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Abstract

Among the challenges arising in brain imaging genetic studies, estimating the potential links 

between neurological and genetic variability within a population is key. In this work, we propose a 

multivariate, multimodal formulation for variable selection that leverages co-expression patterns 

across various data modalities. Our approach is based on an intuitive combination of two widely 

used statistical models: sparse regression and canonical correlation analysis (CCA). While the 

former seeks multivariate linear relationships between a given phenotype and associated 

observations, the latter searches to extract co-expression patterns between sets of variables 

belonging to different modalities. In the following, we propose to rely on a ‘CCA-type’ 

formulation in order to regularize the classical multimodal sparse regression problem (essentially 

incorporating both CCA and regression models within a unified formulation). The underlying 

motivation is to extract discriminative variables that are also co-expressed across modalities. We 

first show that the simplest formulation of such model can be expressed as a special case of 

collaborative learning methods. After discussing its limitation, we propose an extended, more 

flexible formulation, and introduce a simple and efficient alternating minimization algorithm to 

solve the associated optimization problem. We explore the parameter space and provide some 

guidelines regarding parameter selection. Both the original and extended versions are then 

compared on a simple toy dataset and a more advanced simulated imaging genomics dataset in 

order to illustrate the benefits of the latter. Finally, we validate the proposed formulation using 

single nucleotide polymorphisms (SNP) data and functional magnetic resonance imaging (fMRI) 

data from a population of adolescents (n = 362 subjects, age 16.9 ± 1.9 years from the 

Philadelphia Neurodevelopmental Cohort) for the study of learning ability. Furthermore, we carry 

out a significance analysis of the resulting features that allow us to carefully extract brain regions 

and genes linked to learning and cognitive ability.
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I. Introduction

An increasing amount of high-dimensional biomedical data, such as genome sequencing or 

brain imaging scans, is collected every day. Classical unimodal analysis, by definition, are 

less likely to capture potential links between brain regions and genetic variability when 

studying diseases such as schizophrenia, Alzheimer’s disease, or various neurocognitive 

phenotypes. Bridging both genomics and imaging factors has the potential to help the 

research community extract meaningful bio-markers, improve clinical outcome prediction or 

identify key associations across these modalities[1]. As a consequence, developing 

integrative statistical models to carry out joint analysis of genomic data together with 

neuroimaging data has become an active research topic[2].

Despite being an emerging field, imaging genomics has been rapidly evolving over the last 

decade. From early studies carrying out pairwise analysis between genomic markers and 

imaging endophenotypes, many advanced multivariate methods have been proposed and 

successfully used by the research community. For example, the concept of genomewide 

association studies (GWAS), has been extended by Stein et al.[3] to extract relationships 

between genetic sequence data and various imaging endophenotypes (referred to as voxel-

wise genome-wide association study, or vGWAS). Jahanshad et al.[4] proposed to further 

extend vGWAS using diffusion-base MRI to study the link between genetic variants and 

aberrant brain connectivity structures. Besides vGWAS, many other multimodal methods 

have been designed to extract latent variables from both genetic and imaging data using 

various strategies including maximization of independence [5], [6] or the use of sparse 

multivariate models. In this work we focus on the latter. Le Floch et al.[7] combined 

univariate filtering and partial least squares (PLS) to identify SNPs co-varying with various 

neuroimaging phenotypes. In their recent paper, Cao et al.[8] proposed a sparse 

representation based variable selection algorithm relying on sparse regression model to 

integrate both SNP and fMRI in order to perform biomarker selection for the study of 

schizophrenia. Lin[9] proposed a group sparse canonical correlation analysis (CCA) method 

based on SNP and fMRI data to extract correlation between genes and brain regions. More 

recently, Jian et al.[10] and Du et al.[11] proposed interesting extensions of canonical 

correlation analysis (CCA) method based on SNP and fMRI data.

As mentioned by Lin in[12], one limitation that one often faces when trying to analyze 

imaging genomics dataset is poor biomarker reproducibility across studies. Although this 

issue remains an open problem, one may hope that using appropriate priors over the solution 

will lead to an improved consistency of the result across different studies. Given that, as 

discussed above, both regression and CCA lead to promising results in the context of 

imaging genomics, we propose in this work to use a CCA penalty term in order to further 

regularize the standard LASSO formulation. The underlying motivation is to extract features 

(in this case, brain regions and SNPs) that associate with a given phenotype while displaying 

a significant level of co-expression (measured by their cross-correlation). Interestingly, in a 

recent paper, Gross et al.[13] propose a simple additive model encompassing both CCA and 

Lasso terms. However, as it will be discussed in Section III, we think that such formulation 

might prove to be too restrictive in practice.
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In this work, we propose an extended model that, to our opinion, is more flexible and 

provides a wider scope when it comes to perform feature selection in a multimodal 

framework. In our previous work[14], we applied the proposed model to the study of 

schizophrenia. In the present work, we focus instead on the study of cognitive functions 

related to learning ability and educational attainment. Additional contributions (compared to 

our earlier work of [14]) are presented in this updated version. While the complete and 

detailed algorithmic procedure is now provided, we also perform a more indepth exploration 

of the parameter space associated with the model on both synthetic and real data. The 

resulting parameter tuning procedure has been updated, as we now rely on cross-correlation 

instead of stability selection. This practical choice is carefully justified later in this paper. 

Several improvements regarding the experimental results are also presented: a much higher 

significance threshold (0.9 v.s. 0.3 in [14], c.f. Section IV-B3) is used for feature selection, 

which significantly increases the overall analysis power. We then evaluate the performances 

of the selected features for classification purposes, and discuss the advantages of our method 

over standard Lasso using the cross-correlation heatmap associated with those features.

