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Abstract

To test the anticancer effect of combining two drugs targeting different biological pathways, the 

popular way to show synergistic effect of drug combination is a heat map or surface plot based on 

the percent excess the Bliss prediction using the average response measures at each combination 

dose. Such graphs, however, are inefficient in the drug screening process and it doesn’t give a 

statistical inference on synergistic effect. To make a statistically rigorous and robust conclusion for 

drug combination effect, we present a two-stage Bliss independence response surface model to 

estimate an overall interaction index (τ) with 95% confidence interval (CI). By taking into all data 

points account, the overall τ with 95% CI can be applied to determine if the drug combination 

effect is synergistic overall. Using some example data, the two-stage model was compared to a 

couple of classic models following Bliss rule. The data analysis results obtained from our model 

reflect the pattern shown from other models. The application of overall τ helps investigators to 

make decision easier and accelerate the preclinical drug screening.
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1. Introduction

Cancers evolve through various biological pathways involving genetic alterations of multiple 

driver genes. Many compounds (drugs) targeting specific signaling pathways have been 

synthesized or are under development. It is well known that single drugs have limited anti-

tumor effects because single drugs do not kill all malignant cells and cancer cells frequently 

develop resistance to single drugs. It is therefore becoming increasingly common to look for 

drug combinations that produce synergistic effects. Typically, these combinations employ 

lower doses of each drug than are used when the drugs are delivered as single agents.

In high-throughput drug screening, to test for whether drug combinations have a synergistic 

effect it is critical to have a precise and efficient statistical analysis method. Over the years, 

many methods have been proposed (Loewe 1953, Bliss 1956, Carter et al. 1988, Berenbaum 

1989, Greco, Par and Rustum 1990, Machado and Robinson 1994, Greco, Bravo and 

Parsons 1995, Dawson, Gennings et al. 2002, Chou 2006, Fitzgerald et al. 2006, Lee et al. 

2007, Whitehead et al 2008). New algorithms have been developed in recent years (Peifer et 

al. 2010, Harbron 2010, Zhao et al 2012, 2014). Across these efforts, the definitions of 

synergy are based on two principles: Loewe additivity (Loewe 1953) and Bliss independence 

(Bliss 1956). In drug combination studies for cancer, the Loewe additivity is appropriate 

when the drugs target same pathways. In contrast, the Bliss independence principle is more 

appropriate when two drugs are mutually nonexclusive, i.e. when each target a different 

signaling pathway. The decision of whether to use Loewe additivity or Bliss independence 

can be made based on whether each of the combined drugs target the same pathway or not. 

The biological investigator needs to provide statisticians with the signaling pathway 

information for the tested drugs. Whether one model or the other is more appropriate is 

based on our scientific colleague’s current best understanding of a drug’s mechanism of 

action. However, it should be remembered that both Loewe and Bliss are just models, and as 

such they are unlikely to reflect the full complexity of any particular drug combination. As 

more becomes understood about the mechanisms of action of particular drugs, our 

confidence in a choice of model will correspondingly increase. Both Loewe and Bliss 

models are often recommended as approaches to explore data, with a major purpose being to 

identify potential synergistic drug combinations that warrant further mechanistic 

investigation (Tang, Wennerberg and Aittokallio 2015).

In practice, complex statistical models are not widely applied in preclinical drug screening. 

Instead, many biologists have become accustomed to using heat maps or surface plots based 

simply on “excess over Bliss” for determining drug combination effect (Ghosh et al 2015, 

O’Neil et al 2016, Straussman et al. 2012, Sun et al 2016, Zimmera et al 2016). Such heat 

maps or surface plots may be helpful for small experiments. However, for high-throughput 

drug screening, they are inefficient because it is time consuming to make them and look 

through them. Furthermore, heat maps or surface plots don’t give a statistical inference on 

synergistic effect if the experiments do not have enough replicates. Even when replicates are 

available, multiple testing problems arise from repeatedly performing a statistical test across 

all combination doses (Zhao et al 2014). We propose that an overall interaction index with a 

95% confidence interval (CI) is statistically rigorous and can help biological investigators to 
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make conclusions easily and speed up the drug screening process. This manuscript describes 

how we developed such an overall interaction index.

Models similar to the one we describe here have been developed by other groups. Zhao et al. 

(2014) proposed analyzing drug combination data using a new Bliss independence model. 

