
RESEARCH ARTICLE

Deep convolutional neural networks for

segmenting 3D in vivo multiphoton images of

vasculature in Alzheimer disease mouse

models

Mohammad Haft-JavaherianID
1, Linjing Fang1, Victorine MuseID

1, Chris B. Schaffer1,

Nozomi Nishimura1, Mert R. SabuncuID
1,2*

1 Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United

States of America, 2 School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, United

States of America

* msabuncu@cornell.edu

Abstract

The health and function of tissue rely on its vasculature network to provide reliable blood

perfusion. Volumetric imaging approaches, such as multiphoton microscopy, are able to

generate detailed 3D images of blood vessels that could contribute to our understanding of

the role of vascular structure in normal physiology and in disease mechanisms. The seg-

mentation of vessels, a core image analysis problem, is a bottleneck that has prevented the

systematic comparison of 3D vascular architecture across experimental populations. We

explored the use of convolutional neural networks to segment 3D vessels within volumetric

in vivo images acquired by multiphoton microscopy. We evaluated different network archi-

tectures and machine learning techniques in the context of this segmentation problem. We

show that our optimized convolutional neural network architecture with a customized loss

function, which we call DeepVess, yielded a segmentation accuracy that was better than

state-of-the-art methods, while also being orders of magnitude faster than the manual anno-

tation. To explore the effects of aging and Alzheimer’s disease on capillaries, we applied

DeepVess to 3D images of cortical blood vessels in young and old mouse models of Alzhei-

mer’s disease and wild type littermates. We found little difference in the distribution of capil-

lary diameter or tortuosity between these groups, but did note a decrease in the number of

longer capillary segments (>75μm) in aged animals as compared to young, in both wild type

and Alzheimer’s disease mouse models.

Introduction

The performance of organs and tissues depend critically on the delivery of nutrients and

removal of metabolic products by the vasculature. Blood flow deficits due to disease related

factors or aging often leads to functional impairment [1]. In particular, the brain has essentially

no energy reserve and relies on the vasculature to provide uninterrupted blood perfusion [2].
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Multiple image modalities can be used to study vascular structure and dynamics, each offer-

ing tradeoffs between the smallest vessels that can be resolved and the volume of tissue that

can be imaged. Recent work with several modalities, including photoacoustic microscopy [3],

optical coherence tomography [4], and multiphoton microscopy (MPM) [5], enable individual

capillaries to be resolved in 3D over volumes approaching 1mm3 in living animals. The analy-

sis of such images is one of the most critical and time-consuming tasks of this research, espe-

cially when it has to be done manually.

For example, in our own work we investigated the mechanisms leading to reduced brain

blood flow in mouse models of Alzheimer’s disease (AD), which required extracting topology

from capillary networks each with *1, 000 vessels from dozens of animals. The manual trac-

ing of these networks required *40× the time required to acquire the images, greatly slowing

research progress [6]. The labor involved in such tasks limits our ability to investigate the vital

link between capillary function and many different diseases. Many studies have shown ana-

tomical and physiological differences in microvasculature associated both with age and AD,

such as changes in composition of large vessel walls’ smooth muscles [7], increased collagen

VI in microvascular basement membranes and their thickening in AD [8], and age-associated

reduction of microvascular plasticity and the ability of the vessels to respond appropriately to

changes in metabolic demand [9].

In this paper, we consider the segmentation of vessels, a core image analysis problem that

has received considerable attention [10, 11]. As in other segmentation and computer vision

problems, in recent years deep neural networks (DNNs) have offered state-of-the-art perfor-

mance [12]. DNN approaches often rely on formulating the problem as supervised classifica-

tion (or regression), where a neural network model is trained on some (manually) labeled

data. For a survey on deep learning in medical image analysis, see a recent review by Litjens

et al. [12].

Here, we explore the use of a convolutional neural network (CNN) to segment 3D vessels

within volumetric in vivoMPM images. In vivoMPM imaging of blood vessels has the advan-

tage that it captures the size and shape of vessels without introducing artifacts from postmor-

tem tissue processing. However, blood flow generates features which must be accommodated

in the vessel segmentation. We conduct a thorough study of different network architectures

and machine learning techniques in the context of this segmentation problem. We apply the

final model, which we call DeepVess, on image stacks of cortical blood vessels in mouse models

of AD and wild type (WT) littermates. Our experimental results show that DeepVess yields

segmentation accuracy that is better than current state-of-the-art, while being orders of magni-

tude faster than the manual annotation (20-30 hours manual work vs. 10 minutes computation

time). The segmentation method developed in this work provides robust and efficient analysis

which enabled us to quantify and compare capillary diameters and other vascular parameters

from in vivo cortex images across multiple animals, with varying age as well as across WT mice

and AD models.

Related work

Blood vessel segmentation is one of the most common and time-consuming tasks in biomedi-

cal image analysis. This problem can either be approached in 2D or 3D, depending on the

specifics of the application and analytic technique. The most established blood vessel segmen-

tation methods are developed for 2D retinography [13] and 3D CT/MRI [11].

Among segmentation methods, region-based methods are well-known for their simplicity

and low computational cost [14]. For example, Yi et al. [15] developed a 3D region growing

vessel segmentation method based on local cube tracking. In related work, Mille et al. [16]

CNN-based segmentation of in vivo multiphoton images of vasculature in mouse models
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used a 3D parametric deformable model based on the explicit representation of a vessel tree to

generate centerlines. In recent years, these traditional segmentation methods have become less

popular and are considered to be limited in comparison to deep learning methods, because

they require handcrafted filters, features, or logical rules and often yield lower accuracy.

Today, in problems that are closely related to ours, various deep learning techniques domi-

nate state-of-the-art. For instance, in a recent Kaggle challenge for diabetic retinopathy detec-

tion within color fundus images, deep learning was used by most of the 661 participant teams,

including the top four teams. Interestingly, those top four methods surpassed the average

human accuracy. Subsequently, Gulshan et al. [17] adopted the Google Inception V3 network

[18] for this task and reached the accuracy of seven ophthalmologists combined. For retinal

blood vessel segmentation, Wu et al. [19] used a CNN-based approach to extract the entire

connected vessel tree. Fu et al. [20] proposed to add a conditional random fields (CRF) to

post-process the CNN segmentation output. They further improved their method by replacing

the CRF with a recurrent neural network (RNN), which allows them to train the complete net-

work in an end-to-end fashion [21]. Further, Maninis et al. [22] addressed retinal vessel and

optic disc segmentation problems using one CNN network and could surpass the human

expert.