The rest of this paper is organized as follows: we introduce in Section II some of the relevant 

methods as well as the motivation for this work. A novel approach to multivariate regression 

problems, extending a recently proposed simpler model, is then introduced in Section III. 

Such method is then evaluated on both synthetic and real datasets in Section IV, followed by 

some discussions and concluding remarks in Section V.

II. Methods

A. Learning with L 1 penalty

We consider M ∈ ℕ+ distinct (i.e., from different modalities) datasets with n samples and 

pm ∈ ℕ+ (m = 1, .., M) variables each. The m-th dataset is represented by a matrix 

Xm ∈ ℝ
n × pm. Additionally, each sample is assigned a class label (e.g., case/controls) yi ∈ 

{−1, 1}, i = 1, .., n. Note that instead of binary class labels, a continuous phenotype vector 

can also be used for y. In order to extract a linear link between y and the M data matrices, 

we may rely on the following regression model:

min
β

∑
m = 1

M
y − Xmβm

2

2
+ λ β

1
(1)

The model described by Eq. 1 performs both variable selection and regularization. It often 

improves the prediction accuracy and interpretability of the results compared to the use of 

classical ℓ2 norm regularization terms, especially when the number of variables is far greater 

than the number of observations. In some situations, we have several output vectors ym, ∀m 
= 1, .., M and the m datasets belong to the same modality. In order to capture shared 

structures among the various regression vectors, multi-task Lasso was proposed by 

Obozinski et al.[15]:
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min
β

∑
m = 1

M
ym − Xmβm

2

2
+ λ ∑

p = 1

P
βp

2
(2)

where P is the dimension of the problem and βp is the p-th row of the matrix β = [β1, .., βm] 

(i.e., the β3 are stacked horizontally). Such norm is also referred to as the ℓ1/ℓ2 norm, and is 

used to both enforce joint sparsity across the multiple βm and estimate only a few non-zero 

coefficients. Similar model such as the group-Lasso[16] try to enforce the selection of 

grouped features, where each group is previously defined by the user. Others enforce 

regularity within a modality[17], [18] (and across tasks) to increase the reliability of the 

results. In the next section, we briefly review some of the most commonly used methods to 

extract statistical links between variables belonging to different modalities.

B. Extracting relationship between datasets

A wide variety of problems amount to the joint analysis of multimodal datasets describing 

the same set of observations. One approach to perform such analysis is to learn projection 

subspaces using paired samples such that structures of interest appear more clearly. Some of 

these methods include: canonical correlation analysis[19] (CCA), partial least squares[7] 

(PLS) or cross-modal factor analysis (CFA). Among them, CCA is probably the most widely 

used. Its goal is to extract linear combinations of variables with maximal correlation 

between two (or more) datasets. Using similar notations as in the previous section, and 

assuming M = 2 for the sake of simplicity, one formulation of CCA is expressed as follows:

argmin
β1, β2

Jcca(β1, β2) = X1β1 − X2β2
2

2 (3)

to which a constraint on the norm of canonical vectors β1, β2 is added to avoid the trivial 

null solution. In recent years, CCA has been widely applied to genomic data analysis. As a 

consequence, many studies on sparse versions of CCA (sCCA) have been proposed[9], [20], 

[21], [11], [22] to cope with the high dimension but low sample size problem.

C. Collaborative learning

For most of the methods previously mentioned in Section II-A, pair-wise or group-wise 

closeness is optimized in the common subspace. As a consequence these methods often fail 

to capture relationships across modalities. To address this issue, collaborative (or co-

regularized) methods[23] are based on the optimization of measures of agreement across 

multi-modal datasets, where smoothness across modalities is enforced through a joint 

regularization term. The general formulation can be expressed as follows:
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J(β) = ∑
m = 1

M
y − Xmβm

2

2
+ λ β

1

+ γ ∑
m, q = 1

M
Umβm − Uqβq

2

2

(4)

where the Um, m = 1, .., M are arbitrary matrices whose role is to control the cross-view 

joint regularization between each pair of vectors (βm, βq), m, q = 1, .., M. Scalar parameter 

γ ≥ 0 controls the influence of the cross-regularization term. Notice that if γ = 0, Eq.4 is 

equivalent to the original Lasso formulation. Collaborative learning is an interesting 

extension of Eq.1 allowing the user to explicitly enforce regularization across modalities. 

Interestingly, we show later in this paper (c.f. the proposed model in Section III) that a 

proper choice for the matrices Um, m = 1, .., M is able to incorporate Lasso and CCA 

formulations together within the collaborative learning framework. In the next section, such 

model will be introduced to address the following aspects in sparse regression: (i) enforce 

regularization across modalities; (ii) assume that relationships between variables are not 

available as a prior knowledge (as opposed, e.g., to Xin[17]); (iii) define these links between 

features from different modalities using cross-correlation measure.