They proposed a two-stage response surface model that estimates an interaction index with a 

corresponding 95% CI at each combination dose. We did not consider their proposed method 

for our drug screening study because we prefer to have an overall interaction index, meaning 

an index that estimates the summary combination effect across the entire, tested range of 

doses. Whitehead et al. (2008) provided a response surface model to estimate an overall 

interaction index using the Bliss Independence principle. Their method applied one-stage 

modeling using the SAS NLIN procedure. Harbron (2010) proposed a unified approach for 

Loewe additivity to estimate a uniform interaction index, and separate interaction indexes at 

each dose of one drug in the combination, with one-stage modeling. In our experience, one-

stage modeling sometimes gives unreliable estimates or fail to converge. We also do not 

favor one-stage modeling because it cannot precisely estimate the single drug’s dose-

response parameters solely on the corresponding single drug data, or the interaction index 

based solely on the drug combination data. Zhao et al (2012) has pointed out that one-stage 

models may deviate significantly from their true values, and thus potentially lead to wrong 

conclusions.

To meet the need for our drug screening research, we propose to estimate an overall 

interaction index with 95% CI based on Bliss independence additivity. This overall 

interaction index is estimated with a two-stage procedure by applying the bisection scheme 

algorithm proposed by Harbron (2010). To obtain the details of the combination effect for 

any particular drug, a series of interaction indexes can be calculated for each dose level of 

that drug when it is combined with various doses of the other drug.

Below, in Section 2 we introduce the experimental design and procedure used in our drug 

combination study. Section 3 describes how the overall interaction index is obtained from a 

global response surface model under the Bliss independence principle. Section 4 shows how 

our example data can be represented with the overall interaction index and the comparisons 

with other classic models. We conclude with a discussion and suggestions for future 

direction.

2. Experimental Design and Procedure

The goal of our drug combination study was to investigate the synergistic, anticancer effect 

of the combination of Gamitrinib and each of a set of kinase inhibitors. Gamitrinib is a 

mitochondrially-targeted inhibitor of the molecular chaperone Hsp90. The selected kinase 

inhibitors target the PI3K pathway. Here we have assumed that Gamitrinib and the kinase 

inhibitors produce their independent, anticancer effects by targeting different pathways, and 

that there is no mechanistic connection other than the response outcome.

Figure 1 shows the plate map for the drug dosage arrangement. There are six blocks 

indicated by the different main colors. Each block is used for one set of drug combinations. 
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Using the first block (columns 3 to 9 and rows B to H) as an example, the numbers in 

column 9 are doses of Gamitrinib (drug A) alone and the numbers in row B are doses for a 

PI3K inhibitor (drug B) alone. Each of other cells in the block shows two numbers separated 

by a slash; these cells represent combinations. The number below the slash is the dose for 

drug A (Gamitrinib) and the number above the slash is the dose for drug B (one of the 6 

tested PI3K inhibitors).

For these experiments, cancer cells (LN229 glioblastoma cells) were plated in a 384 well 

format using 1:3 dilution series with 2.00μM as the highest concentration and 0.008μM as 

the lowest concentration. LN229 cells were treated with Gamitrinib and selected kinase 

inhibitors in a 7×7 matrix for 18 h at 37ºC. Cell viability was measured using fluorescence 

intensity. The fractional viability was determined by normalizing the fluorescence intensity 

readouts of the individual assay wells to the aggregated average responses obtained with a 

positive control (10 μM doxorubicin, DOX) and negative control (0.2% dimethyl sulfoxide, 

DMSO). The fractional growth inhibition rate was calculated as 1–viability, which is the 

data that was used for the statistical analysis described below. The detailed experimental 

procedures were described in Ghosh et al. (2015).

3. A Global Response Surface Model under the Bliss Independence 

Principle

Here we assume that for the given drugs A and B, that each produces its anticancer effect by 

targeting different pathways, and that these pathways have no mechanistic connection other 

than the response outcome. The response was measured as the percentage of cancer cells 

that died following drug treatment, a percentage frequently referred to as the inhibition rate. 

To determine the combination effect of two drugs, the Bliss independence principle is 

considered. At designated doses of the component drugs, the Bliss predicted inhibition rate 

yab can be calculated by equation (1)

yab = ya + yb − yayb, 0 ≤ yi ≤ 1, i = a, b or ab (1)

where ya and yb are the observed inhibition rates with drug A alone at dose a and drug B 

alone at dose b. If the observed inhibition rate yab at the combination dose (da,db) of drug A 

and drug B is greater than the Bliss predicted inhibition rate yab, the drug combination effect 

is thought of as synergism at that specific (da,db) dose combination.