There are 3D capillary image datasets in mice [14] and human [23] that were segmented

using traditional segmentation methods and have illustrated the scientific value of such infor-

mation, but few such datasets are available.

To the best of our knowledge, there are only two studies that used deep learning for our

problem: vascular image analysis of multi-photon microscopy (MPM) images. The first one is

by Teikari et al. [24] who proposed a hybrid 2D-3D CNN architecture to produce state-of-the-

art vessel segmentation results in 3D microscopy images. The main limitation of their method

was the use of 2D convolutions and 2D conditional random fields (CRF)s, which restrict the

full exploitation of the information along the third dimension. The second study was con-

ducted by Bates et al. [25], where the authors applied a convolutional long short-term memory

RNN to extract 3D vascular centerlines of endothelial cells. Their approach was based on the

U-net architecture [26], which is a well-known fully convolutional network [27] widely used

for biomedical image segmentation. Bates and colleagues achieved state-of-the-art results in

terms of centerline extraction; nevertheless, they reported that certain vessels in the images

were combined in the automatic segmentation. Finally, we consider the 3D U-Net [28], which

is the volumetric version of the U-net architecture [26] and is regarded by many as state-of-

the-art for microscopy image segmentation problems.

Data and methods

The proposed vasculature segmentation method for 3D in vivoMPM images, DeepVess, con-

sists of (i) pre-processing to remove in vivo physiological motion artifacts due to respiration

and heartbeat, (ii) applying a 3D CNN for binary segmentation of the vessel tree, and (iii)

post-processing to remove artifacts such as network discontinuities and holes.

Data

Animals. All animal procedures were approved by the Cornell University Institutional

Animal Care and Use Committee and were performed under the guidance of the Cornell

Center for Animal Resources and Education. We used double transgenic mice (B6.Cg-Tg

(APPswe, PSEN1dE9) 85Dbo/J, referred to as APP/PS1 mice) that express two human proteins

associated with early onset AD, a chimeric mouse/ human amyloid precursor protein (Mo/

HuAPP695swe) and a mutant human presenilin1 (PS1-dE9), which is a standard model of AD

CNN-based segmentation of in vivo multiphoton images of vasculature in mouse models
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and typically develops amyloid-beta plaque deposition around 6 months of age [29]. Littermate

WT mice (C57BL/6) served as controls. Animals were of both sexes and ranged in age from 18

to 31 weeks for young mice and from 50 to 64 weeks for the old mice (6 WT and 6 AD at each

age, for a total of 24 mice).

In vivo imaging of cortical vasculature. We use a locally-designed multiphoton micro-

scope [30] for in vivo imaging of the brain vasculature. Glass-covered craniotomies were

prepared over parietal cortex, as described previously [6, 31, 32]. For cranial window implanta-

tion and imaging, mice were anesthetized with 3% isoflurane and then maintained on 1.5%

isoflurane in 100% oxygen. Mice were injected with 0.05 mg/100g of mouse weight glycopyrro-

late (Baxter Inc.) or 0.005 mg/100g atropine (intramuscular 54925-063-10, Med-Pharmex

Inc.). At time of surgery as well as 1 and 2 days after mice received 0.025 mg/100g dexametha-

sone (subcutaneous 07-808-8194, Phoenix Pharm Inc.), and 0.5 mg/100g ketoprofen (intra-

muscular, Zoetis Inc.). Bupivacaine (0.1 ml, 0.125%, Hospira Inc.) was subcutaneously

injected at the incision site. Animals were injected with 1 ml/100g mouse 5% (w/v) glucose in

normal saline subcutaneously every hour during imaging and surgery. Body temperature was

maintained at 37 C with a feedback-controlled heating blanket (40-90-8D DC, FHC). Mice

were euthanized with pentobarbital overdose after their last imaging session.

We waited at least three weeks after the surgery before imaging to give time for the mild

surgically-induced inflammation to subside. Windows typically remained clear for as long

as 20 weeks. This technique allows us to map the architecture of the vasculature throughout

the top 500 μm of the cortex. Briefly, the blood plasma of an anesthetized mouse was labeled

with an intravenous injection of Texas Red labeled dextran (70 KDa, Life Technologies). The

two-photon excited fluorescence intensity was recorded while the position of the focus of a

femtosecond laser pulse train was scanned throughout the brain, providing a three-dimen-

sional image of the vasculature [30]. Imaging was done using 800-nm or 830-nm, 75-fs pulses

from a Ti:Sapphire laser oscillator (MIRA HP, pumped by a Verdi-V18, or Vision S, Coher-

ent). Lasers were scanned by galvonometric scanners and focused into the sample using a 1.0

NA, 20X water-immersion objective lens (Carl Zeiss, Inc.). Image stacks were acquired with

645/45 nm (center wavelength/bandwidth) bandpass filters. The ScanImage software pack-

age [33] was used to control the whole system. Image stacks were taken with a range of mag-

nifications resulting in lateral voxel sizes from 0.45 to 1.71 μm/pixel, but always 1 μm in the

axial direction.

Expert annotation. We implemented a protocol to facilitate the manual 3D segmentation

task using ImageJ, an open-source image processing software package [34] (supplementary

material). Two people, one expert and one less experienced, each manually segmented a

motion artifact corrected (see below), 256 × 256 × 200 voxels (292 × 292 × 200 μm3) image

from an AD mouse, independently, which took about 20 and 30 hours, respectively. The sec-

ond annotator was trained by the expert and then had several months of practice prior to per-

forming this task. These data were used to estimate inter-human segmentation variation. We

treated the expert labels as the “gold standard” segmentation and used the second annotator’s

labels to compare variability in manual segmentation. All other comparisons were made with

respect to the gold standard segmentation as the ground truth. This dataset was divided into

independent (i.e., non-overlapping) training, validation, and testing sub-parts (50%-25%-

25%), all spanning the entire depth of the stack. The training and validation datasets were used

in the optimization of CNN architectures, while the test dataset was kept unused until the end

of our architecture design optimization process and used for the final unbiased evaluation. We

repeated this process 4 times, by varying the test data and thus effectively conducting 4-fold

cross-validation. We note that architecture optimization was only done in the first fold. Addi-

tionally, six independent 3D images (different mice and different voxel size) acquired by Cruz

CNN-based segmentation of in vivo multiphoton images of vasculature in mouse models
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Hernéndez et al. [6] were labeled by an expert to examine the generalization of DeepVess. The

detailed properties of these images are in S3 Table. With this paper, we also have made all

images and expert annotations publicly available at: https://doi.org/10.7298/X4FJ2F1D.