III. Enforcing cross-correlation in regression problems

A. MT-CoReg formulation

As discussed in the previous sections, numerous methods have been proposed to estimate 

links between a phenotype and observations while extracting relationships between coupled 

datasets from different modalities. In this section, we propose to incorporate both the 

regression and ccA formulations into a unified framework. We hope that, by using CCA as a 

regularization term, we will be able to extract features that explain the phenotypic variance 

while displaying a significant amount of correlation with features from other modalities. A 

simple way to combine Lasso and sparse CCA is to consider the following weighted 

combination of Eq.(1) and Eq.(3):

min
β

J(β) = (1 − γ) ∑
m = 1

M
y − Xmβm

2

2

+ γ ∑
m, q = 1

M
Xmβm − Xqβq

2

2
+ λ β

1

(5)

where γ ∈ [0, 1] is a weight parameter. Notice that Eq.(5) can be expressed within the 

collaborative framework introduced in Section II-C: setting Um = Xm ∀m = 1, .., M in Eq.4, 

we fall back on Eq.(5). Let us call this model CoReg for Collaborative Regression. An 

equivalent formulation (up to a proper rescaling) has been considered before by Gross et al. 
[13] to perform breast cancer prediction. However, in their paper, the weight of the 
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regression term is set to 1 and γ ∈ ℝ+. In our opinion, while promising, both formulations 

from either Eq.5 or [13] might prove to be too restrictive: it essentially amounts to forcing 

each component of the βm’s to fit both the regression term and the CCA one at the same 

time. However, in practice, there is no reason to assume that the regression coefficients and 

the CCA ones will share the same components values. As a result, we may want to allow the 

model to be slightly more flexible, and relax this assumption. Instead, since our goal is to 

perform feature selection, we propose to only enforce shared sparsity patterns for both the 

regression vector and the CCA decomposition. We then propose to first duplicate each βm 

into two components such that:

βm = [αm, θm] , ∀m = 1, . . , M (6)

where αm, θm are vectors from ℝ
pm. As a consequence, the βm’s are now matrices such that 

βm ∈ ℝ
pm × 2

∀m = 1, . . , M. We then propose the following ‘Multi-Task Collaborative 

Regression’ (MT-CoReg) formulation:

min
β

J(β) = (1 − γ) ∑
m = 1

M
y − Xmαm

2

2

+ γ ∑
m, q = 1

M
Xmθm − Xqθq

2

+ λ ∑
m = 1

M
∑
i = 1

pm
βm

i

2

(7)

where βm
i  is the i-th row of βm, i.e., βm

i = [αm(i), θm(i)] ∈ ℝ2, i = 1, .., pm. The third term of 

Eq.(7) is simply the ℓ1/ℓ2 norm of each of the βm We can see in Eq.(7) that each ‘component’ 

(i.e., column of βm will be involved in separate parts of the functional J: (i) components αm 

will fit the regression term; (ii) components θm will fit the CCA term. Each pair (αm, θm), m 
= 1, .., M is coupled through the use of the ℓ1/ℓ2 norm: although their components values are 

different, shared sparsity patterns are encouraged within each pair (αm, θm). As a 

consequence, we allow the method to be significantly more flexible than the CoReg model 

of Gross[13]. We hope that such framework will encourage the selection of features that are 

discriminative (via the regression part) but also co-expressed across modalities (via the CCA 

part). Note that when γ = 0, MT-CoReg essentially reduces to the initial regression problem 

of Eq.(1), while setting γ = 1 amounts to solving a conventional sparse CCA problem. A 

schematic illustration of the differences between MT-CoReg and CoReg can be seen in fig.

(1).

As mentioned earlier, both CoReg and MT-CorReg encourage the method to select cross-

correlated variables to solve the regression problem. Intuitively, one can argue that not all 

variables that are helpful for the prediction task are coexpressed with other modalities. As a 

consequence, a desirable property would be to retain these ‘modality-specific’ variables. 

This observation allows us to point out another advantage of MT-CoReg over CoReg. While 
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using CoReg, it is more difficult to keep modality-specific variables in the model since the 

associated regression and cross-correlation coefficients are, by definition, given equal 

values. As a consequence, if a given variable significantly improves the fit to the phenotype, 

it will have a fairly high weight in the cross-correlation term in Eq.(5) as well. However, if 

that same variable is not co-expressed with other modalities, it will likely produce a poor fit. 

On the other hand, when using MT-CorReg, the modality specific information can be, to a 

certain extent, better retained. Indeed, let us take a look at the penalty term for the i-th 

variable in a given view m, i.e., βm
i

2 = [αm(i), θm(i)] 2. It allows, to a certain extent, a high 

value for αm(i) (regression component) and a low insignificant value for θm(i) (cross-

correlation component). As a consequence, MT-CoReg provides a much more flexible 

framework in order to retain modality-specific variables. This issue is further addressed 

using a toy dataset in Section III-D.

In the next section, we explain how to solve the problem described in Eq.(7).

B. Optimization

Similar to the sCCA optimization procedure of Wilms et al. [24], we solve the problem from 

Eq.(7) by optimizing the βm’s alternatively over the iterations until convergence. Suppose 

we have initial values β1
∗, . . , βm − 1

∗ , βm + 1
∗ , . . , βM

∗  foe each modality except the m-th one, 

and we want to estimate βm.

min
βm

J(βm ∣ β[1: M] ∖ m
∗ ) = ym − Xmαm

2

2

+ ∑
q = 1
q ≠ m

M
yq − Xmθm

2

2

+ λ ∑
i = 1

pm
βm

i

2

(8)

where we define the following relevant quantities:

ym = (1 − γ)y

yq = γXqθq
∗ and

Xm = (1 − γ)Xm

Xm = γXm
(9)

Obviously, Eq.(8) is a classical group-lasso regression problem[16] (cf. Eq.(2)). It is easy to 

show that updating β1 reduces to solving a similar problem. The general optimization 

procedure to apply MT-CoReg is described in Algorithm 1.
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Algorithm 1: MT-CoReg Algorithm: alternate minimization are performed, which consist of successive multi-
task regression problems.

