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Abstract

Biocatalytic systems (e.g., multienzyme pathways or complexes) enable the conversion of simple 

sugars into complex products under ambient conditions and, thus, represent promising platforms 

for the synthesis of renewable fuels and chemicals. Unfortunately, to date, many of these systems 

have proven difficult to engineer without a detailed understanding of the kinetic relationships that 

regulate the concerted action of their constituent enzymes. This study develops a mechanistic 

kinetic model of the fatty acid synthase (FAS) of Escherichia coli and uses that model to determine 

how different FAS components work together to control the production of free fatty acids—

precursors to a wide range of oleochemicals. Perturbational analyses indicate that the modification 

or overexpression of a single FAS component can depress fatty acid production (a commonly 

observed phenomenon) by sequestering the proteins with which it interacts and/or by depleting 

common substrate pools. Compositional studies, in turn, suggest that simple changes in the ratios 

of FAS components can alter the average length of fatty acids but show that specialized enzymes 

(i.e., highly specific ketoacyl synthases or thioesterases) are required for narrow product profiles. 

Intriguingly, a sensitivity analysis indicates that two components primarily influence—and, thus, 

enable fine control over—total production, but suggests that the enzymes that regulate product 
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profile are more broadly influential. Findings thus reveal the general importance of kinetic 

considerations in efforts to engineer fatty acid biosynthesis and provide strategies—and a kinetic 

model—for incorporating those considerations into FAS designs.
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INTRODUCTION

The biocatalysts that enable fatty acid synthesis in microbial cells offer a promising means 

of producing fuels and chemicals from renewable feedstocks. Fatty acid synthases (FASs)—

multidomain complexes (type I) or multienzyme mixtures (type II) that convert glucose-

derived metabolites into structurally varied fatty acids—can supply precursors to a wide 

range of oleochemicals (e.g., alcohols, alkyl esters, methyl ketones, and alkanes).1 To date, 

most efforts to engineer the product profiles of FASs have relied on changes in the identity 

or expression level of individual catalytic components;2,3 these approaches have enabled the 

synthesis of novel varieties of fatty acids, but by neglecting the kinetic relationships that 

allow different components to work together, they have struggled to achieve tight, yield-

independent control over product distributions.4,5 The development of general strategies to 

tune the product profiles of FASs thus remains a longstanding challenge of applied 

biocatalysis.6

The fatty acid pathway of Escherichia coli (E. coli) is a well-studied type II FAS that 

demonstrates the difficulty of controlling fatty acid production in microbial cells.7,8 It builds 

fatty acids in three main steps (Figure 1): initiation, elongation, and termination. Initiation 

begins when FabD (a transacylase) transfers the malonyl group of malonyl-CoA to an acyl 

carrier protein (ACP), where FabH (a β-ketoacyl-ACP synthase) condenses it with acetyl-

CoA to form acetoacyl-ACP. Elongation, two carbons at a time, occurs through repeated (i) 

reduction of acetoacyl-ACP to acyl-ACP by three enzymes—FabG (a β-ketoacyl-ACP 

reductase), FabZ or FabA (β-hydroxyacyl-ACP dehydratases), and FabI (an enoyl-acyl-ACP 

reductase)—and (ii) condensation of acyl-ACPs with malonyl-ACP by FabB or FabF (β-

ketoacyl-ACP synthases). Termination—the release of free fatty acids—results from 

thioesterase-catalyzed hydrolysis of acyl-ACPs. The FAS of E. coli does not contain a 

thioesterase, per se, but it is often supplemented with one in engineered strains.9,10

ACPs are often overlooked as simple substrate carriers, but recent evidence suggests that 

they may play important regulatory roles.11 The archetypal type II ACP consists of an α-

helical bundle with a central hydrophobic cleft.8 This cleft sequesters acyl chains in solution 

and, upon enzyme-ACP association, undergoes a conformational change that releases those 

chains into neighboring active sites.12 Differences in the strength—and conformational 

repercussions—of various ACP-substrate and ACP-enzyme interactions could, thus, 

modulate the flux of intermediates through the fatty acid pathway.
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Most efforts to control fatty acid production in E. coli have incorporated enzymes with non-

native activities.13,14 Examples include ketoacyl synthases with enhanced activities on 

branched acyl-CoAs,15 ketoacyl-ACP reductases that alter the location or stereochemistry of 

double bonds,16,17 and thioesterases that target short acyl-ACPs.4,18,19 These enzymes have 

enabled useful changes in product profiles (e.g., the enhanced synthesis of short or branched 

fatty acids); they have not, however, yielded precise control over product distributions (they 

have tended to generate broad distributions with numerous side products13,14,19) or afforded 

mechanistic insights that explain that lack of control.

