
Predicting location of recurrence using FDG, FLT, and Cu-ATSM 
PET in canine sinonasal tumors treated with radiotherapy

Tyler Bradshaw1, Rau Fu2, Stephen Bowen3, Jun Zhu2, Lisa Forrest4, and Robert Jeraj1,5

1Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, 
Madison, WI 53705-2275, USA

2Department of Statistic, University of Wisconsin, Madison, WI 53705-2275, USA

3Departments of Radiology and Radiation Oncology, University of Washington, Seattle, WA 
53705-2275, USA

4Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, 
Madison, WI 53705-2275, USA

5Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, 
Madison, WI 53705-2275, USA

Abstract

Dose painting relies on the ability of functional imaging to identify resistant tumor subvolumes to 

be targeted for additional boosting. This work assessed the ability of FDG, FLT, and Cu-ATSM 

PET imaging to predict the locations of residual FDG PET in canine tumors following 

radiotherapy. Nineteen canines with spontaneous sinonasal tumors underwent PET/CT imaging 

with radiotracers FDG, FLT, and Cu-ATSM prior to hypofractionated radiotherapy. Therapy 

consisted of 10 fractions of 4.2 Gy to the sinonasal cavity with or without an integrated boost of 

0.8 Gy to the GTV. Patients had an additional FLT PET/CT scan after fraction 2, a Cu-ATSM 

PET/CT scan after fraction 3, and follow-up FDG PET/CT scans after radiotherapy. Following 

image registration, simple and multiple linear and logistic voxel regressions were performed to 

assess how well pre- and mid-treatment PET imaging predicted post-treatment FDG uptake. R2 

and pseudo R2 were used to assess the goodness of fits. For simple linear regression models, 

regression coefficients for all pre- and mid-treatment PET images were significantly positive 

across the population (P < 0.05). However, there was large variability among patients in goodness 

of fits: R2 ranged from 0.00 to 0.85, with a median of 0.12. Results for logistic regression models 

were similar. Multiple linear regression models resulted in better fits (median R2 = 0.31), but there 

was still large variability between patients in R2. The R2 from regression models for different 

predictor variables were highly correlated across patients (R ≈ 0.8), indicating tumors that were 

poorly predicted with one tracer were also poorly predicted by other tracers. In conclusion, the 

high inter-patient variability in goodness of fits indicates that PET was able to predict locations of 

residual tumor in some patients, but not others. This suggests not all patients would be good 

candidates for dose painting based on a single biological target.

Keywords

PET; dose painting; Cu-ATSM; modeling

HHS Public Access
Author manuscript
Phys Med Biol. Author manuscript; available in PMC 2019 March 13.

Published in final edited form as:
Phys Med Biol. 2015 July 07; 60(13): 5211–5224. doi:10.1088/0031-9155/60/13/5211.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Introduction

The practice of administering biologically conformal radiation therapy, or dose painting, is 

based on the principle that highly resistant tumor subvolumes can be identified using 

biological imaging, and thereby targeted for additional boosting. The success of dose 

painting is contingent on the ability of biological imaging to reliably and consistently 

identify resistant tumor subvolumes before (or during) radiation therapy. While several dose 

painting clinical trials have been conducted, and several more are currently underway, the 

largest uncertainty in dose painting has yet to be resolved—how to identify tumor 

subregions that are resistant to radiation.

Unlike conventional imaging biomarkers of resistance in which summary statistics from 

tumor imaging (e.g. maximum standardized uptake value) are correlated with clinical 

outcome, imaging targets for dose painting should be spatially correlated with spatial 

patterns of resistance. As tumor radioresistance cannot be directly measured, location of 

tumor recurrence is often used as a surrogate measure of tumor resistance (Aerts et al 2012, 