Chou and Talalay (1981, 1984) proposed a combination index for two mutually nonexclusive 

drugs. Using the above symbols, the combination index can be written as:

da
Dy, A

+
db

Dy, B
+

dadb
Dy, ADy, B

(2)
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Where da and db are the doses of Drug A and B that, when used in combination, reach the 

inhibition rate of y. Dy,A and Dy,B are the doses of single drugs A and B that reach the same 

inhibition rate, y. For equation (2), a value less than 1 indicates synergism. Equation (2) is 

deducted from equation (3), the summation of the effects of two mutually nonexclusive 

inhibitors on dose-response systems obeying Michaelis-Menten kinetics or Hill-type kinetics 

(Chou and Talalay, 1981, 1984).

yab
1 − yab

=
ya

1 − ya
+

yb
1 − yb

+
yayb

1 − ya 1 − yb
(3)

Equation (3) can be simplified as yab = ya + yb − yayb, which is the Bliss independence 

model. We thus use equation (2) as the Bliss independence interaction index for our study 

evaluating the synergism of drug combinations.

The Bliss independence interaction index τ for combination effect of two drugs can be 

expressed as equation (4) (Chou and Talalay, 1981, 1984)

τ =
da

Dy, A
+

db
Dy, B

+
dadb

Dy, ADy, B

< 1 Synergism
= 1 Independent
> 1 Antagonism

(4)

To estimate an overall Bliss interaction index, we performed two-stage modeling by 

extending the one-stage algorithm proposed by Harbron (2010) for Loewe additivity. The 

overall interaction index can be used to determine if combinations of two drugs produce a 

statistically significant synergistic effect over the entire range of doses tested.

In the first stage, we estimate dose-response parameters for each drug based on the Hill 

equation by adding the upper and lower limit of the inhibition rate, which is expressed as 

equation (5),

y = U − L

1 + IC50
Dy

m + L (5)

where y is the inhibition rate, and U and L are the upper (top) and lower (bottom) 

asymptotes of the dose-response curve. IC50 is the dose required to attain half of U − L. Dy 

is the dose of the single drug that induces response of y. m is the Hill slope.

By natural base (e) log-transformation of the equation (5), we obtain equation (6)
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y = U − L

1 + e
log IC50 − log Dy m

+ L (6)

Equation (6) is the four-parameter logistic model commonly used for calculating dose-

response curves.

In our derivation, the above non-linear dose-response model with homogeneity variance is 

considered. If there is a notable relationship between the variability of the response and the 

mean response, a heteroscedastic dose-response model needs to be applied. However, 

Whitehead et al (2013) indicated that models with homogeneity variance in the presence of 

heteroscedasticity are robust. When an experiment has replicates, the replicates are used in 

fitting equation (6). The values for the parameters in equation (6) and their covariance 

matrix can be estimated using nlsLM() in R. To simplify and get comparable IC50s, U=1 

and L=0 were used as fixed values to fit our model.

In the second stage, based on equation (5), for an observed response y in the combination 

experiment, the dose Dy for a single drug that reaches a response of y can be estimated as

Dy = IC50 * ( y − L
U − y )

1
m (7)

For single drug A, Dy is the parameter of Dy,A, for single drug B it is Dy,B, which are the 

parameters we need to estimate the interaction index. Using the definition of equation (4), 

across all combination doses, an overall interaction index τ is estimated from equation (8), a 

response surface model similar to model (7A) in Harbron’s (2010) paper

da
Dy, A

+
db

Dy, B
+

dadb
Dy, ADy, B

=
1 da = 0 or db = 0
τ da > 0 and db > 0 (8)

From equation (8), the response-surface model is further expressed as equation (9), which is 

used to estimate interaction index τ.

da
τDy, A

+
db

τDy, B
+

dadb
τDy, ADy, B

= 1 (9)

Even though equation (9) does not directly express a function of the response, y, on 

combination doses of (da,db) with parameters shown in equations (5) or (6), the fitted y can 

be exactly calculated using a bisection scheme algorithm proposed by Harbron (2010) and 

then the interaction index can be estimated using nlsLM() function in R.
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When τ <1, and the upper limit of its two-sided 95% CI is also less than 1, we may conclude 

that the two-drug combination has a statistically significant synergistic effect overall.