Detailed studies of fatty acid synthesis in E. coli indicate that complex kinetic relationships 

between enzymes regulate FAS activity in a nonintuitive manner.20–22 For brevity, we will 

describe two: (i) In an investigation of the FAS reconstituted in vitro, Khosla and colleagues 

observed that high concentrations of FabH, FabF, thioesterase, or holo-ACP could reduce 

rates of fatty acid synthesis;23 they attributed this inhibitory effect to the sequestration of 

essential proteins (i.e., the removal of holo-ACP by excess enzymes that bind to this protein, 

or vice versa). (ii) In an analysis of E. coli engineered to express plant-derived thioesterases, 

Silver and colleagues showed that cerulenin, an inhibitor of FabF and FabB, could increase 

yields of medium-chain fatty acids;5 they hypothesized that this improvement resulted from 

both (i) the enhanced availability of medium-chain acyl-ACPs targeted by their chosen 

thioesterases and (ii) the reduced accumulation of long-chain acyl-ACPs that inhibit FabH.24 

The results of these two studies show how the kinetics of interdependent catalytic steps 

control fatty acid production in a nonlinear manner that complicates the rational rewiring of 

FAS activity.

In this study, we developed a mechanistic kinetic model of the FAS of E. coli and used it to 

determine how different enzymes work together to control rates of fatty acid synthesis and 

overall product profiles. This analysis departs from previous quantitative investigations of 

fatty acid production (e.g., flux balance analyses, which incorporate cell-wide reaction 

stoichiometries but neglect reaction kinetics25) in its focus on the mechanistic and kinetic 

details of a small number of highly influential steps: the enzymatic reactions responsible for 

the synthesis of saturated fatty acids. We used our model to accomplish three tasks: (i) to test 

previously posited hypotheses concerning the mechanistic origin of unexpected experimental 

results (e.g., the inhibitory effect of high concentrations of FAS components), (ii) to carry 

out multiparameter studies of interdependent catalytic steps (i.e., studies that are 

experimentally intractable), and (iii) to develop new strategies to tune the product profiles of 

FASs. With these analyses, we sought to develop a general kinetic framework for 

engineering fatty acid synthesis in microbial systems.

RESULTS AND DISCUSSION

Development of a Mechanistic Kinetic Model.

We constructed a detailed kinetic model of the FAS of E. coli by incorporating the activities 

of seven enzymes necessary to convert malonyl-CoA and acetyl-CoA to saturated fatty acids 

(Figure 1 and Table 1): FabD, FabH, FabG, FabZ, FabI, FabF, and TesA. We included TesA, 

a periplasmic thioesterase from E. coli, because it generates large amounts of free fatty acids 

and is commonly included in engineered systems.9,10 (These systems include a cytosolic 
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variant of TesA; we refer only to this variant in our analysis.) We excluded FabA and FabB, 

two jointly regulated enzymes required for the construction of unsaturated fatty acids,26 for 

two reasons: (i) they have overlapping activities with FabZ and FabF and, thus, complicate 

the systematic analysis of unique catalytic steps,27 and (ii) previous studies suggest that they 

exert a negligible influence on overall rates of synthesis.11,23,27 We based all rate equations 

on kinetic mechanisms reported in detailed experimental analyses of individual enzymes, 

and we avoided a priori equilibrium assumptions by including independent association and 

disassociation steps for each heteromeric complex (Tables 1 and Table S1). Our final model 

contained 154 equations and 83 unique kinetic constants (Appendix 1 in the Supporting 

Information).