Vogelius et al 2013, Shusharina et al 2014). Pre- and post-treatment images are coregistered, 

and the locations of tumor recurrence on the post-treatment image are mapped back to the 

pre-treatment image. Patterns of recurrence are then compared to pre-treatment imaging 

patterns. For example, using positron emission tomography (PET) imaging in non-small cell 

lung cancer tumors, Aerts et al found high spatial overlap between post-treatment 2-

deoxy-2-[18F]fluoro-D-glucose (FDG) uptake and pre-treatment FDG uptake (Aerts et al 
2009, Aerts et al 2012). In head-and-neck tumors, Soto et al found that 8 out of 9 patients’ 

recurrence volumes resided primarily within regions of high pre-treatment FDG uptake 

(Soto et al 2008). Results such as these have encouraged the use of FDG as a target for dose 

painting, as clinical trials of FDG dose painting have been conducted in head-and-neck and 

lung tumors (Madani et al 2007, Duprez et al 2011, van Elmpt et al 2012). On the other 

hand, FDG uptake has also been shown to be influenced by other biological properties not 

directly related to resistance, such as inflammation and perfusion (Bos et al 2002), which 

may confound its utility as a reliable dose painting target.

Besides FDG PET, other potential biological targets for dose painting exist. Hypoxia is a 

known cause of radioresistance (Nordsmark and Overgaard 2000), making PET imaging of 

hypoxia a promising method for guiding dose distributions (Chao et al 2001). Uptake levels 

of copper(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM), a PET radiotracer for 

hypoxia, have been shown to be prognostic in patients undergoing radiation therapy with 

cervical (Dehdashti et al 2003a, Dehdashti et al 2008), head-and-neck (Minagawa et al 2011, 

Sato et al 2014), lung (Dehdashti et al 2003b), and rectal (Dietz et al 2008) cancer. Tumor 

proliferation maps may also prove useful in guiding dose distributions, especially those 

acquired during treatment, as accelerated repopulation of irradiated cancer cells has been 

shown to have deleterious effects on patient outcome (Kim and Tannock 2005, Kishino et al 
2012).

In addition to PET imaging at a single time point, imaging before and during the course of 

treatment can provide spatially-resolved biological response information. Patterns of early 
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biological response may correlate with patterns of overall resistance, allowing one to adapt 

dose distributions according to early changes in PET uptake (Brahme 2003). A comparison 

of tumor recurrence patterns to patterns of biological response during treatment has yet to be 

reported in literature.

The goal of this work was to assess how accurately pre-treatment FDG, FLT, and Cu-ATSM 

PET imaging, as well as mid-treatment FLT and Cu-ATSM PET imaging, predicts the 

location of residual or recurrent tumor in canine sinonasal tumors. This work builds off of a 

previous exploratory study, in which we performed voxel regressions of pre-treatment FDG, 

FLT, and Cu-ATSM uptake values against 3 month post-treatment FDG uptake values in 9 

canine patients (Bowen et al 2012). In that study, pre-treatment FDG PET was found to 

perform better than FLT and Cu-ATSM PET at predicting post-treatment FDG PET 

distributions. The work reported herein builds on these results by increasing the number of 

patients from 9 to 19, adding mid-treatment FLT and Cu-ATSM PET images as additional 

predictor variables, and expanding the statistical methods of analysis.

Methods

Patients

The trial included 22 canine veterinary patients referred to the University of Wisconsin 

Veterinary Medical Teaching Hospital, 19 of whom were evaluable for this study. Three 

patients were excluded from analysis: two because no recurrent tumor was visible in follow-

up PET/CT images, and one because the tumor did not shrink following treatment. The 

research protocol was approved by the Animal Care and Use Committee of the University of 

Wisconsin, and all canine owners signed a written informed consent. Patients were 

diagnosed using CT and biopsied for histopathological evaluation. All dogs had treatment-

naive nasal or paranasal sinus tumors with no evidence of distant metastases or intracranial 

extension. Histopathology results were 10 adenocarcinoma, 7 chondrosarcoma, 1 squamous 

cell carcinoma, and 1 osteosarcoma.