To estimate the 95% CI of the overall interaction index, a bootstrapping resampling method 

is applied. Based on the first-stage estimated log IC50  and Hill slope, m, for each single 

drug, bootstrapping samples of (log IC50 j, m j) where j=1, 2, 3, … n, are drawn from a 

bivariate normal distribution N log IC50
m

, Σ  where Σ is the estimated covariance matrix of 

log IC50  and m. Each set of n bootstrapping samples are applied to estimate one natural base 

(e) log-transformed interaction index, log τ  , at the second stage calculation. The mean 

interaction index, E log τ ), and its standard deviation, se(log(τ)), are then estimated. In our 

experience, these estimates become stabilized after 100 bootstrapping samples and the 

histograms of log τ  are roughly follow a normal distribution. The 95% CI of the overall 

interaction index is reported as eE(log(τ)) ± 1.96 × se(log(τ)). It will be more robust to use 

quantiles of the bootstrap samples to form an empirical confidence interval for a non-normal 

distribution but with a large number (e.g. 1000) of bootstrap samples (Efron and Tibshirani 

1994).

Using the above algorithm for the overall interaction index, we can also calculate separate 

values of interaction indexes for each dose level of each drug in the combination. Such series 

interaction indexes can be used to show the combination effect when one of the two drugs is 

given at a fixed dose, and the other drug is given at a series of dosing levels. The R code for 

this analysis is provided in the Appendix.

4. Data Example and Analysis Results

4.1 Data Example

In this study, we investigated the synergistic, anticancer effect of the combination of 

Gamitrinib plus selected kinase inhibitors such as BKM120 and BEZ235. Tables 1 and 2 

show the example data of fractional growth inhibition generated from the procedures 

described in Section 2. Each set of combination experiment was carried out twice. Since in 

each plate with 384 wells (Figure 1), there are quadruplets of dose-response measurements 

for Gamitrinib treatment alone, these data were averaged for Gamitrinib within each plate 

(Tables 1 and 2).

4.2 Excess over Bliss Scores

Equation (1) is used to calculate the Bliss predicted response (yab ) at the combination dose 

(da,db) of drug A and drug B. The difference between the observed response (yab) and the 

Bliss predicted response (yab) at the same combination dose is usually referred to as “excess 

over Bliss score”, which is widely used to evaluate drug combination effects following these 

criteria:
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Excess over Bliss score = I = yab − yab

> 0 Synergism
= 0 Independent
< 0 Antagonism

With the excess over Bliss score, the drug combination effect is determined at each 

combination dose. When replicates exist, the average percentage inhibition is usually used in 

the calculation. The application of excess over Bliss score for the evaluation of drug 

combination effect is simple but may cause false-positive claims because it does not 

consider the variability of response measures. To overcome such problems, Zhao et al. 

(2014) proposed a response surface model to predict the excess over Bliss score at each 

combination dose using two-stage modeling. They used the letter “I” to represent the 

“excess over Bliss score”. In the first stage of the model, the average of observed responses 

and corresponding variance at each dose of drug A and drug B are calculated. In the second 

stage, 100 random samples of yab are simulated using multivariate normal distributions with 

first stage estimated means and variances. Conditional on yab, a linear model is used to 

estimate response surface parameters and then the variance of I and the 95% CI of I are 

calculated.

In this section, we applied the method of Zhao et al (2014) to analyze our example data. The 

estimated I and the 95% CI at each combination dose are listed in the grid plots (Figures 2 

A-B). These results will be compared to the results obtained from our proposed model in 

section 4.3.

Figure 2 A shows that the lower bounds of the 95% CI of excess over Bliss scores are many 

negative across the combination doses of Gamitrinib and BKM120. In contrast, for the 

combination of Gamitrinib and BEZ235, most of the lower bounds of the 95% CI of excess 

over Bliss scores are positive, except at dose levels 0.222 and 0.667 of Gamitrinib (Figure 

2B). The results in Figure 2 give us a clue that the combination of Gamitrinib and BKM120 

does not have impressive synergism, while Gamitrinib and BEZ235 does have a synergistic 

effect. However, by only looking at the grid plots, it is hard to conclude overall if the two 

drugs were synergistic or not. From only such results as these, we cannot make a general 

statistical inference.

4.3 Interaction Indexes

Using the method described in Section 3, we estimated an overall interaction index with 

95% CI for the combination of two drugs, and a series of interaction indexes with 

corresponding 95% CIs for each level of a given drug combined with various doses of the 

other drug.

Figures 3 and 4 show the estimates of overall and series interaction indexes with 95% CIs 

for the combination of Gamitrinib and BKM120. The overall interaction index (the first data 

point) indicates that combinations of Gamitrinib and BKM120 don’t have a synergistic 

effect overall. Looking at the series indexes separately, for each dose level of Gamitrinib 

(Figure 3) or BKM120 (Figure 4), all of the 95% CIs crossed or sit above the line at 
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interaction index of 1. This indicates that there is no significant synergistic effect across the 

given doses of the two drugs. These results are consistent with the pattern shown in Figure 

2A.