Preprocessing

Motion artifacts caused by physiological movements are one of the major challenges for 3D

segmentation of in vivoMPM images. Furthermore, global linear transformation models can-

not compensate for the local nonuniform motion artifacts, for example, due to a breath occur-

ring part way though the raster scanning for an MPM image. In this study, we adopted the

non-rigid non-parametric diffeomorphic demons image registration tool implemented based

on the work of Thirion [35] and Vercauteren et al. [36]. Our approach is to register each slice

to the previous slice, starting from the first slice as the fixed reference. The diffeomorphic

demons algorithm aims to match the intensity values between the reference image and

deformed image, where cost is computed as the mean squared error. The smoothness prior on

the deformation field is implemented via an efficient Gaussian smoothing of gradient fields,

and invertibility is ensured via concatenation of small deformations. This kernel is effectively

encouraging the deformation field to be smooth, thus regularizing the ill-posed non-linear reg-

istration problem. Based on our experiments, a Gaussian kernel with the standard deviation of

1.3 was chosen for the regularization of the registration algorithm. Next, in our pre-processing

steps, the 1-99% range of the image intensities in the input image patch were linearly mapped

between 0 and 1, and the extreme 1% of voxels were clipped at 0 and 1. This step, we found,

helps with generalizing the model to work well with images taken from other MPM platforms

by adapting normalization parameters to the acquisition systems and image statistics utilizing

most of the intensity rang. To facilitate comparison between different datasets, image volumes

were resampled to have 1 μm3 voxel for comparisons.

Convolutional neural network architectures

Our aim in this work is to design a system that takes an input stack of images (in 3D) and pro-

duces a segmentation of vessels as a binary volume of the same size. For this task, as we elabo-

rate below, we explored different CNN architectures using validation performance as our

guiding metric. Our baseline CNN architecture starts with a 3D input image patch (tile),

which has 33 × 33 × 5 voxels (in x, y, and z directions). The first convolution layer uses a 7 × 7

× 5 voxel kernel with 32 features to capture 3D structural information within the neighbor-

hood of the targeted voxel. The output of this layer, 32 nodes of 27 × 27 × 1 voxel images, enter

a max pooling layer with a 2 × 2 kernel and 2 × 2 strides. Another convolution layer with 5 × 5

× 1 kernel and 64 features, followed by a similar max pooling layer are then applied before the

application of the fully connected dense layer with 1024 hidden nodes and dropout [37] with a

probability value of 50%. The output is a two-node layer, which represents the probability that

the pixel at the center of the input patch belongs to tissue vs. vessel. The CNN takes an input

3D patch and produces a segmentation label for the central voxel. All the convolution layers

have a bias term and rectified linear unit (ReLU) as the element-wise nonlinear activation

function. Starting from this baseline CNN architecture, we optimized the network architecture

hyperparameters with a greedy algorithm.

Different kernel sizes for the 3D convolution layers were explored in our experiments. Note

that each choice in the architecture parameters (including the kernel size) corresponded to a

different input patch size. As the validation results summarized in S1 Table indicate, the best

performing baseline architecture had an input patch size of 33 × 33 × 7. Based on this result we

chose an input patch size of 33 × 33 × 7 as the optimal field of view (FOV) for segmentation.

CNN-based segmentation of in vivo multiphoton images of vasculature in mouse models
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We then explored the effect of the number of convolutional and max pooling layers. As sum-

marized in S2 Table, the best architecture had three 3D convolution layers with a 3 × 3 × 3

voxel kernel, a max pooling layer, followed by two convolution layers with a 3 × 3 voxel kernel,

and a max pooling layer. The output of the last max pooling layer is reshaped to a fully-con-

nected layer followed by a 1024-node fully-connected layer and the last fully-connected layer,

which is reshaped to the output patch size. Note that there is no difference in spatial resolution

(i.e., voxel dimensions) between the input and output patches.

Finally, we investigated the performance for different output patch sizes, ranging from 1

voxel to 5 × 5 × 5 voxels and found that performance was improved further when the output is

the segmentation of the central 5 × 5 × 1 patch and not just a single voxel. A larger output area

has the advantage of accounting for the structural relationship between adjacent voxels in their

segmentation. The optimal CNN architecture scheme is shown in Fig 1.

Performance metrics

There are different performance metrics to compare agreement between an automated seg-

mentation method and a “ground truth” (GT) human annotation. In the context of binary

Fig 1. The optimal 3D CNN architecture. The field of view (FOV), i.e. the input patch size, is 33 × 33 × 7 voxels and the output is the segmentation of

the 5 × 5 × 1 patch (region of interest, ROI) at the center of the patch. The convolution kernels are 3 × 3 × 3 voxels for all the layers and ReLU is used as

the element-wise nonlinear activation function. The first three convolution layers have 32 channels and are followed by pooling. The second three

convolution layers have 64 channels. The output of convolution layers is 5 × 5 × 1 voxels with 64 channels, which is fed to a fully connected neural

network with a 1024-node hidden layer. The final result has 5 × 5 × 1 voxels with two channels representing the probability of the foreground and

background label associations.

https://doi.org/10.1371/journal.pone.0213539.g001

CNN-based segmentation of in vivo multiphoton images of vasculature in mouse models
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segmentation, the foreground (F) will be the positive class, and the negative class will corre-

spond to the background (B). Therefore, true positive (TP) can be measured as the total num-

ber of voxels where both the automatic and human segmentation labels are foreground. True

Negative (TN), False Positive (FP) and False Negative (FN) can be defined in a similar fashion.