Imaging and treatment

Patients received intensity-modulated radiation therapy (IMRT) delivered by helical 

tomotherapy with curative intent. Patients were divided into two treatment groups as part of 

a larger study investigating dose escalation. The first group received the veterinary standard-

of-care prescription at our institution: 10 fractions of 4.2 Gy to the planning target volume 

(PTV) for a total of 42 Gy. The second group was prescribed 10 fractions of 4.2 Gy to the 

PTV with an integrated boost of 0.8 Gy per fraction to the gross tumor volume (GTV), for a 

total of 50 Gy to the GTV.

The imaging and treatment schedules were as follows: Patients had pretreatment FDG, FLT, 

and [61Cu]Cu-ATSM PET/CT scans on consecutive days beginning 3 d before the onset of 

IMRT. Patients received a second FLT PET/CT scan after two fractions of IMRT (8.4 or 10 

Gy) and a weekend break. Patients received a second Cu-ATSM PET/CT scan following the 

third fraction of IMRT (12.6 or 15 Gy). One patient missed the midtreatment FLT scan due 

to equipment failure (resulting in 18 patients with complete data sets). Patients were injected 
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with 150–370 MBq of tracer. After injection, patients were kept in a kennel to limit physical 

activity. PET/CT scans were acquired on a Discovery VCT (GE Healthcare, Waukesha, WI) 

scanner. FDG and Cu-ATSM PET scans were acquired 60 min and 180 min post-injection, 

respectively; both were 20 min 3D static acquisitions over a single 15 cm bed position. FLT 

PET scans were 90 min 3D dynamic acquisitions over a single 15 cm bed position. Patients 

were anesthetized during imaging and treatment with an initial propofol bolus injection, and 

then maintained on isoflurane inhalation plus 100% oxygen. Emission data were attenuation, 

decay, and deadtime corrected and reconstructed using 3D ordered subset expectation 

maximization (2 iterations, 35 subsets, and 3 mm postfiltering). The image grid was 256 × 

256 × 47 with 2.0 × 2.0 × 3.3 mm3 voxel sizes. Voxel activity measurements were converted 

to standardized uptake values (SUVs) for analysis. For FLT PET scans, SUVs were 

calculated by averaging frames between 60–90 min. To achieve reproducible positioning 

across PET/CT scans and IMRT treatment sessions, patients’ maxillae were positioned into 

custom dental molds that were affixed to the scanner and treatment couches, and patients’ 

bodies were immobilized with vacuum mattresses (Kubicek et al 2012).

Following therapy, patients were scheduled for follow-up FDG PET/CT scans at 3 and 6 

months, with an additional CT scan at 9 months. Patients without progressive disease within 

the first 9 months (evaluated according to RECIST criteria) received an additional PET/CT 

scan whenever they presented with clinical signs suspicious of recurrence (e.g. epistaxis).

Patient CT scans were rigidly registered, and transformations were subsequently applied to 

their respective PET images. The GTV was segmented by a veterinarian based on the 

planning CT, and subsequently propagated to the PET images. The ethmoturbinates of the 

nasal cavity were manually segmented and excluded from analysis due to non-specific 

uptake of FDG and Cu-ATSM.

Regression analysis

Similar to Bowen et al (Bowen et al 2012), we used voxel regression methods to assess how 

well PET uptake patterns predicted the location of tumor recurrence. For each tumor, the 

predictor variables were pre-treatment FDG (FDGpre), FLT (FLTpre), Cu-ATSM (Cu-

ATSMpre) and mid-treatment FLT (FLTmid) and Cu-ATSM (Cu-ATSMmid) PET voxel 

SUVs, and the response variable was follow-up FDG PET voxel values (FDGpost), which 

was used as a surrogate for residual/recurrent tumor (for this paper, the terms recurrent 

tumor and residual tumor will be used interchangeably). Ratio maps of mid-treatment voxel 

values to pre-treatment voxel values for FLT (RFLT) and Cu-ATSM (RCu-ATSM) PET images 

were also used as predictor variables. Two types of regression were considered. In linear 

regression models, voxel SUVs from patients’ post-treatment FDG PET images were used as 

response variables. In logistic regression models, recurrent tumor was segmented in the post-

treatment FDG PET image, and the response variables were converted to binary variables—