1:Input: Standardized data matrices X1, X2, phenotype

vector y, and parameters λ, γ .
2:Initialize:α1, . . , αM using ridge regression and β1, . . , βM

using ridge CCA.
3: for k = 0 to Convergence do
4: for m = 1 :1 : M do
5: Solve for βm = [αm, θm]

min
βm

J(βm ∣ β[1: M] ∖ m]
∗ ) = ym − Xmαm

2

2

+ ∑
q = 1
q ≠ m

M
yq − Xmθm

2

2

+ λ ∑
i = 1

pm
βm

i

2

(10)

where
ym = (1 − γ)y

yq = γXqθq
∗ and

Xm = (1 − γ)Xm

Xm = γXm
(11)

6: end for
7:end for

C. Parameter selection

Solving problem from Eq.(7) requires the estimation of the two key parameters λ and γ, 

which respectively control the weights of the sparsity and the co-expression regularization 

terms. Several strategies can be considered for their estimation: cross-validation, Bayesian/

Akaike Information Criterion (BIC, AIC), or stability selection. In this work, we rely on 

cross-validation, which is probably one of the most commonly used methods for model 

selection. Indeed, cross-validation has the advantage of providing a direct estimate of the 

error using the resulting features as predicting variables. Interestingly, it has been shown[25] 

that under a few assumptions cross-validation and AIC are asymptotically equivalent. 

Another motivation to use cross-validation over AIC/BIC is that the latter depends on prior 

knowledge, e.g., making the assumption that the population at hand is a good representative 

of the real population’s distribution. On the other hand, cross-validation simulates the 

behavior of our method when facing ‘new’ data. Finally, although we relied on stability 

selection in our previous work[14] using MT-CoReg in the context of schizophrenia, it 

proved to be computationally more expensive. Indeed, stability selection usually require a 

substantial amount of resampling (compared to a standard k-fold cross-validation scheme).

D. MT-CoReg VS. CoReg

As mentioned earlier in Section III-A, the proposed MT-CoReg estimator can be seen as an 

extension of the previously introduced model (CoReg) by Gross et al. [13]. In order to 
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illustrate the advantages of MT-CoReg vs. CoReg, we propose to first use a simple toy 

dataset and compare the results obtained by both methods. We generated M = 2 data 

matrices X1, X2 from Normal distribution made of p1 = p2 = 25 variables and n = 25 

observations. We used a latent variable model to simulate cross-correlated components so 

that columns i ∈ [10, .. 15] of X1, X2 are mutually co-expressed, i.e., there exist θ1, θ2 ∈ ℝ25

such that corr(X1θ1, X2θ2) is non zero. We further use columns i ∈ [1, ..5] ∪ [10, ..15] to 

generate a phenotype vector y, i.e., there exist α1, α2 ∈ ℝ25 such that y ≈ X1α1 + X2α2. 

With such setup, columns i ∈ [10, ..15] correspond to both non-zeros values in the true 

canonical vectors θ1, θ2 and the true regression vectors α1, α2. However, their values are 

different. Profiles of each true vectors θ1
∗, θ2

∗, α1
∗, α2

∗ can be seen in fig.2(a-b) (and replicated 

in fig.2(c-d) for ease of comparison with the estimations bellow), where the blue and red 

curves are the values taken by the canonical and regression coefficients respectively. 

Solutions produced by MT-CoReg for γ = 0, γ = 0.25 and γ = 1 can respectively be seen in 

fig.2(e-f), fig.2(i-j) and fig.2(m-n). Solutions produced by CoReg for the same γ values can 

respectively be seen in fig.2(g-h), fig.2(k-l) and fig.2(o-p). As expected, it can be observed 

that for γ ∈ {0; 1}, both MT-CoReg and CoReg produce identical solutions and are 

essentially equivalent to Lasso or sparse CCA. It is however more interesting to compare 

both methods for γ ∈]0,1[. In such case indeed, both correlated and predictive components 

are jointly estimated. When comparing fig.2(i-j) and fig.2(k-l), it is obvious that, in such 

setup, relaxing the assumption that regression and canonical coefficients have identical 

values allows a finer estimation of each true factors θ1
∗, θ2

∗, α1
∗, α2

∗. This can be further 

observed as the AUC values for predictive components and cross-correlated components are 

respectively (0.99, 0.9850) for MT-CoReg, and (0.94,0.78) for CoReg. In our opinion, this 

illustrates the fact that MT-CoReg has a wider scope than the original CoReg estimator.

Going back to the issue raised in Section III-A, we can further compare results from fig.2(i)-

(l). In both modalities, the first five variables have non zero components in the regression 

parameters, and are also ‘modality-specific’ as their cross-correlation with variables from 

the other view is zero. However, we can observe in fig.2(i)-(j) that they are still properly 

estimated by MT-CorReg’s α components (at least, as well estimated as when using 

regression), while the associated θ values are near zeros. In comparison, the estimation of 

the first 5 variables produced by CoReg in fig.2(k)-(l) is much more distorted or contains 

more noise. This illustrates the greater flexibility provided by MT-CoReg regarding the 

estimation of modality-specific variables.

IV. Experiments

In this section, we evaluate the proposed MT-CoReg estimator from Eq.7. Performance is 

assessed in terms of feature selection relevance on both simulated and real data.