Based on these, we can compute sensitivity and specificity. For example, sensitivity is the

percentage of GT foreground voxels that are labeled by the automatic segmentation (ASeg)

correctly. Mathematically, we have:

sensitivity ¼ Pðy ¼ FjGT ¼ FÞ ¼
TP

TP þ FN
ð1Þ

specificity ¼ Pðy ¼ BjGT ¼ BÞ ¼
TN

TN þ FP
ð2Þ

The Dice coefficient (DC), Jaccard index (JI), andmodified Hausdorff distance (MHD) are

another set of commonly used segmentation performance metrics. JI is defined as the ratio

between the number of voxels labeled as foreground by both GT and ASeg, to the total number

of voxels that are called foreground by either GT and ASeg. DC is very similar to JI, except it

values TP twice as much as FP and FN. JI and DC are useful metrics when the number of the

foreground voxels is much less than background and the detection accuracy of the foreground

voxels is more important compared to background voxel detection, which is the case for 3D

imaging of vasculature.

JI ¼ P y ¼ F \ GT ¼ F j y ¼ F [ GT ¼ Fð Þ ¼
TP

TP þ FPþ FN
ð3Þ

DC ¼
2� JI
1þ JI

¼
2� TP

2� TP þ FP þ FN
ð4Þ

On the other hand, MHD [38] quantifies accuracy in terms of distances between bound-

aries, which might be appropriate when considering tubular structures. For each boundary

point in image Aða 2 AÞ, the closest Euclidean distance (d(a, b) = ||a − b||2) to any boundary

point inside image Bðb 2 B) is first calculated, dða;BÞ ¼ minb2B jja � bjj2Þ. This is then aver-

aged over all boundary points in A : 1

Na

P
a2A dða;BÞ [39]. MHD is then defined as:

MHD ¼ max
1

Na

X

a2A

dða;BÞ;
1

Nb

X

b2B

dðb;AÞ

" #

ð5Þ

dða;BÞ ¼ minb2B jja � bjj2 ð6Þ

Note that in the segmentation setting, A and B can represent the foreground boundaries in

the automatic and GT segmentations, respectively. Finally, we can compute the MHD on cen-

terlines instead of boundaries, a metric we call MHD-CL.

Training and implementation details

In training our segmentation algorithms, we used a customized cross-entropy loss function

designed for our highly unbalanced datasets (where foreground voxels comprise only a small

fraction of the volume), measured over all voxels but TN (i 2 {TP, FP, FN}), defined as:

Loss ¼
X

i2fTP;FP;FNg

� ½yi log ðpiÞ þ ð1 � yiÞ log ð1 � piÞ� ð7Þ

CNN-based segmentation of in vivo multiphoton images of vasculature in mouse models
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yi is the GT label and pi is the model’s output as the probability of the target voxel i belonging

to the foreground. Note that in Eq (7), true negative voxels have no contribution, effectively

reducing the influence of the dominant background. We trained our model using Adam
stochastic optimization [40] with a learning rate of 10−4 for 100 epochs during architecture

exploration and a learning rate of 10−6 for 30,000 epochs during the fine tuning of model

parameters for the proposed architecture with mini-batch size of 1000 samples (based on

GPU memory constraints and results of our experiments with smaller mini-batch size, which

did not improve the optimization results). The fine tuning took one month on one NVIDIA

TITAN X GPU. We implemented our models in Python using Tensorflow™ [41].

Post-processing

CNN segmentation results contain some segmentation artifact such as holes inside the vessels,

rough boundaries, or isolated small objects. In order to remove these artifacts, the holes within

the vessels were filled. This was followed by application of a 3D mean filter with a 3 × 3 × 3

voxel kernel and the removal of small foreground objects, e.g. smaller than 100 voxels. This

result was used to compare to the gold standard.

Analysis of vasculature centerlines

To characterize the cortical vasculature of the experimental animals, we identified capillary

segments by calculating centerlines from the segmented image data. Our centerline extraction

method includes dilation and thinning operations, in addition to some centerline artifact

removal steps. The binary segmentation image was first thinned using the algorithm developed

by Lee et al. [42]. The result was then dilated using a spherical kernel with a radius of 5-voxels

to improve the vessel connectivity, which was followed by mean filtering with a 3 × 3 × 3

voxel kernel and removing holes from each cross section. Next, a thinning step was applied

again to obtain the new centerline result. The original segmented image was dilated using a

spherical kernel with a radius of 1-voxel to act as the mask for the centerlines with the goal of

improving the centerline connectivity. The following rules were applied to the resulting center-

lines repeatedly until no further changes could be done. A vessel is a segment between two

bifurcations.

1. Remove any vessels with one end not connected to the network (i.e., dead end) and with

length smaller than 11 voxels.

2. Remove single voxels connected to a junction.

3. Remove single voxels with no connections.

4. Remove vessel loops with length of one or two voxels.

Finally, the centerline network representation (i.e. nodes, edges, and their properties)

was extracted. (The centerline extraction was applied on both manual and automated

segmentations.)

Results

We conducted a systematic evaluation of several network architecture parameters in order to

optimize segmentation accuracy of images of mouse cortex vasculature from MPM. Features

of in vivoMPM images include motion artifacts due to respiration and heart beat. Because ves-

sels are visualized by an injection of dye that labels the blood plasma, unlabeled red blood cells

appear as dark spots and streaks moving through the vessel lumen (arrows in Fig 2). Images

CNN-based segmentation of in vivo multiphoton images of vasculature in mouse models
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are acquired by raster scanning through the tissue and each vessel is captures in several images.

The imaging speed has a significant influence on these features and in in vivo experiments,

imaging is often relatively slow, such that these features become prominent [43]. We empha-

size that our exploration was based on performance on the validation dataset and the final

results presented reflect the model accuracy on an independent test dataset. The detailed per-

formance results for some of the tested architectures are reported in S1 and S2 Tables. The

optimal architecture, DeepVess, was trained on the training data until the model accuracy

stopped improving and no overfitting was observed (30,000 epochs). S1 Fig shows the JI

learning curve over 30,000 epochs, for training, validation, and test datasets. The constant gap

between JI of the training and validation datasets, which represent generalization error, con-

firms that we are not strongly overfitting.