We note that five of the modeled enzymes (FabH, FabG, FabZ, FabI, and FabF) form 

homooligomeric complexes that may give rise to cooperative interactions between 

complexed proteins;8 previous studies have observed such interactions in dimers of FabH 

and tetramers of FabG.28,29 By modeling all enzymes as monomers, we assumed that 

cooperative changes in binding constants were small, relative to both (i) differences in 

binding constants between enzymes and (ii) the precision afforded by model fits.

Parameterization of the Kinetic Model.

We based initial estimates of model parameters on the results of detailed kinetic studies. For 

most enzymes, we used a combination of (i) measured turnover numbers and equilibrium 

constants reported in the literature or (ii) fits to published kinetic data (Table S4). For TesA, 

we supplemented these fits with new kinetic measurements that allowed us to estimate its 

affinity for holo-ACP (Methods, Figure S2E and Table S3).

We optimized estimates of kinetic parameters by fitting our model to experimental 

measurements of FAS activity. In brief, we used 12 scaling parameters to link groups of 

similar kinetic terms to one another (e.g., c2 scales estimates of kcat for the four enzymes 

that constitute the elongation cycle; Table 1) and we optimized these parameters with a 

simultaneous fit to three data sets: (i) a time course of total fatty acids produced by a 

reconstituted FAS,23 (ii) the product distribution generated by a strain of E. coli 
overexpressing TesA,19 and (iii) initial rates of fatty acid synthesis exhibited by reconstituted 

FASs with varying concentrations of FabH (Figure 2).23 This diverse set of data helped to 

prevent overfitting and, thus, to ensure that the model could accurately predict fatty acid 

production under a broad range of FAS compositions. We note that the reference study for 

the third data set did not report the time used to measure initial rates;23 therefore, we 

assumed a measurement time of 2.5 min (i.e., the time taken for ~10 turnovers) and 

optimized our model against normalized initial rates (e.g., Figure 2C).

Excess FabH Inhibits Fatty Acid Synthesis by Depleting Malonyl-ACP.

We began our analysis of FAS kinetics by using our model to examine the inhibitory effect 

of high concentrations of FabH. Previous studies have posited that this effect might result 

from either (i) the sequestration of ACPs (i.e., high concentrations of FabH might bind to 

holo-ACP and/or acyl-ACPs and, thus, sequester them from the reaction mixture)23 or (ii) 

the depletion of malonyl-ACP, a substrate of FabF.30 To test the first explanation, we 
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eliminated terms describing binding of FabH to holo- and acyl-ACPs (Table S1); this 

modification, however, yielded only a slight reduction in inhibition (Figure 2C), suggesting 

that component sequestration was not its primary cause. To test the second explanation, we 

altered our modified model further by adding variants of FabD that generate FabH- and 

FabF-specific pools of malonyl-ACP. This modification had two prominent effects: (i) It 

reduced initial rates (an expected outcome, given the reduced concentration of malonyl-ACP 

available for initiation), and (ii) it eliminated the inhibitory effect of high concentrations of 

FabH (Figure 2C). Our analysis, thus, indicates that high concentrations of FabH inhibit FAS 

activity by competing with FabF for malonyl-ACP.

Excess holo-ACP, FabF, and TesA Inhibit Fatty Acid Synthesis by Sequestering FAS 
Components.

We tested the ability of our model to capture trends in data to which it was not fit by 

examining the inhibitory effects of holo-ACP, FabF, and TesA reported by Khosla and 

colleagues.23 To our satisfaction, our model predicted these effects (i.e., fractional 

reductions in initial rates were similar to those observed in in vitro experiments; Figure 

3A,C,E) and, thus, appeared to accurately capture the mechanisms by which FAS 

components influence overall activity.

An inventory of bound and free forms of holo-ACP, FabH, and TesA indicate that excess 

concentrations of these species inhibit fatty acid synthesis by sequestering key proteins 

(Figures 3B,D,F). To examine this effect more directly, we removed terms describing the 

binding of (i) all enzymes to holo-ACP, (ii) FabF to holo-ACP, or (iii) TesA to holo-ACP. 