1 if the voxel was within the segmented volume, and 0 otherwise. The segmentation of post-

treatment PET images was performed using an in-house automatic segmentation algorithm 

that combines gradient, region-growing, and textural feature methods (Galavis 2013). Both 

simple regression and multiple regression models were created for each patient. For multiple 

regression models, all 5 PET images were included as predictor variables (ratio variables 
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were not included, as the regression model already accounts for absolute differences 

between pre- and mid-treatment voxel values). As patients had multiple follow-up FDG PET 

scans, the time point at which the tumor was the smallest was used for the response variable. 

In most cases (N = 13), response was measured at 3 months.

To evaluate how well pre- and mid-treatment PET distributions predicted recurrent tumor, 

goodness of fits of the regression models were calculated. For linear regression models, the 

coefficient of determination (R2) was calculated. For logistic regression models, pseudo R2 

was used. Pseudo R2 was calculated according to the correlation between the model’s 

predicted response and measured response values:

PseudoR2 = 1 −
∑i = 1

N yi − πi
2

∑i = 1
N yi − y 2 , (1)

where yi is the ith response value, πi is the model-predicted probability, and y is the mean 

response value. It should also be noted that pseudo R2 for logistic regression and R2 from 

linear regression are not directly comparable, but do have similar interpretations. 

Significance testing of the regression coefficients was not performed due to the very high 

spatial correlations between neighboring voxels, which resulted in exaggerated significance 

values. However, similar to Bowen et al, two-tailed t-tests were used to assess if the 

population of regression coefficients from all patients were significantly different from zero.

Using correlation analysis, we investigated if any clinical measures or imaging biomarkers 

could predict which patients would have high or low R2 (i.e. which patients would be good 

or poor candidates for dose painting). Clinical measures that were tested as predictors of R2 

values included histologic tumor type and dose level. Imaging biomarkers that were tested 

included tumor volume, maximum and mean SUV from pre- and mid-treatment PET 

images, relative changes in maximum and mean SUV from pre- to mid-treatment, and 

relative change in 1D tumor size (i.e. RECIST measurements) from pre- to post-treatment.

Predictive modeling

Given the limitations of linear regression (e.g. assumption of linearity), we also created more 

advanced prediction models to evaluate how accurately the location of recurrence for a 

‘new’ patient could be predicted given the imaging data of all the other patients. For each 

patient, 4 prediction models were created/trained based on the other 17 patients’ combined 

data, and then applied to the test patient (i.e. leave-one-out cross validation). One patient 

was excluded due to a missing FLTmid data. The 4 models included a multiple linear 

regression (LR) model (as a basis for comparison), a classification and regression tree 

(CART) model (Breiman et al 1984, Loh 2011), a linear mixed-effects regression (LMER) 

model, and a multiple linear regression model that included neighborhood structures 

surrounding each voxel as additional covariates to account for autocorrelation between 

neighboring voxels.
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For all predictive models, FDGpre, FLTpre, Cu-ATSMpre, FLTmid, and Cu-ATSMmid were 

used as continuous predictor variables. Patient-level variables of tumor histologic type, 

tumor volume, and dose level were also used as predictor variables. FDGpost was used as the 

response variable. The multiple linear regression (LR) model was defined according to

FDGi
post = β0 + β1PET1i + β2PET2i + … + β5PET5i + εi, (2)

where FDGi
post is the post-treatment FDG SUV at voxel i, PETmi is the SUV at voxel i for 

the mth PET image, βk are the 6 regression coefficients, including an intercept, and εi is the 

error term. In leave-one-out cross-validation fashion, βk values were determined by pooling 

together 17 of the patients’ imaging and response data and running regression on the pooled 

data. Prediction accuracy was then evaluated according to R2 by fitting the testing data set 

(i.e. the one patient excluded from the training data set) with the coefficients calculated from 

the training data set. Each patient was likewise evaluated for prediction accuracy.