Furthermore, we implemented two state-of-the-art methods [24, 28], and an improved ver-

sion of the method of Teikari et al. [24], where we changed the 2D convolutional kernels into

3D kernels and inserted a fully connected neural network layer at the end, based on the sugges-

tion in the discussion of their paper. Table 1 summarizes the comparison between the perfor-

mance of our optimal architecture based on the 4-fold cross-validation results, with and

without the post-processing step, comparing to two state-of-the-art methods and a second

human annotator to provide a measure of the inter-human variability. These results, as well as

S1 Fig demonstrate that DeepVess outperforms the state-of-the-art methods [24, 28] in terms

of sensitivity, Dice index, Jaccard index, and boundary modified Hausdorff distance; and

approaches human performance in terms of Dice and Jaccard. The proposed method does not

outperform the benchmarks in specificity, indicating a slightly higher rate of false positive vox-

els. Yet we note that the relatively lower specificity is still very high (97%).

Fig 2. In vivo MPM images of a capillary. Because MPM images are acquire by raster scanning, images at different depths (z) are acquired with a time

lag (t). Unlabeled red blood cells moving through the lumen cause dark spots and streaks and result in variable patterns within a single vessel.

https://doi.org/10.1371/journal.pone.0213539.g002

Table 1. The comparison of our proposed CNN architecture (DeepVess), manual annotation by a trained person, and two state-of-the-art methods [24, 28] to the

gold standard of the expert human annotation based on the 4-fold cross-validation results.DeepVess surpassed both human annotator and two state-of-the-art meth-

ods in terms of sensitivity as well as Dice index, Jaccard index, and boundary modified Hausdorff distance, which are the three metrics that are widely used in

segmentation.

Sensitivity Specificity Dice Jaccard MHD
Second human annotator 81.07% 98.70% 82.35% 70.40% 1.50

Original Teikari et al. [24] 62.44% 98.65% 69.69% 55.06% 3.20

Çiçek et al. [28] 70.01% 98.21% 72.69% 59.41% 3.55

Improved [24] in this study 69.55% 98.39% 74.03% 59.96% 3.16

DeepVess 89.91% 97.00% 81.62% 69.13% 2.26

DeepVess with post-processing 89.95% 97.00% 81.63% 69.15% 2.25

https://doi.org/10.1371/journal.pone.0213539.t001
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In MPM, the variation in the signal to noise as a function of imaging depth leads to changes

in image quality between image slices. The performance of a segmentation method should

therefore be assessed by analyzing slices separately. Fig 3 illustrates the boxplot of slice-wise

Dice index values from the x-y planes within the 3D MPM image dataset. DeepVess had a

higher Dice index values in comparison to the Teikari et al. and the trained annotator’s results.

However, there was more variation compared to the other two results, which implies the possi-

bility and need for further improvements.

The generalization of the model was studied by testing an independent dataset annotated

by our expert consisting of 6 separate 3D MPM images acquired from 1 AD and 5 WT mice

(S3 Table) and the results are summarizes in S4 Table. DeepVess outperforms both the state-

of-the-art methods [24, 28] on the second dataset in terms of sensitivity, Dice index, Jaccard

index, and boundary MHD. Similar to the test dataset results, specificity was slightly lower.

These results illustrate the generalization of our model on new MPM images with different

image quality and captured from different mouse models and with different voxels sizes. Fig

4A illustrates the image intensity and three models overlaid on the image for a cross-section

extracted from a 3D image from the independent dataset (S4 Table #1). Fig 4B–4E are magni-

fied version of three cases within Fig 4A. The main sources of failure in the vessel segmenta-

tions of 3D in vivoMPM images are low SNR at deeper cross-sections (Fig 4C) and unlabeled,

moving red blood cells in the vessel lumen, which cause dark spots and streaks (Fig 4B and

4D). The patchy segmentations due to unlabeled red blood cells result in unconnected and

isolated vasculature centerlines and network. The DeepVess architecture has fully connected

layers and thus might be exploiting some spatially varying properties of the signal (as in the

variation of contrast as a function of depth) that a fully convolutional architecture such as

U-Net might not be able to exploit. Elsewhere, in the absence of such difficulties, all three mod-

els segment the vessels largely accurately.

Fig 3. Slice-wise Dice index of DeepVess vs. manual annotation by a trained person and the state-of-the-art

methods [24, 28] compared to the gold standard of the expert human annotation. The central red mark is the

median, and the top and bottom of the box is the third and first quartiles, respectively. The whiskers indicates the

range of data.DeepVess has higher median value in comparison to the Teikari et al. [24], Çiçek et al. [28], and the

human annotator (Wilcoxon signed-rank test, p = 2.98e − 23, p = 2.59e − 32, and p = 2.8e − 28, respectively).

https://doi.org/10.1371/journal.pone.0213539.g003
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Fig 4. Comparison of DeepVess and the state-of-the-art methods [24, 28] in a 3D image cross-section obtained from an

independent dataset (S4 Table #1) not used during the training. (A) An image frame with intensity in gray and overlay of

segmentation from each method. (B-E) magnified view of four cases within A. The three models overlaid on the complete 3D image is

made available online in Supplemental Materials. Scale bar is 50μm.

https://doi.org/10.1371/journal.pone.0213539.g004
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We next examined the quality of the vessel centerlines derived from the different segmenta-

tions. Using the centerline modified Hausdorff distance (CL MHD) as a centerline extraction

accuracy metric, DeepVess (CL MHD [DeepVess] = 3.03) is substantially better than the state-

of-the-art methods (CL MHD [Teikari et al.] = 3.72, CL MHD [Çiçek et al.] = 6.13). But there

is still room for improvement in terms of automatic centerline extraction as neither automatic

methods yielded scores as good as the trained human annotator (CL MHD [human annotator]

= 2.73). In order to test the accuracy of geometrical measurements, the vessel diameter, a sensi-

tive metric, was selected. We measured the diameter of 100 vessels manually by averaging ten

2D measurements per vessel to compare with the DeepVess’s results (S2 Fig). We observed that

there is no significant difference between manually measured diameters and DeepVess’s results

(paired t-test, n = 100, p = 0.34).