Unlike with FabH, these modifications eliminated inhibition (Figure 3A,C,E) and, thus, 

indicated that component sequestration was its primary cause. The results of this analysis are 

intriguing because they imply that the strength of enzyme-ACP interactions determines the 

optimal composition of FASs (an implication supported by previous observations that 

heterologous ACPs can reduce FAS activity30,31). Efforts to exchange or modify ACPs—or 

the enzymes with which they interact—are, thus, likely to require compositional 

reoptimization, a step rarely taken in metabolic engineering.

Excess FabI and FabZ Enhance Rates of Fatty Acid Synthesis.

Many studies of FASs seek to improve rates of fatty acid synthesis by identifying and 

removing metabolic bottlenecks.32,33 In one such study, Khosla and colleagues observed that 

high concentrations of FabZ and FabI (relative to a base system) could enhance FAS activity 

both in vitro and in vivo.23 Motivated by this result, we used our model to examine the 

influence of these two enzymes on rates of fatty acid synthesis. Our results revealed trends 

similar to those observed in vitro: as concentrations of FabI and FabZ increased, initial rates 

increased in a hyperbolic manner (Figure 4). Importantly, model-predicted optima occurred 

at lower enzyme concentrations than experimental optima, but a reduction in modeled values 

of kcat for both enzymes reduced this discrepancy; our model may thus overestimate 

activities of FabI and FabZ.

Overall, trends in initial rates indicate that both FabZ and FabI can increase FAS activity but 

show that FabZ does so over a wider range of concentrations than does FabI (i.e., a range 
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that may be more likely to include physiologically relevant conditions). The pronounced 

influence of FabZ likely results from the combined effects of its slow production of enoyl-

ACP and the rapid consumption of enoyl-ACP by FabI; enoyl-ACP thus acts as a rate-

limiting intermediate. A formal analysis of reaction intermediates supports this assertion: 

FabZ enhances rates of fatty acid synthesis until steady-state concentrations of enoyl-acyl-

ACP plateau (Figure S4C,D). The “valve-like” behavior of FabZ, alongside previous reports 

of the titer-enhancing benefits of FabZ overexpression,23,25,34 suggests that this enzyme 

catalyzes a rate-limiting step in fatty acid synthesis.

Carbon Flux Affects Total Production and Chain Length.

Metabolic engineers often seek to improve the yields of biological products by increasing 

the flux of carbon to the pathways that make them.35–37 FASs are somewhat unique among 

metabolic pathways, however, because their cyclic structure enables carbon to enter 

simultaneously at two steps: initiation and elongation. Changes in flux are, thus, likely to 

alter total production and product profile in a simultaneous—and largely nonintuitive—

manner. We used our model to explore this influence.

In brief, we modeled FAS compositions with different concentrations of malonyl-CoA (a 

surrogate for flux) and measured total production and average chain length at 12.5 min. At 

this biologically relevant time point (c.a., half the doubling time of E. coli38), differences in 

FAS outputs between compositions result from differences in the steady-state kinetics of 

fatty acid production (Note 3 in the Supporting Information). Figure 5A shows the results of 

our analysis. As concentrations of malonyl-CoA increase, both total production and average 

chain length increase in a hyperbolic manner. Associated changes in initiation and 

elongation events help to explain these trends (Figure 5B): a gradual increase in the number 

of initiation events (the number of acyl-ACPs that will eventually exit the FAS as fatty acids) 

enhances total production, while an abrupt increase in the ratio of elongation to initiation 

events (the relative activities of FabF and FabH on malonyl-ACP) causes abrupt elongation. 

These findings suggest two regimes of influence: (i) At low carbon fluxes, changes in flux 

modify chain length by altering the relative kinetics of initiation and elongation reactions. 

(ii) At medium to high fluxes, by contrast, they affect only overall rates of synthesis.

Coordinated Changes in the Concentrations of FabH, FabF, and TesA Enable Independent 
Tuning of Total Production and Chain Length.

The results of our analysis of carbon flux are intriguing because they indicate that changes in 

the relative rates of interdependent steps can have a pronounced influence on FAS outputs. 