From Figures 5 and 6, we may conclude that the combination of Gaminitrib and BEZ235 

has significant synergistic effect overall (first data point). Looking at the series indexes 

separately, for each dose of Gaminitrib (Figure 5) or BEZ235 (Figure 6), all of the 95% CIs 

(except the CI for Gamitrinib at dose of 0.222) are under the line at interaction index of 1. 

This indicates that there is a significant synergistic effect across the given doses of the two 

drugs. These results are supported by the pattern we saw in Figure 2B.

4.4 Some Comparisons with One-stage Modeling—Whitehead et al. (2008) 

proposed a one-stage Bliss model illustrated below. A parameter v is introduced to measure 

the amount of synergy or antagonism

1 −
g x1, x2 − γ

δ = 1 −
g x1, 0 − γ

δ 1 −
g 0, x2 − γ

δ

ν

The case v = 1 represents Bliss independence. Values of v between 0 and 1 represent 

antagonism and values greater than 1 represent synergy. Using the four-parameter logistic 

regression model, with a lower limit γ and an upper limit δ + γ, at a combination dose x1 of 

drug 1 and dose x2 of drug 2 the expected response surface g(x1,x2) can be expressed as

g x1, x2 = δ 1 − 1
ϕ1ϕ2

ν
+ γ

where ϕi = 1 + exp(αi + βilogxi), and αi = −βilogD0.5,i, and βi and D0.5,i are the Hill slope 

and IC50 of drug i, respectively. The parameter v can be estimated using SAS NLIN 

procedure.

Since the parameter v >1 stands for synergism, and 0 < v <1 for antagonism, 1/v would have 

the same evaluation rule as the overall interaction index τ in our method. In this section, we 

report some comparisons obtained by analyzing the same data using the Whitehead et al. 

(2008) method and our method. For our example data “Gami+BKM120”, both models 

indicate a non-synergistic effect (Table 3). But for the example data “Gami+BEZ235”, the 

one-stage method yielded unreliable estimates since it failed to estimate the variance of 

some parameters, when made the approximate correlation matrix incomplete. The SAS 

output provided a warning: “Convergence criterion met but a note in the log indicates a 

possible problem with the model”. A similar issue occurred when the one-stage method was 

applied to analyze other data such as Chou and Talalay’s (1981) Table 2 data (Table 4). The 

one-stage modeling failed to converge when we analyzed the data from Lee et al (2007) 

(Table 4).

Zhao et al (2012) applied a two-stage model using Loewe additivity and compared two-stage 

modeling to one-stage modeling. They also found that the one-stage modeling sometimes 
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could not converge to proper values or had error messages in the estimating of parameters, 

but two-stage modeling could overcome these problems. Their simulations indicated that 

two-stage models gave results almost identical to the true values of the interaction index. 

The one-stage model, in contrast, gave interaction indexes that deviated from true values. 

The reason why two-stage modeling would give more precise results was discussed in detail 

in their paper. From their simulation data, it is worth noting that even though the one-stage 

method gives less accurate results than the two-stage method, the differences are not large 

enough to make different conclusions based on the estimated interaction indexes. In our 

examples shown in Tables 3 and 4, the conclusions about synergism are consistent from both 

one-stage and two-stage models where a comparison is possible.

5. Discussion

The in vitro drug combination experiments used for drug screening usually generate high-

throughput data. Analysis methods such as heat maps or surface plots are not only time 

consuming, they do not provide a conclusion with statistical confidence overall. In this 

paper, we have proposed a method for calculating an overall interaction index based on the 

Bliss independent principle to help our scientists find drugs that reach a statistically 

significant synergistic effect in combination. This method is easily applied to analyze high-

throughput data. The investigator simply needs to order the overall interaction indexes with 

their 95% CIs to locate those drugs that have a statistically significant synergistic effect in 

combination. The two-stage modeling we propose here is applicable provided that the dose-

response curve of each single drug is well fitted using the Hill equation or the four-

parameter logistic model.

In addition to the full factorial experimental design shown in Figure 1, we often see 

experiments in which the investigators only test for combination effect by adding a fixed 

dose of one drug to various doses of the other drug. To analyze the data obtained from this 

kind of experimental design, the proposed overall interaction index is still applicable if we 

have dose-response data from each single drug and the designed combinations.

