured and unstructured data across multiple institutions.

Our text processing methodology allowed us to integrate unstructured clinical text into our 

common data model to utilize for predictive modeling. Details of our text processing 

pipeline are described in more detail in prior publications 19, 20, but briefly, we utilized a 
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strategy of identifying known medical terms within each clinical note within a patient’s 

health record. We then mapped these terms to common medical concepts using standardized 

medical dictionaries 21, 22. Terms that are ambiguous are removed and terms that have 

similar meanings (e.g. type 2 diabetes, insulin-dependent diabetes) are collapsed into one 

overriding concept. We then analyze whether or not terms relate to the patient, or for 

instance family members and if the term is negated. Terms that are unambiguous, relate to 

the patient and are not negated are then tabulated for each patient (Online Figure 1). These 

terms are then further evaluated and integrated into the OMOP common data model along 

with coded data such as lab values, procedural codes, and diagnosis codes.

Study Population

Patients older than 18 years of age treated at SHC and MSSM with a diagnosis of PAD were 

included in the initial patient data cohort. Age was defined at time of entry into the health 

system. Patients had to have either an ICD-9 code or an affirmative text mention of PAD to 

be included. Please see Online Table 1 for concept definitions for PAD. Previous validation 

of this methodology for PAD identification demonstrated a specificity of 98% and precision 

of 83% 23. Patients with MACCE including stroke, acute myocardial infarction, severe 

cardiac arrhythmias, or sudden cardiac death were also identified (Online Table 2) using 

previously vetted MACCE concepts and ICD-9 codes 23, 24. Positive example (“cases”) for 

learning the model were defined as patients with PAD who had a MACCE outcome at least 

30 days after PAD diagnosis. Negative examples (“controls”) for the model were patients 

with a PAD diagnosis with no MACCE diagnosis prior to or after a PAD diagnosis. Data 

used in our prediction model included diagnosis codes, text data from notes, lab values, vital 

signs and prescriptions extracted from the time of first presentation to SHC or MSSM up to 

and including the time of PAD diagnosis (Figure 1). Thus, using the resulting model, a 

patient diagnosed with PAD could be risk stratified at time of diagnosis. Furthermore we did 

not pre-select cases or controls based on any prior evaluation of their risk of developing 

MACCE (e.g. age or smoking status).

Patients were excluded if they had less than 1 year of data prior to PAD diagnosis to ensure 

enough data were available for predictive modeling. Since codes, notes and results data are 

all associated with specific encounter/visit dates (even during retrospective coding and 

billing procedures), ensuring that MACCE occurred on a different visit date than PAD 

diagnosis allowed us to determine that the events did not occur during the same visit. 

Patients were also excluded if less than 30 days of EHR data were available after PAD 

diagnosis to ensure that there was reasonable follow-up to exclude MACCE in control 

patients and also as another way to ensure MACCE and PAD diagnosis did not occur at or 

around the same time.

Missing data were not imputed in our data set. That is, if lab values, diagnosis codes or 

observations were not reported for a patient, we did not attempt to predict its value or 

likelihood of absence or presence. If variables were present for one patient but not the other, 

an encoding of 0 indicated the variable’s absence. The resulting data matrix, therefore, was 

relatively sparse. We did not impute data for two reasons. Our primary aim was to capture 

the performance of predictive modeling in real-world data, which will inherently include 
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missing data. Secondly, there is no consensus as to which imputation methods are ideal for 

heterogeneous EHR data where data can be missing at random 25. Thus, our results are 

reflective of the natural health care utilization patterns of each institution. Please see the 

supplementary materials for further discussion on the handling of missing data.

Study Design & Statistical Analysis

The goal of our study was to evaluate whether machine learning algorithms could analyze 

thousands of data points from the EHR to identify whether a patient with a new diagnosis of 

PAD would go on to have MACCE prior to the event occurrence. Our approach was to 

combine data from SHC and MSSM to create a more generalizable predictive model.

We used penalized linear regression and random forest algorithms to build our predictive 

models. Both algorithms have the ability to automatically select variables in a data set that 

provide the most predictive power. That is, instead of identifying lab values or diagnosis 

codes that we felt were most likely to help predict the outcome of interest, we included all 

EHR data from every patient at an institution and let the algorithm identify the variables to 

keep. However, data pre-processing becomes important in optimizing performance of 

machine learning algorithms. Our data pre-processing included normalizing data by number 

of patient visits. That is, features (disease mentions, ICD-9 codes, lab values, etc) were 

tabulated, or averaged per patient then divided by the total number of visits over the course 

of the patient’s observation window. Doing so allowed us to both adjust the scale of each 

data point to improve machine learning algorithm performance and ensure numeric stability 

by adjusting for any skewed numerical values. Normalization also allowed us to account for 

differences in length of patient records and provide relative weights for different variables. 