A. Results on synthetic data

For our first test, to further validate MT-CoReg, we simulate both fMRI and SNP datasets, 

made of n = 200 subjects and respectively p1 = p2 = 1000 components. Genomic values are 

coded as 0 (no minor allele), 1 (one minor allele), and 2 (two minor allele), while voxels 
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values are drawn from the Normal distribution. Similar to the toy dataset from Section III-D, 

we start by generating two sparse canonical vectors θ1 ∈ ℝ
p1, θ2 ∈ ℝ

p2 such that their first 

100 components are from the Normal distribution while the rest is zero. Cross-correlated 

voxels are drawn from 𝒩(θ1
∗y, I p1

), while cross-correlated SNP are drawn from 

ℬ(2, logit−1( − ai + logit(ηi))) where a is issued from 𝒩(θ2
∗y, I p2

), and η represents the minor 

allele frequency and is drawn from a uniform distribution 𝒰([0.2, 0.4]). In addition, 

regression vectors α1
∗ ∈ ℝ

p1, α2
∗ ∈ ℝ

p2 for both genomic and brain imaging data are also 

generated: components i ∈ [1, 100] ∪ [500, 600] of α1
∗, α2

∗ are drawn from Normal 

distribution, while the rest is set to zero. Furthermore, binary phenotype vector y is 

generated from ℬ(1, di), where di =
exp(5∑m = 1

M Xmαm
∗ )

1 + exp(5∑m = 1
M Xmαm

∗ )
 Finally, the noise level is adjusted 

so that corr(X1θ1, X2θ2) ≈ 0.3. The resulting datasets are such that their first 100 

components are both predictive and cross-correlated. However, their respective coefficients 

in the regression and cross-correlation parts have different values.

A common way to assess the performance of a model when it comes to feature selection is 

to measure the true positive rate (TPR) and false positive rate (FPR). TPR reflects the 

proportion of variables that are correctly identified, while FDR reflects the proportion of 

variables that are incorrectly selected by the model. We can further combine both of these 

metrics by plotting the receiver operating characteristic curve, or ROC curve, with the FPR 

values on the x-axis and the TPR values on the y-axis. Finally, one can compute the area 

under the (ROC) curve, or AUC, in order to further summarize the selection power of a 

model. We apply both MT-CoReg and CoReg to 100 random generations of the dataset 

described above. A range of values is considered such that γ ∈ {0, 0.25, 0.5, 0.75, 1} from 

Eq.(7) that weights the CCA term against the regression one. The AUC values for MT-

CoReg and CoReg for both predictive and cross-correlated components can respectively be 

seen in fig.3(a) and fig.3(b) for different γ and λ values.

By comparing AUC curves from fig.3(a), we can observe that, as expected, Lasso (i.e., γ = 

0) performs better when it comes to selecting the predictive features, while sparse CCA (i.e., 

γ = 1) is doing rather poorly. On the other hand, we can see in fig.3(b) that sparse CCA 

selection accuracy when it comes to the cross correlated components is much higher than the 

one from Lasso. Interestingly, we can observe that, for 0 < γ < 1, MT-CoReg effectively 

combines both CCA and Lasso models. Indeed, both predictive and cross-correlated features 

are reasonably well estimated. This confirms our hypothesis that using a mix of both Lasso 

and sparse CCA may lead to an efficient feature selection accuracy. In addition, when 

comparing results from MT-CoReg and the ones obtained using CoReg (solid lines vs. 

dashed lines), we can see that AUC values are on average higher when using MT-CoReg. To 

our opinion, this also illustrate the benefits provided by the proposed multi-task model MT-

CoReg. By providing more flexibility to the model, we are able to obtain more accurate 
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estimates. In the next section, we apply MT-CoReg to a real dataset of fMRI and SNP data 

for the study of learning ability.

B. Results on real imaging genetics data

1) Data acquisition: The Philadelphia Neurodevelopmental Cohort[26] (PNC) is a 

large-scale collaborative study between the Brain Behaviour Laboratory at the University of 

Pennsylvania and the Children’s Hospital of Philadelphia. It contains, among other 

modalities, a fractal n-back fMRI task, SNP arrays and computerized neurocognitive battery 

(CNB) performances data for nearly 900 adolescents with age from 8 to 21 years. In order to 

limit the influence of age over the results, we selected a subset of the full dataset such that 

the remaining ages are above 160 months (n = 571 subjects).

Standard brain imaging preprocessing steps were applied to the fractal n-back fMRI data 

using SPM121, including motion correction, spatial normalization to standard MNI space 

(spatial resolution of 2 × 2 × 2mm, adult template) and spatial/temporal smoothing with a 

3mm FWHM Gaussian kernel. Stimulus-on versus stimulus-off contrast images were 

extracted. After removing voxels missing more than 1% data, p1 = 85796 voxels were left 

for analysis.

SNP arrays were acquired using 6 different platforms. We kept subjects genotyped by the 4 

most commonly used platforms, all manufactured by Illumina. After standard data cleaning 

and preprocessing steps using the PLINK software package2, p2 = 98804 SNP were left for 

analysis. Each SNP was categorized into three clusters based on their genotype and was 

represented with discrete numbers: 0 for no minor allele, 1 for one minor allele and 2 for 

minor alleles. Merging data from different SNP chips in order to jointly analyze them is a 

well-known difficult problem, as it may result in spurious associations due to chip effects. 

This issue is addressed in the supplementary material3 (Appendix A. SNP Chip effects on 
the real data analysis).