For the classification and regression tree (CART) model, the same 5 PET images were used 

as predictor variables as were used in the LR regression model. Patient-level variables of 

histologic tumor type, tumor volume, and dose level were also included as patient-level 

factors. Like the LR model, the model was trained on the pooled image data and tested for 

each patient in a leave-one-out cross-validation manner.

The linear mixed effects (LME) regression model was similar to the LR model, but with the 

intercept of different patients defined as a random effect. This assumes the baseline FDGpost 

values for different patients are normally distributed, with the mean of the distribution used 

as intercept for the pooled data. All other predictors were used as fixed effects. This model 

and the CART model were implemented in R using the packages lme4 and rpart, 
respectively (R Development Core Team 2014).

The autocorrelation model was defined similar to the LR model, but with added 

neighborhood structures as additional predictor variables for each PET image:

FDGi
post = β0 + β1PET1i + β2 ∑

jϵ𝒩i

PET1 j + … + β9PET5i + β10 ∑
jϵ𝒩i

PET5 j + εi, (3)

where βk now include 11 regression coefficients (2 for each PET image), Ni is the 

neighborhood surrounding voxel i, and PETmj is the SUV of the jth voxel in Ni for PET 

image m. For this study, we used the first-order neighborhood surrounding voxel i to define 

Ni, meaning only those voxels sharing a side with voxel i (Fu et al 2013).

When pooling the 17 patients’ data for training the models, only 249 voxels were randomly 

sampled and used from each patient so that each tumor in the training set was equally 

represented in the pooled model, regardless of tumor size (249 voxels was the size of the 

smallest tumor). Fitted R2 values were calculated based on the model fit of the 17 patients × 

249 voxels = 4 233 voxels. For testing prediction accuracy, prediction R2 was calculated by 
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applying the fitted model to all the voxels of the tested patient. The procedure was repeated 

100 times for each patient, and the average of the resulting R2 values are reported.

In addition to the continuous prediction models, the 4 prediction models were also created 

for each patient using dichotomized FDGpost as the response variable, and using logistic 

regression instead of linear regression. Results for logistic regression models are reported in 

terms of pseudo R2 and sensitivity.

Results

An example patient’s PET/CT images and simple linear regression plots are shown in figure 

1. The fitted regression coefficients from simple linear and logistic regressions for all 

patients are shown in figure 2. Overall, linear regression coefficients were significantly 

different from zero across the population for all pre- and mid-treatment tracers (P < 0.05), 

with FDGpre, FLTmid, and Cu-ATSMmid being the most significant (P < 0.005). RFLT 

coefficients were significantly less than zero (P = 0.038), whereas RCu-ATSM coefficients 

were not significantly different from zero (P = 0.055). Likewise, for logistic regression, 

regression coefficients for all pre- and mid-treatment tracers were significantly different 

from zero (P < 0.05), except for FLTpre (P = 0.38). Again, RFLT coefficients were 

significantly less than zero (P = 0.028), whereas RCu-ATSM coefficients were not (P = 0.33).

Figure 2 also shows R2 and pseudo R2 for all patients’ linear and logistic simple regression 

models. There was large variability between patients in goodness of fits, with R2 and pseudo 

R2 values ranging from 0.00 to 0.85, with an overall median of 0.12. For linear regression, 

the median R2 for FDGpre was 0.19, while the median R2 values for FLTpre, Cu-ATSMpre, 

FLTmid, and Cu-ATSMmid were all around 0.10. Median R2 for RFLT and RCu-ATSM were 

less than 0.05. For logistic regression, median pseudo R2 values for FDGpre, FLTpre, Cu-

ATSMpre, FLTmid, and Cu-ATSMmid varied between 0.06 to 0.10, and RFLT and RCu-ATSM 

had median pseudo R2 less than 0.03.

Figure 3 shows all patients’ R2 and pseudo R2 from both linear and logistic multiple 

regression models, respectively. Multiple regression models had better goodness of fits than 

simple regression models: the median R2 for the linear model was 0.31, and median pseudo 

R2 for the logistic model was 0.24.