When the data have replicates, Harbron’s (2010) algorithm allows estimating an interaction 

index with 95% CI at each combination dose in the experiment. To assess for a synergistic 

effect at each combination dose, a grid plot, similar to Zhao et al. (2014), can be generated 

based on the upper limits of the 95% CIs of the interaction indexes over the combination 

doses. However, in high-throughput drug screening, it will be more efficient to make 

decision by looking at the overall interaction indexes like those shown in Figures 3–6.

The two-stage modeling that we describe here is easy to use. One-stage modeling using 

Harbron’s (2010) algorithm in R with nls function or using Whitehead et al’s (2008) NLIN 

procedure in SAS does not require, as a starting input, accurate estimates of IC50 and Hill 

slopes, but it does need appropriate initial values of those parameters. From our experience, 

some initial values may end as failure of estimation from nls function in R or NLIN 

procedure in SAS. For some cases, various choices of initial values for the one-stage 

modeling still failed to converge. Using our model, in contrast, we estimate IC50 and Hill 

slopes first and use those parameters directly in the second stage; the interaction index can 
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be estimated without problems. In addition, the two-stage modeling achieves more accurate 

results than one-stage modeling because the parameters accurately estimated from 

monotherapy data are crucial to precisely estimate an interaction index using combination 

data. And by incorporating the variance from the first stage into the second stage, the two-

stage modeling provides more reliable inference (Zhao et al. 2012).

In the case where the dose-response curve for a single drug cannot be estimated by the Hill 

equation or the four-parameter logistic regression, we will need to identify other models that 

can fit the dose-response data in the first stage, and then continue the second stage of the 

procedure to estimate the interaction index. It is an area for development in the future.
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Appendix

R code for estimating Bliss independence interaction index and 95% confidence interval

Read in original data of Gami+BKM120 (full data are shown in table 1):

rep1: Replication 1; rep2: Replication 2

DoseA: dose of drug A, DoseB: dose of drug B, y: response

rep1 <- read.table(header = TRUE, ,sep=“,”,text = “

DoseA,DoseB,y

2.000,2.000,0.949

0.667,2.000,0.506

0.025,0.000,0.012

0.008,0.000,0.053

“)

rep2 <- read.table(header = TRUE, ,sep=“,”,text = “

DoseA,DoseB,y

2.000,2.000,0.780

0.667,2.000,0.458

0.025,0.000,−0.020

0.008,0.000,−0.039

“)
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data1 <- rbind(rep1, rep2)

attach(data1)

Core function to estimate Interaction Index, modified based on Harbron’s algorism (2010)

d1: observed dose of drug A; d2: observed dose of drug B

m1: Hill slope estimated from stage I for single drug A

m2: Hill slope estimated from stage I for single drug B

logIC50.1: loge(IC50) estimated from stage I for single drug A

logIC50.2: loge(IC50) estimated from stage I for single drug B

U: the upper asymptote of single drugs with the default value of 1

L: the lower asymptote of single drugs with the default value of 0

tau: interaction index

gp: grouping parameter for taus, default is the overall tau for the surface model

niterations: the iteration number on each call of tau.model, default 50

upper & lower: vector of range to estimate response of combined drug at each combination 

dose level

Y: the estimated response based on current tau value & single drug pamameters from stage I.

tau.model <- function(d1, d2, m1, m2, logIC50.1, logIC50.2,

U=1, L=0, ..., gp=rep(1,sum(d1>0 & d2>0)),

niterations=50) {

Ic50.1 <- exp(logIC50.1) 

Ic50.2 <- exp(logIC50.2)

tau <- exp(unlist(list(...)))

mono <- (d1==0) | (d2==0)

if(length(gp) != sum(!mono)) {

stop(“Incorrect Number Of Grouping Parameters”)

}

if(!all(sort(unique(gp))==1:length(tau))) {

stop(“Numbers Of Parameters & Grouping Parameters Disagree”)

}

upper <- rep(U, length(d1))

lower <- G <- rep(L, length(d1))

for(i in 1:niterations) {
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Y <- (upper + lower)/ 2.0

Part1 <- Ic50.1 * ((Y-L)/(U-Y))^(1.0/m1)

Part2 <- Ic50.2 * ((Y-L)/(U-Y))^(1.0/m2)

dPart1 <- d1/Part1

dPart2 <- d2/Part2

dPart3 <- dPart1 * dPart2

dPart1[!mono] <- dPart1[!mono]/ tau[gp]

dPart2[!mono] <- dPart2[!mono]/ tau[gp]

dPart3[!mono] <- dPart3[!mono]/ tau[gp]

G <- dPart1 + dPart2 + dPart3 – 1

if(m1<0) {

lower[G==0] <- upper[G==0] <- Y[G==0]

lower[G<0] <- Y[G<0]

upper[G>0] <- Y[G>0]