Finally, all subjects underwent a 1-hour long computerized assessment battery adapted from 

tasks applied in functional neuroimaging studies to evaluate a broad range of cognitive 

domains. Data include both accuracy and speed information for each test. For this work, we 

relied on performance scores (ratio of total correct responses) from the wide range 

achievement test (WRAT), which measures an individual’s learning ability (reading, 

spelling, and mathematics) and provides an estimate of IQ. We first convert WRAT scores to 

z-scores based upon each subject’s raw score and the sample mean in order to provide a 

standard metric. We then only keep subjects whose absolute z-score value for PVRT test was 

above z* = 0.5. Our motivation was to perform feature selection using MT-CoReg on a 

population made of exclusively low and high achievers in terms of learning ability. This way, 

we hope to extract features that explain the variance between these two groups in a more 

robust way than if the whole spectrum is considered. After all these steps, we were left with 

n = 362 subjects separated in two groups: low achievers at WRAT (age 16.7 ± 1.91 years, 

1http://www.fil.ion.ucl.ac.uk/spm/
2http://pngu.mgh.harvard.edu/purcell/plink
3Supplementary materials are available in the supplementary files /multi-media tab.
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104 females out of 175 subjects) and high achievers (age 17.1 ± 1.92 years, 98 females out 

of 187 subjects). Differences among a population in terms of cognitive function are (at least 

partially) due to both genomic heritability and neurological attributes. On the one hand, 

GWAS studies have been conducted[27] to investigate links between SNP data and cognitive 

measures. On the other hand, numerous neuroimaging studies[28], [29] have been relying on 

working memory activity patterns using n-back task fMRI data, as working memory is 

hypothesized to be closely related to general fluid intelligence learning performances. In this 

work, we perform a joint analysis using both genomic and brain imaging data.

2) Quantitative analysis: As mentioned in Section.III-C, we rely on cross-validation to 

chose appropriate values for parameters γ and λ. Since the proposed MT-CoReg model is a 

combination of Lasso and sparse CCA, we can rely on two classical error metrics:

•
The ‘normalized’ Residual Sum of Squares (RSS) i.e., 1

n

∑i = 1
n (yi − f (xi))

2

∑i = 1
n (yi − y‒)2

 where 

f(xi) is the predicted value for the i-th sample and y‒ is the sample mean of the yi, 

i = 1, .., n.

• The cross-correlation corr(X1θ1, X2θ2).

Both of these metrics are estimated on a test set that hasn’t been used during training. We 

display in fig.4 the associated RSS (c.f. fig.4(a)) and cross-correlation (c.f. fig.4(b)) values 

averaged over a cyclical 10-fold cross-validation setup for both MT-CoReg (solid lines) and 

CoReg (dashed lines). The respective parameters’ search ranges are λ ∈ [10−6, 101] and γ = 

{0, 0.5, 0.75, 0.99, 0.999, 1}. One main issue of sparse learning based approaches such as 

MT-CoReg is the instability. To address this issue, standard error values for fig.4 are 

provided as supplementary material4 in Appendix B.

The authors would like to point out that in practice, relying on a nested cross-validation over 

the hyper-parameters is likely to further improve the results. However, in the context of this 

paper we decided to provide error values for fixed choices of both parameters. One 

advantage is that it provides a detailed parameter space exploration and allows one to clearly 

observe the effects of various parameter choices over the results. Furthermore, such analysis 

can provide a well motivated starting point to further derive a reasonable range for the 

parameter space, in order to reduce the computational burden of a nested cross-validation 

scheme over the full parameter space. Another interesting point is that, in order to perform a 

nested cross-validation, one needs to define a single ‘optimality metric’. Such metric will 

likely combine both RSS and cross-correlation values (although other metrics can be 

defined). However, a proper combination of both these quantities is likely to strongly depend 

on the specific type of analysis one is carrying out. Indeed, in the case of imaging genomics, 

correlation between SNP and neuroimaging data is usually fairly low. But, for a different 

application on other data types, such correlation might be much stronger. In that case, 

depending on the behavior of the RSS error, proper scaling between both RSS and cross-

correlation might be required.

4Supplementary materials are available in the supplementary files /multi-media tab.
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We can first observe from fig.4(a) that, apart from γ values very close to 1, very similar 

minimal RSS values are obtained, although for various sparsity level. Indeed, it appears that 

the higher γ is, the lower the optimal λ value should be. This can probably be explained due 

to the fact that for a given fixed λ value, increasing γ will lead to sparser solutions, as we 

noticed during our tests on this dataset. In addition, we can observe that γ ≈ 1 does not 

allow the model to select features producing low RSS values. This make sense, as in this 

case, we are essentially applying a CCA model to the data. Looking at fig.4(b), we can 

observe that, as expected, increasing γ leads to higher cross-correlation values on the test 

set. We can observe that for γ ∈ {0.5, 0.75}, we do obtain higher cross-correlation values 

than for standard Lasso (i.e., γ = 0) when the sparsity weight is low. However, when looking 

at the corresponding RSS values from the similar range in terms of λ values in fig.4(a), we 

can see that the price to pay for an increase in cross-correlation is a significant increase in 

terms of RSS. Interestingly, we can pay more attention to the point (γ*, λ*) = (0.99, 10−2) 

in the parameter space, at which both straight, black dashed lines cross: while its associated 

RSS value is similar to the one of Lasso (and even slightly lower), the correlation value is 

such that corr(X1θ1, X2θ2) ≈ 0.35. This is significantly higher than the maximal cross-

correlation value produced by Lasso over the whole λ range, which is the benchmark we are 

principally trying to compare MT-CoReg with. Furthermore, we can also compare MT-

CoReg to standard sparse CCA (i.e., γ = 1). We can see that the maximal cross-correlation 

values produced by both methods (c.f λ ≈ 10−1 for MT-CoReg and λ ≈ 10−2 for sparse 

CCA) are similar. However, for such λ value, the increase in RSS for MT-CoReg is 

significant. Since in this work, we essentially rely on the CCA term as a regularization term 

to the standard Lasso, we think prioritizing a drop in RSS makes more sense. As a 

consequence, for our test on the PNC dataset, we retain (γ*, λ*) = (0.99,10−2) as optimal 

parameter values, since it provides both low RSS and high cross-correlation values.