No clinical measures (e.g. dose level and tumor histology) or imaging biomarkers were 

correlated with patients’ respective R2 (R < 0.3). We found that the R2 of different 

regression models (for different predictor variables) were correlated across patients (R > 

0.75). In other words, patients with low R2 for a single predictor variable had similarly low 

R2 for all predictor variables, even for multiple regression models. This is illustrated for all 

three pre-treatment simple linear regression models in figure 4. Likewise, if a patient had 

low regression coefficient for a single predictor variables, the other predictor variables were 

likely to also have low regression coefficients (see figure 4).

Figure 5 shows results from each patient’s predictive modeling. For each patient, the fitted 

R2 and fitted pseudo R2 are shown—these indicate how well the models described the other 
17 patients’ data. The prediction R2 and prediction pseudo R2 indicate how well the 
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prediction models performed when applied to the test patient. In general, CART 

outperformed the other models in fitting the patients’ data, but often had the worst 

performance in predicting a ‘new’ test patient. Overall, advanced prediction models did not 

improve the prediction accuracy when compared to multiple linear regression models.

Discussion

In this study, we used canine sinonasal tumors undergoing radiation therapy as models for 

evaluating which radiotracer uptake distribution—FDG, FLT, or Cu-ATSM—best correlated 

with location of tumor recurrence as a surrogate for measuring spatially-resolved resistance 

to radiation therapy. A characteristic of canine sinonasal tumors that made them especially 

well-suited for this study was the fact that tumors were enclosed by the bony sinonasal 

cavity, making image registration very accurate, thus enabling voxel-wise comparisons of 

PET images across different scans and time points. In our previously published exploratory 

voxel regression study evaluating 9 of the patient used in this study, pre-treatment FDG 

uptake distributions were found to be the best predictors of post-treatment FDG uptake 

distributions (Bowen et al 2012). In this study, we made several additions to the methods of 

analysis, including the addition of mid-treatment FLT and Cu-ATSM PET images as 

predictor variables, implementing logistic regression with segmented follow-up FDG PET 

images as binary response variables (removing potential autocorrelation between pre- and 

post-treatment FDG voxel values), and creating advanced prediction models accounting for 

non-linearity, patient-level variables, and autocorrelation among neighboring voxels. We also 

increased the statistical power of the study by increasing the number of evaluable canine 

patients from 9 to 19.

Overall, we found large variability among patients in how well pre- and mid-treatment PET 

imaging predicted the locations of tumor recurrence. For simple linear regression models, 

none of the predictor variables were significantly better than the other variables. FDGpre, 

however, had the highest median and mean R2 values of the tested predictor variables, 

suggesting it might be the most suitable target for dose painting. This is in agreement with 

the results reported by Bowen et al (Bowen et al 2012). On the other hand, when FDGpost 

was dichotomized and logistic regression was performed, the R2 values for FDGpre were 

nearly identical to those of the other predictor variable. Unsurprisingly, we found that 

multiple regression models resulted in better goodness of fits (R2 and pseudo R2) than 

simple regression models. However, there was a cluster of 5 patients whose R2 were at or 

below 0.20, regardless of regression method. We hypothesized that perhaps smaller tumors 

or tumors with more pronounced anatomical response were those that had lower R2 values. 

This, however, was not the case, as patients’ R2 values were not correlated with any imaging 

biomarkers or clinical measures that we tested, including dose level, tumor volume, and 

histologic tumor type. Biomarkers or patient characteristics that could predict which patients 

would ‘behave well’ under dose painting would be valuable for selecting patients most likely 

to benefit from dose painting.