} else {

lower[G==0] <- upper[G==0] <- Y[G==0]

upper[G<0] <- Y[G<0]

lower[G>0] <- Y[G>0]

}

}

Y

}

First stage: estimate the Hill Slope and IC50 for drugs A and B, respectively

uppers, lowers: after rescaling, the upper & lower asymptote of both single drugs

Ic50.1 & Ic50.2: selected initial value of IC50 for drug A & B

drugA_est & drugB_est: store the nlsLM estimated Hill slope and IC50 for each single drug

require(minpack.lm)

uppers <− 1; lowers <- 0;

Ic50.1 <- DoseA[DoseB==0][which.min(abs(y[DoseB==0]-.5))] #pick the initial 

value for IC50, which is the observed single drug dosage produces the 

response closest to 0.5

drugA_est <- nlsLM(y~(uppers-lowers)/(1+exp(m*logIC50)/DoseA^m) + lowers, 

start=list(m=1,logIC50=log(Ic50.1)), subset=DoseB==0 & DoseA!=0)

Ic50.2 <- DoseB[DoseA==0][which.min(abs(y[DoseA==0]-.5))]    

drugB_est <- nlsLM(y~(uppers-lowers)/(1+exp(m*logIC50)/DoseB^m) + lowers, 

start=list(m=1,logIC50=log(Ic50.2)), subset=DoseA==0 & DoseB!=0)

Bootstrapping the parameters estimated from stage I to estimate the 95% CI of tau estimated 

from stage II
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drugA.para & drug B.para: store each drug’s estimated Hill slope & IC50

drugA.var & drugB.var: store each drug’s estimated variance & covariance of Hill slope & 

IC50

N: Bootstrapping size

mu1p & mu2p: random samples of Hill slope & IC50 drawn from bivariate-normal 

distribution for each drug

with corresponding means & variance-covariance estimated from stage I

pars: store the estimated taus based on each mu1p & mu2p.

drugA.para <- summary(drugA_est)$coef[,1] 

drugA.var <- vcov(drugA_est) 

drugB.para <- summary(drugB_est)$coef[,1]

drugB.var <- vcov(drugB_est)

require(mvtnorm)

N <− 100 

mu1p <- mu2p <- NULL

mu1p <- rmvnorm(N, drugA.para, drugA.var) 

mu2p <- rmvnorm(N, drugB.para, drugB.var) 

Second Stage: estimate Interaction Index

To estimate an overall interaction index

pars <- NULL

for (i in 1:N) {

overallTau <- nlsLM(y ~ tau.model(d1=DoseA, d2=DoseB, m1=mu1p[i,1], 

m2=mu2p[i,1], 

logIC50.1=mu1p[i,2], logIC50.2=mu2p[i,2],

logtau1=logtau1), start=list(logtau1=0)) 

pars <- rbind(pars, summary(overallTau)$coef[,1])

} 

log_tau <- mean(pars)

tau <- unlist(data.frame(est=exp(log_tau), LCL= exp(log_tau-1.96*sd(pars)), 

HCL= exp(log_tau+1.96*sd(pars))))

print(tau)

To estimate separated interaction indexes at each dose of drug A combining with various 

doses of drug B
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pars <- NULL

gp <- as.numeric(as.factor(DoseA[DoseA*DoseB > 0]))

for (i in 1:N) {

sepTauA <- nlsLM(y ~ tau.model(d1=DoseA, d2=DoseB, m1=mu1p[i,1], m2=mu2p[i,

1], 

logIC50.1=mu1p[i,2], logIC50.2=mu2p[i,2], 

logtau1=logtau1, logtau2=logtau2, logtau3=logtau3, logtau4=logtau4, 

logtau5=logtau5, logtau6=logtau6, gp=gp), start=c(logtau1=0, logtau2=0, 

logtau3=0, logtau4=0, logtau5=0, logtau6=0)) 

pars <- rbind(pars, summary(sepTauA)$coef[,1])

}

Ataus <- data.frame(cbind(est=exp(apply(pars,2,mean)),LCL=exp(apply(pars,

2,mean)-1.96*apply(pars,2,sd)), HCL=exp(apply(pars,2,mean)+1.96*apply(pars,

2,sd))))

cat(“The follwing output has been exponentiated”)

print(Ataus)
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Figure 1. 
Plate map of drug dosage arrangement for drug combination experiment
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Figure 2. 
Grid plots with estimated excess over Bliss scores and 95% CI at each combination dose
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Figure 3. 
The overall interaction index and the series interaction indexes with 95% CI at each dose of 

Gamitrinib combined with various doses of BKM120
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Figure 4. 
The overall interaction index and the series interaction indexes with 95% CI at each dose of 

BKM120 combined with various doses of Gamitrinib
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Figure 5. 
The overall interaction index and the series interaction indexes with 95% CI at each dose of 

Gamitrinib combined with various doses of BEZ235
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Figure 6. 
The overall interaction index and the series interaction indexes with 95% CI at each dose of 

BEZ235 combined with various doses of Gamitrinib
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Table 1.