It is interesting to further compare the performances of MT-CoReg and CoReg on the real 

data when looking at fig.4. From fig.4(a), we can observe that both methods display similar 

behavior for γ ∈ [0, 0.75]. However, for higher γ values, it is obvious thatMT-CoReg 

outperforms CoReg in term of predictive power. In our opinion, this demonstrates the benefit 

of a using a more flexible model that allows discrepancies between regression and CCA 

components. On the other hand, as it can be observed in fig.4(a), cross-correlation 

performances are fairly similar for both methods.

In addition to comparing RSS and cross-correlation values, we further analyzed the features 

retained by MT-CoReg using a support vector machine[30] (SVM) classifier. fig.5 shows the 

results of a ten-fold cross validation using MT-CoReg. We also provide classification results 

obtained using a simple uni-variate feature selection scheme: for each feature, a t-test is 

applied to look for differences across classes. We then rank the features according to the 

resulting p-values, and apply a threshold so that we only keep the features that appear to be 

the best at separating classes (the threshold is chosen so that the resulting number of features 

is the same as the one selected by a standard Lasso model). We can observe that the value of 

γ seems to have little influence over the classification results. However, it is interesting to 

note that MT-CoReg appears to be better than a simple t-test based procedure in terms of 

selecting features that properly separate both classes. Furthermore, when looking at 
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classification error rates resulting from the t-test based procedure, we can observe that using 

both fMRI and SNP together is more efficient than performing unimodal classification.

3) Significance analysis: In order to achieve a stable feature selection process, we 

perform N = 100 random resamplings with replacement out of the 362 total subjects. At the 

k-th random sampling, we can calculate a set of solution vectors βm
k , m ∈ {1, 2}. It is then 

possible to define a measure of relevance pm
i  for the i-th feature in the m-th dataset such that: 

pm
i = 1

N ∑k = 1
N I(βm

k (i) ≠ 0) where i = 1, .., dm is the feature index and I(·) is the indicator 

function. We can then rank each SNP and voxel based on their associated relevance measure 

and apply a cut-off threshold of 0.9 (i.e., each of the final features have been selected at least 

in 90% of the runs). After applying this significance test, we were left with a subset of 5 

SNPs spanning 5 genes and 25 voxels. Following the ROI definition of the AAL parcellation 

map[31], the selected voxels mostly come from regions such as the inferior frontal gyri, the 

occipital gyri, and the right rolandic operculum. A more inclusive list of selected brain 

regions can be seen in fig.6, where we displayed the voxels selection heatmap across the 100 

runs of MT-CoReg on the resampled data. In addition to the previously mentioned ROIs, we 

can see that the selected voxels mostly come from areas such as the medial frontal gyri, 

superior temporal gyrus, superior parietal lobules and calcarine.

Based on the two sets of features from each modality selected by MT-CoReg, we compute in 

fig.7 the resulting pairwise SNP-voxel cross-correlation heatmap. In addition, we display a 

similar heatmap for the features resulting from a standard Lasso estimator. Note that in the 

case of Lasso, no features were left after applying the 0.9 threshold to each pm
i . As a 

consequence, in order to perform a fair comparison, we simply retained the 5 most selected 

SNP and the 25 most selected voxels. First of all, we can observe that the heatmap resulting 

from MT-CoReg displays significantly higher absolute cross-correlation values than the one 

produced by Lasso. Additionally, the heatmap associated with MT-CoReg appears much 

more structured: we can clearly see various ‘blocks’ of positive and negative correlation 

values that seem to somehow follow the voxels group definition from the AAL template.

Interestingly, there seems to be two specific correlation patterns among the features selected 

by MT-CoReg. For a given gene, the correlation values with the frontal, occipital, parietal 

and pre-central ROIs will systematically be of opposite sign than the correlation between the 

same gene and the rolandic operculum5. Such interesting behavior cannot be observed from 

the correlation heatmap associated with Lasso, as in that case no voxels from the rolandic 

operculum belong to the final list of selected features. To opinion, this illustrates one of the 

advantages provided by using a CCA regularization term within a standard Lasso 

formulation.

Some of the selected features have been reported by other similar studies. For example, the 

role of the prefrontal cortex in working memory and general fluid intelligence has been 

5The authors would like to point out that when drawing the heatmaps, the lexical order of each voxels from AAL template was used, 
i.e., we did not permute the heatmap rows in order to make these blocks appear artificially.
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established by Kane et al.[29]. In addition, Li et al.[32] reported positive correlation between 

working memory scores (a key component of general fluid intelligence and learning ability) 

and gray matter volumes from Rolandic and Inferior frontal areas. The role of histone lysine 

acetylation deacetylases (HDACs) as a negative cognition regulator in multiple brain regions 

has been characterized by Penney[33]. HDAC inhibitors are considered as promising 

candidates to establish treatment to prevent cognitive decline associated with aging, as well 

as various neurodegenerative diseases. Finally, Kim et al. found that SNPs associated with 

PARD3 gene were significantly associated with neurological diseases such as 

schizophrenia[34].