Discussion

The segmentation of 3D vasculature images is a laborious task that slows down the progress of

biomedical research and constrains the use of imaging in clinical practice. There has been sig-

nificant research into tackling this problem via image analysis methods that reduce or elimi-

nate human involvement. In this work, we presented a CNN approach, which surpasses the

state-of-the-art vessel segmentation methods [24, 28] as well as a trained human annotator.

The proposed algorithm, DeepVess, segments 3D in vivo vascular MPM images with more

than ten million voxels in ten minutes on a single NVIDIA TITAN X GPU, a task that takes 30

hours for a trained human annotator to complete manually.

In order to characterize the performance ofDeepVess, we compared the automated segmen-

tation to an expert manual segmentation (Fig 5). Here, we visualized three slices with different

qualities of segmentation results. The 3D rendering of the mouse brain vasculature shown in

Fig 5 indicates the location of these top, middle, and bottom slices representing typical high,

Fig 5. 3D rendering of (A) the expert’s manual and (B) DeepVess segmentation results. The top, middle, and bottom black plains correspond to the

high, medium, and low quality examples, respectively, which are analyzed further in the Discussion (Fig 6). Each volume is 256 × 256 × 200 voxels

(292 × 292 × 200 μm3).

https://doi.org/10.1371/journal.pone.0213539.g005
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medium, and low segmentation quality, respectively. Top layers are very similar, and differ-

ences are visible at the bottom layers, which have low SNR.

We used 50% dropout during test-time [44] and computed Shannon’s entropy for the seg-

mentation prediction at each voxel to quantify the uncertainty in the automated segmentation.

Higher entropy represents higher segmentation uncertainty at a particular voxel. The entropy

results together with the comparison between DeepVess and the expert segmentations for

those three planes are illustrated in Fig 6. The left column contains the intensity gray-scale

Fig 6. Comparison of DeepVess and the gold standard human expert segmentation results in image planes as shown in Fig 5. Imaging is generally

higher quality at planes closer to the sample surface. (Left column) Image intensity shown with gray scale after motion artifact removal. The dark spots

within the vessels are red blood cells that do not take up the injected dye. (Middle column) Comparison betweenDeepVess (red) and the expert (green)

segmentation results overlaid on images. Yellow shows agreement between the two segmentations. (Right column) Shannon entropy, which is a metric

ofDeepVess segmentation uncertainty computed with 50% dropout at test-time [44]. The boundaries of vessels with high entropy values, shown in

warmer colors, demonstrate the uncertainty ofDeepVess results at those locations. Scale bar is 50μm.

https://doi.org/10.1371/journal.pone.0213539.g006
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images of these examples. The segmentation results of the DeepVess and the expert are super-

imposed on the original gray-scale image with red (DeepVess) and green (the expert), as

shown in the middle column. Yellow represents agreement between DeepVess and the expert.

The right column shows the entropy of each example estimated via test time dropout. We

observe that, in general, DeepVess has higher uncertainty at the boundaries of vessels. The

disagreement with ground truth is also mostly concentrated at the boundaries. Images from

deeper within the brain tissue that often have lower image contrast and higher noise levels due

to the nature of MPM, suffer from more segmentation errors. These images can often be chal-

lenging even for expert humans. Arrows in Fig 6C highlight examples of these difficulties. The

error example 1 illustrates the case where the expert ignored bright pixels around the vessel

lumen based on their knowledge of the underlying physiology and experience with MPM

images of brain that postulate a rounded lumen instead of a jittery and rough lumen, despite

a very strong signal. The error example 2 illustrates a low intensity vessel junction that was

judged to be an artifact by humans based on experience or information from other image

planes. The error example 3 illustrates the case where a small vessel does not exhibit a strong

signal and it is not connected to another major vessel.

DeepVess implements pre- and post-processing tools to deal with in vivoMPM images that

suffer from different motion artifacts.DeepVess is freely available at https://github.com/mhaft/

DeepVess and can be used immediately by researchers who use MPM for vasculature imaging.

Also, our model can be fine-tuned further by adjusting the intensity normalization step to uti-

lize a different part of the intensity range and training samples for other 3D vasiform structures

or other imaging modalities. Similar to many machine learning solutions, DeepVess’s perfor-

mance depends on specific image features and the performance will degrade in cases where

the tissues are labeled differently (e.g. vessel walls are labeled instead of blood serum) or the

images intensities are concentrated in a small portion of the intensity range.

Although in vivomeasurements present unique challenges to image segmentation, such as

the red blood cell motion, in our case, we have shown that DeepVess successfully handles these

challenges. Postmortem techniques all change the vessel diameters in the tissue processing.

Hence, we believe that in vivo imaging is the best strategy to quantify vessel diameters. While

features such as topology and length might not be affected by postmortem processing, in vivo
imaging with MPM is important for capillary diameter measurements. Two-photon micros-

copy has been used to validate histology in many studies ([5, 14, 45–48]) and comparisons

with other labeling techniques are quite common.

While DeepVess offers very high accuracy in the problem we consider, there is room for fur-

ther improvement and validation, in particular in the application to other vasiform structures

and modalities. For example, other types of (e.g., non-convolutional) architectures such as

long short-term memory (LSTM) can be examined for this problem. Likewise, a combined

approach that treats segmentation and centerline extraction methods together, such as the

method proposed by Bates et al. [25] in a single complete end-to-end learning framework

might achieve higher centerline accuracy levels.

Application to Alzheimer’s mouse models

Capillary alteration caused by aging and Alzheimer’s disease

In vivo imaging with multiphoton microscopy of capillary beds is free of distortions in vessel

structure caused by postmortem tissue processing that can result in artifacts such as altered

diameters [5]. However, the images often suffer from poor signal to noise and motion artifacts.

An additional challenge is that unlabeled, moving red blood cells in the vessel lumen cause
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dark spots and streaks that move over time. Disease models are often especially challenging

because inflammation and tissue damage can further degrade imaging conditions.