The growth inhibition measurements for the experiment Gamitrinib plus BKM120

Dosage of
Gamitrinib

Dosage of BKM120

0 0.008 0.025 0.074 0.222 0.667 2

0 0.036 −0.053 −0.115 0.067 0.303 0.602

−0.017 −0.033 −0.011 −0.076 0.224 0.532

0.008 0.053 0.215 0.081 0.191 0.184 0.429 0.505

−0.039 0.002 −0.046 −0.079 0.047 0.294 0.596

0.025 0.012 0.064 0.010 0.031 0.292 0.456 0.483

−0.020 0.029 0.105 −0.030 −0.002 0.374 0.473

0.074 −0.033 0.088 0.068 0.103 0.069 0.323 0.500

−0.104 −0.008 −0.090 0.019 0.062 0.190 0.605

0.222 0.028 −0.207 −0.163 −0.149 0.115 0.321 0.499

0.061 −0.076 −0.125 −0.021 0.025 0.242 0.534

0.667 0.080 0.040 0.031 0.057 0.138 0.364 0.506

0.058 0.031 0.040 0.008 0.146 0.318 0.458

2 0.494 0.401 0.434 0.435 0.510 0.659 0.949

0.436 0.359 0.325 0.377 0.432 0.609 0.780

Stat Biopharm Res. Author manuscript; available in PMC 2019 March 13.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liu et al. Page 24

Table 2.

The growth inhibition measurements for the experiment Gamitrinib plus BEZ235

Dosage of
Gamitrinib

Dosage of BEZ235

0 0.008 0.025 0.074 0.222 0.667 2

0 0.129 0.266 0.387 0.399 0.460 0.383

0.127 0.271 0.313 0.322 0.473 0.457

0.008 0.053 0.426 0.500 0.605 0.595 0.649 0.670

−0.039 0.325 0.418 0.575 0.533 0.546 0.592

0.025 0.012 0.379 0.448 0.540 0.656 0.511 0.661

−0.020 0.336 0.365 0.536 0.497 0.500 0.553

0.074 −0.033 0.341 0.429 0.423 0.619 0.568 0.644

−0.104 0.168 0.280 0.470 0.430 0.466 0.558

0.222 0.028 0.071 0.404 0.443 0.433 0.485 0.520

0.061 −0.062 0.205 0.317 0.443 0.376 0.447

0.667 0.080 0.290 0.390 0.454 0.537 0.568 0.598

0.058 0.223 0.347 0.263 0.513 0.457 0.556

2 0.494 0.735 0.668 0.907 0.671 0.846 0.879

0.436 0.570 0.647 0.829 0.702 0.848 0.885
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Table 3.

Comparison of overall interaction index calculated using our method to that using the method of Whitehead et 

al, using our example data

Drug combination τ (95% CI) from our method 1/v (95% CI) from Whitehead et al’s method

Gami+BKM120 1.23 (1.09, 1.40) 1.05 (0.85, 1.28)

Gami+BEZ235 0.51 (0.38, 0.68) 0.68 (0.54, 0.86)*

*
SAS output indicated that the estimates had a problem. No improvement with various initial values.
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Table 4.

Comparison of overall interaction index calculated using our method to that using the method of Whitehead et 

al., using other published datasets

Dataset from
Whitehead et al’s Bliss model Our method

1/v (95% CI) τ (95% CI)

Chou and Talalay (1981) Table 1 1.17 (1.12, 1.23) 1.23 (1.18, 1.27)

Chou and Talalay (1981) Table 2 0.09 (0.01, 0.55)* 0.45 (0.39, 0.53)

Harbron (2010) 0.68 (0.61, 0.76) 0.62 (0.57, 0.68)

Lee et al (2007) Failed to converge** 0.41 (0.23, 0.73)

Whitehead et al (2008) 1.38 (1.15, 1.67) 1.43 (1.19, 1.72)

*
SAS output indicated that the estimates had a problem. No improvement with various initial values.

**
Failed to converge with default initial values. We tried various initial values but still failed.
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