That is, if certain variables occurred more frequently in a patient record than others, their 

weight in the predictive algorithm would be higher than a less frequently occurring variable.

We performed nested cross-validation whereby model parameters and variable selection was 

done using an inner 5-fold cross-validation on a random sample of 75% of patients. The 

best-trained model was chosen based on the F-measure, balancing model precision and 

recall. Once the best model was selected, model performance was tested using an outer 5-

fold cross validation using the remaining 25% of patients. Model performance was judged 

both on its ability to discriminate between patients with a high and low risk of an outcome 

(i.e. area under the receiver operating characteristic curve (AUC) and its calibration (i.e. 

ability to accurately quantify observed absolute risk). In addition to visual characterization 

of calibration we also calculated the model Brier Score 26. We chose AUC and calibration as 

metrics to assess the best model, as opposed to other metrics such as Akaike Information 

Criterion, since these metrics can provide robust results using linear and non-linear 

algorithms 27. The best performing model was chosen as the final model. We used the 

APHRODITE package from the OHDSI group 16 and R version 3.2.1 for all data analyses 
17.

Results

At SHC we identified 9,729 patients with PAD. After applying exclusion criteria, there were 

a total of 3,577 patients remaining with 837 (23%) who had MACCE after PAD diagnosis 
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and 2,740 controls. Median time from initial presentation to SHC to diagnosis of PAD was 

6.2 years (± 4.7 years) for cases and median time of observation for control patients was 5.8 

years (± 5.2 years). Median time to MACCE for cases after PAD diagnosis was 2.2 years 

(± 3 years).

The MSSM data set included 8,259 PAD patients. A total of 4,109 patients met inclusion 

criteria, of which 459 (12.6%) had MACCE after PAD diagnosis. Median time from initial 

presentation to MSSM to diagnosis of PAD was 5.3 years (± 3.4 years) for cases and median 

total observation time for controls was 4.4 years (± 3.4 years). Median time to MACCE for 

cases after PAD diagnosis was 2.1 years (± 3 years). Table 1 outlines differences in 

demographics, variable frequency, and outcomes across the two health care sites and 

between cases and controls.

Compared to a penalized linear regression algorithm, random forest performed significantly 

better overall (AUC 0.69 [95% CI, 0.68-0.71] versus 0.81 [95% CI, 0.8-0.83], P < 0.001, 

respectively). Our final model was a random forest model that utilized 957 variables. Figure 

2 demonstrates the average AUC and calibration as produced by 5-fold outer cross-

validation on the test set. Our model had overall good calibration (Brier Score 0.10), though 

the model has a tendency to over-estimate risk for low-risk patients and under-estimate risk 

for high-risk patients. Sensitivity, specificity, positive predictive value (PPV) and negative 

predictive value (NPV) were 0.5, 0.96, 0.8, and 0.9, respectively. These values correspond to 

thresholds obtained from the AUC plot with a true positive rate as close to 1 and a false 

positive rate as close to 0 as possible. Online Figure 2 illustrates the precision-recall curve, 

which demonstrates the trade-offs involved in increasing model sensitivity or specificity.

We performed sensitivity analysis on the best random forest model to evaluate how much 

each data type (unstructured text data, laboratory data, visit data (ICD-9 and CPT codes), 

and prescriptions) contributed to the accuracy of the final model (Figure 3). We found that 

unstructured text and coded data added significantly to model performance. Removal of text 

data resulted in a drop in AUC from 0.81 to 0.78, P = 0.002. Removal of coded data resulted 

in a decline in AUC to 0.77 (P = 0.0004). To evaluate whether these differences were 

clinically significant, we calculated the net reclassification index and found that on average 

20% of patients would be reclassified as higher or lower risk with the addition of text or 

coded data. Removing lab and prescription data did not result in significant changes in 

model discrimination. Lastly, in Online Table 3, we provide the top 20 most important 

variables for each of the 5 outer cross-validated test sets. Given that our data pre-processing 

included normalization using the number of patient visits, in addition to other predictive 

characteristics of each variable, the frequency of a variable’s appearance may also contribute 

to their predictive importance.

Discussion

We have demonstrated that it is feasible to utilize real world EHR data to accurately identify 

PAD patients within a health system who are at high risk of developing subsequent MACCE. 