Strong correlations between vascular health, brain blood flow and AD suggest that mapping

the microvascular network is critical to the understanding of cognitive health in aging [49]. To

explore this question, we imaged the cortical vascular networks in young and old mouse mod-

els of AD (young AD and old AD) and their young and old WT littermates (young WT and

old WT). Imaged volumes ranged from 230 × 230 to 600 × 600 μm2 in x-y and 130 to 459 μm
in the z direction. We imaged 6 animals per group, with at least 3000 capillary segments ana-

lyzed for each group.

The resulting 3D stacks of images were preprocessed, segmented with DeepVess, and post-

processed as discussed in the previous sections. Centerlines were extracted and individual ves-

sel segments were identified. To analyze capillaries while excluding arterioles and venules,

only vessel segments less than 10 μm in diameter were included [6, 50, 51]. For the vascular

parameters of segment length, diameter, and tortuosity considered here, previous work has

shown that AD mouse models have increased tortuosity in cortical penetrating arterioles as

compared to WT mice [52, 53]. Our analysis of capillaries excluded these vessels. Three met-

rics were selected to characterize the vascular network. For each capillary segment, we calcu-

lated the diameter averaged along the length (Fig 7A), the length (Fig 7B), and the tortuosity,

defined as the length divided by the Euclidean distance between the two ends (Fig 7C). The

distributions of capillary diameter, length, and tortuosity varied little between young and old

mice or between WT and AD genotype (Table 2). There were subtle shifts (*0.25 μm) in the

diameter distribution between groups, but no clear differences across old/young or WT/AD

and the differences in means were small compared to the standard deviation (6-27% of SD).

However, we observed a decrease in the number of longer length (>75μm) capillaries in older

animals as compared to young in both WT and AD mice shown by a rightward shift in the

cumulative distribution function curve (Fig 7B and Table 2).

Fig 7. Comparison of capillaries between young and old mice with WT and AD genotype (6 mice in each group). The relative probability and

cumulative distribution function (CDF) of the (A) diameters, (B) length, and (C) tortuosity based on all capillaries aggregated within each of the four

groups. We compared these metrics between the groups using Kruskal-Wallis test followed by Bonferroni multiple comparison correction [54]

(Table 2).

https://doi.org/10.1371/journal.pone.0213539.g007
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Aging and Alzheimer’s disease have little effect on capillary characteristics

Using a large database of vessel segments measured in three dimensions, we surprisingly

found only very small differences between groups that were dwarfed by the variance in capil-

lary diameter or tortuosity between young and old animals or between WT and AD mouse

models. The automation provided byDeepVess enabled the evaluation across a very large num-

ber of vessels in a large group size. The strong agreement between the measurements based on

DeepVess and the manual measurements by Cruz Hernéndez et al. [6], confirms that the pro-

posed pipeline yields unbiased and accurate metrics to analyze capillary segments. There was a

decrease in the number of long capillary segments in the aged animals compared to young in

both the WT and AD groups. Note that the reported metrics only represent the parietal region

of cortex and that regional variability can affect our results. These finding may not generalize

across all ages and mouse models of AD and could be different in other regions of the brain.

Sonntag et al. [1] argue that changes in vasculature due to aging might be non-linear and

multi-phasic. For instance, two studies showed that the capillary density increases during

adulthood and then declines in more advanced age [55, 56]. Several previous studies have

characterized the average diameters of cortical capillaries in mice, as summarized in Table 3,

show high variability in results, suggesting that methodological variations make comparison

between studies difficult. Other studies that compared AD models and WT also found negligi-

ble or no difference in capillary diameters. Heinzer et al. compared a different mouse model

(APP23) using MRA and found no difference between WT and AD mice [57]. The same

group also compared the effects of “VEGF overexpression” model and WT using SRμCT and

also found little difference [58].

There are a wide range of imaging approaches used in these various studies and data

from both live animal and postmortem analysis is included. It is possible that some of these

differences emerge when tissues are processed rather than measured in vivo as was done

here. Studies based on sectioned tissue sample the 3D vascular architecture differently so

it is difficult to make direct comparisons between datasets. Measures of capillaries depend

on the definition of capillaries. Here it was based on a threshold diameter of 10μm, which

could explain some of the variability in the literature. Not surprisingly given the differences

in approach and sample preparation, there is significant disagreement between reported

average diameters. Some differences may, however, reflect differences in vasculature across

strains and ages of animals.

Therefore, the proposed fully automated objective segmentation of 3D in vivo images of the

vasculature can be used to reduce the variability due to sample preparation and imaging/analy-

sis approach, allowing such strain and age differences to be elucidated clearly.

Table 2. Comparison between metrics distributions between different groups using Kruskal-Wallis test followed by Bonferroni multiple comparison correction. Δμ
is the difference between the mean values of the two tested groups.

Diameter (μm) Length (μm) Tortuosity

Δμ P-value Δμ P-value Δμ P-value

AD-Old vs. AD-Young 0.206 2.61E-7 7.908 7.5E-22 0.016 0.798

AD-Old vs. WT-Old 0.475 2.93E-27 2.787 0.055 0.019 0.645

AD-Old vs. WT-Young 0.095 1.20E-5 16.16 6.9E-67 0.018 0.321

AD-Young vs. WT-Old 0.269 6.39E-9 10.69 1.14E-27 0.035 0.027

AD-Young vs. WT-Young 0.110 0.012 8.252 9.12E-17 1.50E-3 1.000

WT-Old vs. WT-Young 0.379 1.1E-14 18.95 2.1E-63 0.037 0.036

https://doi.org/10.1371/journal.pone.0213539.t002
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Conclusions

Here, we presented DeepVess, a 3D CNN segmentation method together with essential pre-

and post-processing steps, to fully automate the vascular segmentation of 3D in vivoMPM

images of murine brain vasculature. DeepVess promises to expedite biomedical research on the

differences in angioarchitecture and the impact of such differences by removing the laborious,

time consuming, and subjective manual segmentation task from the analysis pipelines in addi-

tion to elimination of subjective image analysis results. We hope the availability of our open

source code and reported results will facilitate and motivate the adoption of this method by

researchers and practitioners.

Supporting information

S1 Text. Manual 3D segmentation protocol using ImageJ.