The interpretation and implications of a low or high R2 for such regression models, or the 

thresholds at which an R2 could be considered adequate for dose painting, are not 

straightforward. In redistribution-based dose painting, total dose to the target volume is not 
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increased but rather redistributed such that more sensitive regions receive less dose and more 

resistance regions receive more dose. Under such a scenario, an imprecise dose painting 

target (i.e. low R2) that is unable to differentiate sensitive and resistant regions could 

actually result in worse outcomes than standard uniform dose treatments. Bender addressed 

these issues using a tumor control probability model, and reported that when the voxel-based 

correlation coefficient between a particular imaging method and the theoretical probability 

of recurrence risk was greater than 0.45 (corresponding to an R2 of 0.20), voxel-based dose 

painting would result in greater tumor control than uniform dose prescriptions (Bender 

2012). Clearly, the measure of post-treatment FDG SUV used in our study was not a direct 

measure of recurrence risk, but if we were to use an R2 threshold of 0.20 for the simple 

linear regression models, we would find that roughly half of the 19 patients would benefit 

from dose painting. For the other half of the population, however, dose painting might 

actually be worse than uniform dose prescriptions. These results, of course, depend on the 

tracer used (see figure 2), and regression method (linear vs. logistic versus multivariable), 

but do suggest that not all patients are good candidates for dose painting. These results 

highlight the need to identify alternative objective measures that can predict which patients 

would make good or poor candidates for dose painting based on a given biological imaging 

target.

Voxel-based predictors based on ratios of PET images from pre- to mid-treatment (RFLT and 

RCu-ATSM) were not good at predicting recurrent tumor location: R2 and pseudo R2 values 

were close to 0 for simple linear and logistic regression models. We originally hypothesized 

that biological changes occurring early during radiation therapy might correlate with tumor 

resistance. This hypothesis was supported by recent analysis of clinical outcome for the 

canine patients included in this study: mid-treatment FLT SUVmax and relative changes in 

FLT SUVmax from pre-treatment to mid-treatment were the most predictive of progression-

free survival (Bradshaw et al 2015). The caveat, however, was that tumors with large relative 

decreases in FLT SUVmax actually had a worse prognosis. In this study, we did not find 

response maps of FLT uptake to be significant spatial predictors of recurrent tumor location. 

A mathematical problem with ratio maps, however, is that response values can become 

inflated in regions with initially-low voxel values (i.e. denominators close to zero), so that 

even small fluctuations in image values due to statistical noise can appear as large response 

values. This may have confounded the utility of RFLT and RCu-ATSM as predictors. 

Furthermore, we previously demonstrated in these patients that image patterns for FLT PET, 

and especially for Cu-ATSM PET, were spatially stable from pre-treatment to mid-treatment 

(Bradshaw et al 2014). Other techniques of quantifying spatially-resolved changes in 

longitudinal PET images may be more appropriate, such as absolute SUV changes (although 

these were included in the multiple regression models), or other methods (Kinoshita et al 
2012).

Advanced predictive models did not provide an improvement over multiple linear regression 

models at predicting a ‘new’ patient’s post-treatment FDG values. These prediction models 

were used to account for potentially confounding factors that are not accounted for in linear 

regression, such as patient categorical variables, non-linearity, and autocorrelation among 

neighboring voxels. For the models with continuous response data, the fitted R2 for the 

pooled data were generally higher than for the multiple linear models shown in figure 3. 
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However, the better fitting did not result in high prediction accuracy, as median prediction 

R2 values for the different models were less than 0.15. CART performed the best at 

describing the training data (see figure 5), but often having the poorest prediction 

performance—likely a consequence of over fitting. Overall, prediction R2 were 

approximately the same as the regression R2 shown in figure 3, and contained large 

interpatient variability.

Several other studies have correlated imaging patterns to recurrent tumor location. The 

studies by Aerts et al and Soto et al in lung and head-and-neck tumors, respectively, have 

already been discussed in the introduction (Soto et al 2008, Aerts et al 2009, Aerts et al 
2012). Abramyuk et al and Shusharina et al performed similar studies in 10 and 19 patients, 

respectively, who had lung cancer and experienced loco-regional failure following radiation 

therapy. Both studies found high degrees of spatial overlap between recurrence volumes and 

pre-treatment FDG uptake (Abramyuk et al 2009, Shusharina et al 2014). Petit et al used 

logistic voxel regression to relate pre-treatment FDG uptake to post-treatment FDG uptake 

in 39 NSCLC tumors, and found increased FDG uptake at baseline predicted a greater 

probability of post-treatment FDG uptake (Petit et al 2009). Vogelius et al found that 

recurrent tumor was most likely to originate in the regions of elevated FDG uptake in 39 HN 

cancer patients undergoing radiation therapy (Vogelius et al 2013).