Our ability to build such predictive models is based on data integration via a common data 

model (OMOP CDM v5) and standard machine learning algorithms. Such a data analysis 
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pipeline could potentially be deployed in real-time for personalized risk assessment for PAD 

patients; and thus guide personalized treatment planning.

Care for patients with chronic diseases such as PAD may be dramatically improved with use 

of automated, EHR-based technology. Patients with PAD often go undiagnosed in the 

primary care setting and are often not on optimal medical therapy 28-34. With annual costs of 

PAD-related care estimated to be over $4 billion, better screening and treatment strategies 

are needed, especially in an era where health care systems are being tasked with efficiently 

providing care for regional populations. Particularly in the case of PAD, better risk 

stratification would allow for more aggressive risk factor mitigation efforts that include 

prescription of anti-platelets, high dose cholesterol lowering medications, more aggressive 

blood pressure management, and enrollment in smoking cessation programs 30. What is 

more, with new Medicare reimbursement for supervised exercise programs and robust data 

showing improved outcomes with addition of rivaroxaban for stable PAD 35, automated 

solutions to identify high risk patients and increase awareness for new treatment options 

could substantially decrease cardiovascular morbidity and mortality.

To our knowledge there are no current risk scores for MACCE in PAD patients. While 

epidemiologically derived scores such as the Framingham Risk Score 36 (FRS) can be of 

good clinical utility in identifying discrete clinical risk factors, these scores are developed 

and validated in such a way that their predictive accuracy do not always translate to different 

clinical contexts. The FRS, for example, was not developed specifically for PAD patients 

and in our own experiments we have found that even a re-calibrated version of the FRS 

performs 20-25% worse than a machine learned risk prediction model for MACCE. Thus, an 

advantage to using EHR data for risk prediction is that such models can be fine-tuned to 

local populations and/or more specific disease states and risk stratification can be automated. 

As an illustration of this Arruda-Olson and colleagues describe their methodology of using 

EHR data to build a risk stratification model for 5-year mortality risk for PAD patients 

within their health system 37. By building a risk model specific to their patient population 

and extracting specific variables from the EHR they achieve good discrimination and 

calibration and are able to provide results in real-time.

Most published work evaluating EHR risk stratification models show mixed results 6. A 

majority of studies do not use longitudinal data, use relatively few predictive variables, with 

a median of 27 variables, and rarely develop multicenter models or validate models at 

different sites. A distinct strength of our work is that we used all variables available from the 

EHR, used longitudinal data from the patient’s health records and developed an accurate 

model by combining data from two distinct health care sites. In addition, we quantify the 

contribution of using features derived from unstructured and structured content and we set 

up the study as a true prediction problem to build a risk-model that can be used at the time of 

diagnosis.

Our study highlights the immense utility of common data models (CDMs). Despite utilizing 

data from different institutions representing two geographically distinct hospital systems, 

with different payer mixes, patient populations with varying prevalence of disease (Table 1), 

and different environmental risk factors, we were able to build a very good prediction model 
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for MACCE in the PAD population. In general, CDMs allow researchers to combine 

observational data sources from multiple institutions, which allows for data standardization 

and the ability to create analytical tools that can be applied broadly. There are five main 

CDMs for EHR currently in use in the U.S. including OMOP 18, 38-42. While each CDM has 

a host of advantages and disadvantages 43, 44, they are key to enabling big data analysis in 

health care for tasks such as drug surveillance 44, 45, comparative effectiveness research 46, 

and reproducing EHR based research results 47. We show that a CDM is also useful for 

building risk predictive models.

Despite the accuracy of our findings there are limitations of our work. First, despite an AUC 

of 0.81, the model sensitivity (maximizing the true positive and minimizing false positive 

rates) is 0.5, with a specificity of 0.96. Thus, cases identified using our predictive model are 

likely to be truly high-risk patients, but many patients may be missed. Models can be 

adjusted to provide more sensitivity by adjusting threshold cut-offs. The precision recall 

curve (Online Figure 1) illustrates that increasing the sensitivity of the model to 100% would 

result in a drop in accuracy to less than 25%. This may be a reasonable trade-off in cases in 

which an intervention has a relatively low risk and/or low-cost (e.g. prescribing exercise 

therapy), but a higher specificity threshold would be warranted for higher risk interventions 

(e.g. prescribing anticoagulation that may significantly increase bleeding risk).