(PDF)

S1 Fig. Jaccard as a measure of the model accuracy. The DeepVess results surpass the trained

human annotator result at all three train, validation, and test datasets. The human annotator

and DeepVess results are shown in dashed and solid lines respectively. The constant difference

between DeepVess and the human annotator’s results confirm the avoidance of overfitting.

(TIF)

S2 Fig. The vessel diameters measured manually in comparison to the DeepVess’s results.

There is no significant difference between two measurements (paired t-test, n = 100, p = 0.34).

(TIFF)

S1 Table. The results of investigating different field of view sizes.

(PDF)

Table 3. Comparison of measured mouse capillary diameters from different studies.

Study Background Trans gene Phenotype Age (week) Imaging Modality VesselDiameter

This study C57/BL6 - WT 18-31 in vivo 2PEF 5.81 ± 1.62 μm
This study C57/BL6 - WT 50-64 in vivo 2PEF 6.19 ± 1.76 μm
This study C57/BL6 APP/PS1 AD 18-31 in vivo 2PEF 5.92 ± 1.76 μm
This study C57/BL6 APP/PS1 AD 50-64 in vivo 2PEF 5.71 ± 1.77 μm
Boero et al. [59] BALB/C - WT 11 postmortem optical imaging 2.48 − 2.70 μm
Drew et al. [60] C57/BL6 - WT - in vivo 2PEF 2.9 ± 0.5 μm
Blinder et al. [5] C57/BL6 - WT - in vivo optical img., postmortem 2PEF 2 − 5.3 μm
Hall et al. [61] C57/BL6J NG2-DsRed WT - in vivo 2PEF 4.4 ± 0.1 μm
Gutierrez-Jim énez et al. [51] C57/BL6 NTac WT 13-15 in vivo 2PEF 4.1 − 4.5 μm
Cudmore et al. [62] C57/BL6 Tie2-Cre:mTmG WT 13-21, 64, 97 in vivo 2PEF 5.03 ± 1.18 μm
Meyer et al. [63] C57/BL6 APP23 & - AD & WT 12-108 postmortem histology 4 − 6 μm
Tsai et al. [14] Swiss - WT - in vivo 2PEF 3.97 − 4.11 μm
Tsai et al. [14] C57/BL6 - WT - in vivo 2PEF 3.97 − 4.11 μm
Heinzer et al. [57] C57/BL6 APP23 WT 52 MRA 14 ± 5 μm
Heinzer et al. [57] C57/BL6 APP23 AD 52 MRA 14 ± 5 μm
Heinzer et al. [64] C57/BL6 APP23 AD 44 SRμCT 8.9 μm
Heinzer et al. [58] C57/BL6 - WT 16 SRμCT 5.6 ± 27.9 μm
Heinzer et al. [58] C57/BL6 C3H/He:NSE-VEGF1651 other 16 SRμCT 5.5 ± 29.3 μm
Serduc et al. [65] Swiss nude - WT 5 in vivo 2PEF 4 − 6 μm
Vérant et al. [50] Swiss nude - WT 5 in vivo 2PEF 8.2 ± 1.4 μm

https://doi.org/10.1371/journal.pone.0213539.t003
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S2 Table. The results of investigating different architectures.

(PDF)

S3 Table. The properties of six 3D images not used for training acquired from different

mice included in the second independent dataset.

(PDF)

S4 Table. The results of DeepVess and the state-of-the-art methods on the second indepen-

dent dataset from subjects not used for the model training (S3 Table). DeepVess surpass

both of them in terms of sensitivity, Dice index, Jaccard index, and boundary modified Haus-

dorff distance (MHD).

(PDF)
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22. Maninis KK, Pont-Tuset J, Arbeláez P, Van Gool L. Deep retinal image understanding. In: International

Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2016.

p. 140–148.

23. Lorthois S, Lauwers F, Cassot F. Tortuosity and other vessel attributes for arterioles and venules of the

human cerebral cortex. Microvascular research. 2014; 91:99–109. https://doi.org/10.1016/j.mvr.2013.

11.003 PMID: 24291593

24. Teikari P, Santos M, Poon C, Hynynen K. Deep learning convolutional networks for multiphoton micros-

copy vasculature segmentation. arXiv preprint arXiv:160602382. 2016;.

25. Bates R, Irving B, Markelc B, Kaeppler J, Muschel R, Grau V, et al. Extracting 3D Vascular Structures

from Microscopy Images using Convolutional Recurrent Networks. arXiv preprint arXiv:170509597.

2017;.

CNN-based segmentation of in vivo multiphoton images of vasculature in mouse models

PLOS ONE | https://doi.org/10.1371/journal.pone.0213539 March 13, 2019 19 / 21

https://doi.org/10.1038/nn.3426
http://www.ncbi.nlm.nih.gov/pubmed/23749145
https://doi.org/10.1016/S0163-7258(96)00116-7
https://doi.org/10.1016/S0301-0082(00)00068-X
http://www.ncbi.nlm.nih.gov/pubmed/11311463
https://doi.org/10.1016/S1568-1637(02)00064-8
http://www.ncbi.nlm.nih.gov/pubmed/12605958
https://doi.org/10.1145/1031120.1031121
https://doi.org/10.1016/j.media.2009.07.011
https://doi.org/10.1016/j.media.2009.07.011
http://www.ncbi.nlm.nih.gov/pubmed/19818675
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1016/j.media.2017.07.005
http://www.ncbi.nlm.nih.gov/pubmed/28778026
https://doi.org/10.1016/j.cmpb.2012.03.009
http://www.ncbi.nlm.nih.gov/pubmed/22525589
https://doi.org/10.1523/JNEUROSCI.3287-09.2009
https://doi.org/10.1523/JNEUROSCI.3287-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19923289
https://doi.org/10.1002/ima.10059
https://doi.org/10.1001/jama.2016.17216
http://www.ncbi.nlm.nih.gov/pubmed/27898976
https://doi.org/10.1016/j.mvr.2013.11.003
https://doi.org/10.1016/j.mvr.2013.11.003
http://www.ncbi.nlm.nih.gov/pubmed/24291593
https://doi.org/10.1371/journal.pone.0213539


26. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation.

In: International Conference on Medical Image Computing and Computer-Assisted Intervention.

Springer; 2015. p. 234–241.

27. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition; 2015. p. 3431–3440.
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