A primary assumption to the methods of this study—which is a common assumption to all 

of the previously-mentioned spatial analysis studies—is that, following image registration, 

the tumor cells in a voxel location do not change or move location between pre-treatment 

imaging and post-treatment imaging. It is unclear how frequently this assumption is valid. 

Deformable registration methods attempt to account for tumor morphological changes over 

time, but deformable registration algorithms assume that the tumor’s mass is preserved over 

time, which is not the case for tumors undergoing treatment. For this reason, we used rigid 

registration. Canine sinonasal tumors benefit from the fact that rigid registration can be very 

accurate due to the surrounding bony nasal cavity, and (based on our experience) the 

turbinates inside the nasal cavity help to hold the tumor in its place, restricting tumor 

movement over time. An additional limitation of the study is the degree to which post-

treatment FDG uptake is a valid marker of recurrent or residual tumor, and whether or not it 

corresponds to resistant tumor. Numerous studies have found that post-treatment FDG 

uptake does correlate with poor clinical outcome (Inoue et al 1995, Levine et al 2006, 

Bollineni et al 2012, Machtay et al 2013). However, non-specific uptake of FDG, including 

radiation-induced inflammation, could still be a confounding factor in studies such as this. A 

further limitation to the study is the uncertainty regarding the specificity of Cu-ATSM 

uptake as a marker for tumor hypoxia (Hueting et al 2014), especially under conditions of 

anesthesia and oxygen breathing (Kersemans et al 2011).

Conclusion

Using multi-tracer PET imaging and voxel regression models, we found that FDG, FLT, and 

Cu-ATSM PET were able to predict the locations of recurrence in some canine tumors, but 

they were poor predictors of recurrence locations in other tumors. We also showed that no 

individual PET tracer significantly outperformed the other PET tracers in how well they 
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predicted patterns of recurrence. No patient characteristics or imaging biomarkers that we 

tested could predict which patients would be good candidates for dose painting (i.e. have a 

high prediction R2). These results highlight the need for methods of pre-selecting patients 

who would be good candidates for dose painting, and for the development of better 

molecular imaging probes of resistance.
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Figure 1. 
An example patient is shown, illustrating the simple linear voxel regression method. Pre- 

and mid-treatment PET voxel values (top row) were regressed against follow-up FDG voxel 

values. Response maps (RFLT and RCu-ATSM; bottom row) were also regressed against 

follow-up FDG. For logistic regression, post-treatment voxel values were dichotomized 

using an in-house segmentation method (outlined in white).
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Figure 2. 
Results from simple linear (top row) and logistic (bottom row) voxel regressions for all 

patients. Regression coefficients (left) and goodness of fits (right) are shown.
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Figure 3. 
R2 and a pseudo R2 for each patient’s linear and logistic multiple regression models, 

respectively.
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Figure 4. 
Scatter plots illustrating that different predictor variables’ R2 were correlated across patients 

(left). Likewise, regression coefficients for different predictor variables were correlated 

across patients (right). Only results from pre-treatment simple linear models are shown here.
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Figure 5. 
Prediction modeling results for each patient, for both continuous response variables (left 

column) and binary response variables (right column). For each patient, fitted R2 are shown, 

indicating how well the four models fit the training data set, which consisted of all patients 

but one. Prediction R2 are also shown, indicating how well the trained models predicted the 

response values for the test patient. For binary response models, the prediction sensitivity is 

also shown. Patients are sorted according to the prediction R2 for the linear regression 

model, from high to low. LR = multiple linear regression, CART = classification and 

regression tree, LMER = linear mixed effects regression, Auto = regression with 

neighborhood structures.
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