Another limitation is that use of data across multiple institutions can potentially lead to less 

accurate predictive models as local data storage and mapping practices may differ 48, as do 

patient populations. As detailed in Table 1 for instance, the demographic mix at the two care 

sites are quite different. Furthermore there are other clinical factors that may significantly 

vary across sites (e.g. severity of cardiovascular disease, number of comorbidities, etc) as 

Stanford has twice the rate of MACCE as MSSM. These population and data differences 

may require that models be trained locally to obtain higher accuracy.

On the other hand, use of data from multiple institutions helps improve model 

generalizability as models trained on one specific data set have the risk of being over fitted 

with little applicability to other sites. We believe that by using data from different 

institutions and by performing internal and external cross-validation we have appropriately 

balanced model accuracy and generalizability. Nevertheless, our models may suffer from 

issues such as over fitting and only further testing at other institutions would better clarify 

our model’s performance. What is more, in the effort to deliver “precision health” using 

institutional data some have advocated for data re-calibration at different sites to maximize 

predictive model accuracy 49. Need for re-calibration is not necessarily a failure of our 

approach to predictive modeling since others have found that re-calibrating more well-

known epidemiologically derived risk scores provides better risk estimates for specific 

populations as well 50.

We also did not fully take into account missing data. Variables were included in the model if 

even 1 patient had a single value in the chart. This may have somewhat diminished our 

predictive accuracy, however a strength of this approach is that it represents the true nature 

of live EHR data with minimal transformations and no data imputations. Given that we are 

not engaged in inference questions, but rather focus on building a predictor for risk 
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stratification 51, 52, we opt to use the data as they are. Another consideration is that we 

elected to define PAD and MACCE using diagnosis codes and term mentions since in our 

validation of this technique we achieve average specificity of 98% and precision of 90% 23. 

This methodology represents a more easily deployable solution to cohort building than 

natural language techniques, though there may be loss in sensitivity. Other techniques such 

as using an objective ABI measure could also be pursued, though ABIs are not always 

available for review since at tertiary care centers these exams are sometimes done at outside 

facilities and not adequately reported. Another limitation of our work is that given the 

fractured nature of health care in the U.S., it is possible that we did not capture all MACCE 

cases as events. While death data is integrated from the Social Security Death Index, other 

events may have occurred at other institutions without being reported to the index hospital of 

treatment. However, this issue would affect both the training and test sets of patients equally, 

and we still obtain reliable estimates of model performance. Such missing events do have the 

potential to reduce the overall performance of the model.

Another potential limitation that warrants discussion is our use of a “black box” algorithm 

for predicting MACCE in PAD patients. In medical research our goals are often to 

understand causal pathways for diseases and outcomes or to predict their occurrence. While 

similar statistical algorithms can be applied to these separate modeling tasks (prediction or 

inference), models that are good predictors of disease are not always models from which we 

can derive understanding of the disease mechanisms 52, 53. Because we did not force the use 

of any particular variables, the random forest algorithm found any variable in the EHR that 

was most associated with risk of future MACCE. The upside of such a model is that it can be 

more accurate than a simple linear regression model. However, the fact that the variables 

used are not always explanatory can be a drawback of this methodology. For example, 

higher age is associated with MACCE in the general population, but might not be more 

associated with MACCE in the population with PAD. Therefore, when comparing equally 

aged PAD patients with equally aged non-PAD patients, age might not show up as 

“predictive”. Indeed in Online Table 3, many of the predictive variables used in the random 

forest model such as “assessment” or “chief complaint” cannot be used to understand why 

certain patients are at higher risk than others. Other, traditional epidemiologic approaches 

may be necessary to find causal links for disease risk in such cases where the variables used 

in a particular algorithm are not the most descriptive and may be more predictive of a pattern 

that produces increased risk rather than a specific, discrete risk factor. Even so, machine 

learning algorithms can be highly beneficial and may revolutionize our ability to deliver both 

precision and population health, especially with an understanding of the limitations of each 

algorithm 54. For instance, associations between clinical, demographic or imaging 

characteristics and patient outcomes are not always linear. Machine learning algorithms such 

as random forest are still able to identify non-linear signals that can accurately predict 

disease occurrence and outcomes 55. Such capabilities will become even more important as 

the depth and breadth of healthcare data grow. And while machine learning methodologies 

have many advantages, to truly improve patient care and outcomes, methods for teasing out 

causal relationships will remain an important part of the health care and biomedical 

armamentarium.
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Conclusions

Machine learning algorithms using available data in the EHR can accurately predict which 

PAD patients are most likely to go on to develop MACCE. The use of a common data model 

enables de novo learning of accurate risk models across multiple sites. Such informatics 

approaches can be applied to the medical record in an automated fashion to risk stratify 

patients with vascular disease and identify those who might benefit from more aggressive 

disease management. Future evaluation of the prospective performance of machine learning 

techniques versus traditional risk scores could provide valuable understanding of the overall 

utility of a machine learning approach.
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Clinical Perspective Summary

What is known

• Peripheral artery disease is a significant cause of cardiovascular disease 

morbidity and mortality.