V. Conclusions

The main contributions of this paper can be summarized as follows. First, we proposed a 

novel variable selection approach using a CCA-inspired regularization term in order to 

enforce co-expression between modalities when using standard Lasso estimator. Secondly, 

we present an efficient algorithm to optimize the associated minimization problem, as well 

as potential strategies to estimate the tuning parameters. Using simulation studies, we 

demonstrate the advantages of MT-CoReg over a previous formulation (CoReg) from Gross 

et al.[13]. On top of that, detailed experiments were conducted on a real dataset of 

adolescents for the study of learning ability and cognitive potential. Sets of SNP and voxels 

were identified, which can be further validated from associated studies. A comparison of the 

resulting cross-correlation heatmap demonstrated the benefits of our approach compared to 

standard Lasso in terms of feature selection.

A definite and robust parameter selection for MT-CoReg still remains an open problem. In 

our previous work[14], stability selection provided a satisfactory operating point. Here 

cross-validation turned out to be simpler and more stable. This might be due to the fact that 

the correlation between SNP and brain data is overall stronger in this dataset. Although 

cross-validation provided good practical results, we will continue to work on improving this 

aspect of the model.

We can further develop the MT-CoReg model and replace the standard Lasso fit term with a 

logistic or hinge loss one[30]. Such terms have indeed been specifically developed to 

perform classification tasks, and would potentially avoid the use of an ‘a posteriori’ 

classification step. Finally, the interpretation of the resulting SNP-Voxels interactions should 

be further confirmed via replication studies as well as the use of more robust and general 

neurocognitive phenotypes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: An illustrative comparison between MT-CoReg and CoReg [13].
α*, θ* are the ideal regression and canonical vectors for one dataset (M = 2 here). CoReg 

produces a single solution β, while MT-CoReg estimation is represented by two components 

α, θ. In this situation, where coefficients between the predictive and cross-correlated 

components (e.g. first 3 and last 2 features) are different, CoReg fails by trying to 

simultaneously represent both with a single component. On the other hand, MT-CoReg is 

flexible enough to properly estimate both components correctly.
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Fig. 2: A comparison between MT-CoReg (left side of the vertical line) and CoReg (right side of 
the vertical line) on a toy dataset.
(a-b) and (c-d): true canonical vectors (red) and regression vectors (blue) for each view 

(replicated for easier comparison with estimations bellow). (e-f): solution produced by MT-

CoReg for γ = 0. (g-h): solution produced by CoReg for γ = 0. (i-j) solution produced by 

MT-CoReg for γ = 0.25. (k-l): solution produced by CoReg for γ = 0.25. (m-n) : solution 

produced by MT-CoReg for γ = 1. (o-p): solution produced by CoReg for γ = 1. 

Components i ∈ [10, .. 15] correspond to both non-zeros values in the true regression and 

canonical coefficients, although their coefficient values are different. By relaxing the 

assumption that regression and canonical coefficients have identical values, MT-CoReg 

allows a finer joint estimation of both components (i.e., regression and correlation) 

compared to CoReg for 0 < γ < 1. For γ ∈ {0; 1}, both methods produce identical solutions 

and are essentially equivalent to Lasso (γ = 0) or sparse CCA (γ = 1).
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Fig. 3: A comparison between MT-CoReg (solid lines) and CoReg (dashed lines) on a simulated 
dataset for variable selection.
AUC values for each cross-correlated and predictive components, for various values of the 

parameter γ are used. (a): AUC value relative to predictive components α1
∗, α2

∗ for both MT-

CoReg and CoReg. (b): AUC value relative to cross-correlated components θ1
∗, θ2

∗ for both 

MT-CoReg and CoReg. We can observe from (a-b) that 0 < γ < 1 produce interesting 

solutions compared to γ = 0 (standard Lasso) and γ = 1 (sparse CCA). For example, when γ 
= 0.25, MT-CoReg is able to efficiently select the real non zero features from both predictive 

and cross-correlated components. Overall, when comparing solid and dashed lines, we can 

observe that MT-CoReg produces higher AUC values that CoReg.
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Fig. 4: Error metrics (averaged over 10-fold cross-validation) on the test sets for different 
parameter (γ, λ) values, for both MT-CoReg (solid lines) and CoReg (dashed lines).
(a) Normalized RSS (b) Cross-correlation values. The crossing straight, black dashed lines 

indicate the RSS and cross-correlation values corresponding to the parameters values we 

retain (γ* = 0.99, λ* = 10−2) for our analysis. While the resulting RSS value is comparable 

(and even slightly lower than) the one produced by Lasso (γ = 0), the associated cross-

correlation value is significantly higher.
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Fig. 5: 
Classification error (%) for different γ values, and comparison with unimodal and 

multimodal t-test based (univariate) feature selection. We can observe that the value of γ 
seems to have little influence over the classification results.
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Fig. 6: 
Voxel selection probability heatmap (spatially smoothed for the sake of visualization). 

Some of the most highlighted regions include: inferior and medial frontal gyri, superior 

temporal gyrus, superior parietal lobules, right rolandic operculum, and calcarine.
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Fig. 7: 
Cross-correlation heatmaps between selected voxels (rows) and genes (columns). (left) 
heatmap associated with MT-CoReg. (right) heatmap associated with standard Lasso. We 

can observe that the heatmap resulting from MT-CoReg displays much higher absolute 

values compared to the one resulting from Lasso. Additionally, it is also much more 

structured, as blocks of positive and negative correlation values following the brain ROIs 

definition can be seen.
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