• Risk assessment and medical optimization can increase longevity and 

decrease cardiovascular events in these patients.

• There are no currently well-validated methods for risk stratifying PAD 

patients.

• Machine learning algorithms coupled with data from the electronic health 

record has potential to help clinicians rapidly risk stratify patients.

What this study adds

• We present some of the latest methodologies for harnessing electronic health 

record data to predict patient outcomes.

• Machine learning algorithms perform well in identifying which PAD patients 

will develop major adverse cardiac and cerebrovascular events in the future.
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Figure 1. 
Data schematic. CPT – Current Procedural Terminology; ICD-9 – International 

Classification of Disease, version 9; MACCE – major adverse cardiac and cerebrovascular 

events; MSSM – Mt. Sinai Medical School of Medicine; PAD – peripheral artery disease; 

SHC – Stanford Health Care.
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Figure 2. 
A. Area under receive operator curve plot for random forest predictive model. B. Calibration 

plot. AUC - area under the curve; CI – confidence interval. Confidence intervals computed 

using binomial test of proportions for each risk category.

Ross et al. Page 17

Circ Cardiovasc Qual Outcomes. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Box-plots of area under receiver operator curve plot by data type for random forest model. 

Removal of text and ICD/CPT coded data results in significant loss of model discrimination 

(P= 0.002) and (P = 0.0004), respectively. Diamond within box represents average model 

area under the curve while solid line represents median area under the curve.
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Table 1.

Differences in demographic, clinical and outcome variables across institutions and between cases and controls.

Stanford Mt. Sinai

Cases (N = 837) Controls (N =
2,740)

Cases (N = 459) Controls (N =
3,191)

Patients

 Age (mean, y ± SD) 69.5 (± 13) 67 (± 15) 71 (± 12) 71 (± 13)

 Male (%) 55% 53% 51% 50%

 Race/Ethnicity

  White 70% 65% 31% 35%

  Black 6% 5% 26% 21%

  Asian 8% 9% 1% 6%

  Hispanic 7% 7% 32% 20%

Top 5 Diagnosis Codes

Hypertension Hypertension Type II Diabetes Hypertension

Coronary artery disease Type II Diabetes Hypertension Type II Diabetes

Type II Diabetes Hyperlipidemia Hypercholesterolemia Hyperlipidemia

Hyperlipidemia Coronary artery disease Coronary artery disease Coronary artery disease

Atrial fibrillation Back pain Congestive heart failure Depression

Top 5 Medications

Saline Saline Aspirin Aspirin

Tylenol Tylenol Insulin Insulin

Glucose Glucose Heparin Heparin

Potassium Ondansetron Saline Saline

Ondansetron Potassium Simvastatin Docusate

Top 5 Text mentions

Assessment Assessment Assessment Assessment

Pain Pain Pain Pain

Review of systems Review of systems Normal sinus rhythm Chief Complaint

Procedure Procedure Review of systems Review of systems

Auscultation Female Chief complaint Normal sinus rhythm

Top 5 Labs

Serum potassium Erythrocyte mean 
corpuscular hemoglobin 

concentration

Erythrocyte mean 
corpuscular hemoglobin 

concentration

Erythrocyte mean 
corpuscular hemoglobin 

concentration

Erythrocyte mean 
corpuscular hemoglobin 

concentration

Serum potassium Complete blood count Serum platelets

Serum carbon dioxide Serum Chloride Serum platelets Serum Hemoglobin

Serum Chloride Serum carbon dioxide Serum potassium Serum potassium

Serum Sodium Serum Sodium Serum Sodium Complete blood count

MACCE N = 837 N = 459
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Stanford Mt. Sinai

Cases (N = 837) Controls (N =
2,740)

Cases (N = 459) Controls (N =
3,191)

Myocardial Infarction (%) 337 (40) 250 (54)

Cardiac Arrest/Shock (%) 155 (18) 114 (25)

Cardiac arrhythmia* (%) 143 (17) 30 (6)

Stroke (%) 182 (22) 54 (12)

Sudden death (%) 20 (2) 11 (2)

*
Ventricular fibrillation or ventricular tachycardia; MACCE – Major adverse cerebro-cardiovascular events
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