To explore this effect further, we examined the influence of changes in the ratios of FabH, 

FabF, and TesA—three enzymes previously targeted in metabolic engineering studies5,18,39

—on total production and chain length. To our surprise, simple adjustments in the relative 

concentrations of these enzymes yielded both (i) changes in average length that preserved 

total production (e.g., region 1 in Figure 6) and (ii) changes in total production that 

preserved average length (e.g., region 2 in Figure 6). Importantly, the breadth of 

compositions associated with each adjustment was length-specific, and few compositions 

could achieve lengths of 12 or below without reducing production levels (a result suggestive 

of the need for additional modifications to achieve short- or medium-chain products). The 
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findings of our compositional analysis are striking because they indicate that simple changes 

in the ratios of FAS components (i.e., changes that might be introduced with modifications 

to ribosome binding sites40) may enable fine-tuning of FAS outputs.

Optimal Concentrations of FabF Differ Among Thioesterases.

The limited natural supply of medium-chain fatty acids (i.e., 4–12 carbons) has motivated 

many efforts to synthesize these molecules in microbial hosts.18,19,41 Heterologous 

thioesterases specific for medium-chain acyl-ACPs can accomplish this feat, but they tend to 

reduce yields of fatty acids by rebalancing initiation, elongation, and/or termination rates.
42–44 In one intriguing study of plant-derived thioesterases, Silver and colleagues adjusted 

this balance—and improved yields of medium-chain fatty acids in E. coli—by using an 

inhibitor of FabF to slow rates of elongation.5 Motivated by their work—and the desire to 

identify a “genetically encodable” (i.e., inhibitor-free) solution to the same problem—we 

used our model to optimize concentrations of FabF around different varieties of thioesterase.

Briefly, we parametrized the substrate specificities of plant-derived thioesterases specific for 

C4, C8, or C12 acyl-ACPs (Figure 7A) and examined their ability to generate fatty acids in 

the presence of varying concentrations of FabF. This analysis afforded two interesting 

observations. (i) Total fatty acid production by FASs with specialized thioesterases (e.g., 

CpFatB1 and UcFatB) showed a pronounced sensitivity to FabF concentration (Figure 7B). 

(ii) Optimal (i.e., production-maximizing) concentrations of FabF increased with the average 

chain length of FAS products (Figure 7C). The second observation is consistent with the 

results of in vivo studies, which indicate that optimal FabF activity scales with the length of 

thioesterase targets.5

Optimal FabF concentrations could plausibly (i) minimize FabH inhibition (i.e., reduce 

concentrations of long-chain acyl-ACPs that inhibit FabH24) or (ii) maximize substrate 

availability (i.e., increase the concentration of acyl-ACPs targeted by thioesterases). When 

we ran our model in the absence of FabH inhibition, however, optimal concentrations of 

FabF remained unchanged (Figure 7C). Our results thus indicate that FabF-derived 

improvements in the total production result from an increase in the concentration of acyl-

ACPs targeted by thioesterases. This finding is consistent with both (i) the heightened 

sensitivity of highly specific thioesterases to FabF (i.e., suboptimal concentrations of FabF 

can easily shift substrate lengths away from the thioesterase-preferred length) and (ii) the 

high FabF requirements of thioesterases specific for long-chain acyl-ACPs (which require 

multiple elongation steps).

Narrow Distributions of Fatty Acids Require Specialized Enzymes.

Our analysis of FAS compositions highlights two approaches for modifying the length of 

fatty acids: (i) changes in the concentrations of catalytic components and (ii) changes in the 

identities of those components. To compare these two approaches to each other, we 

examined the product distributions afforded by each. We began by optimizing the enzyme 

concentrations of the FAS to build fatty acids with average lengths of 8, 10, 12, and 14 

carbons (Figure 8A). As expected, compositions with high concentrations of TesA and high 

TesA/FabF ratios generated short fatty acids, while compositions with low concentrations of 
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TesA and low TesA/FabF ratios generated long fatty acids. The distributions afforded by 

these compositions, however, were broad and, thus, suboptimal for the production of fine 

chemicals. To evaluate the ability of novel thioesterases to build narrow product profiles, we 

optimized FASs containing different thioesterases around narrow distributions centered at C8 

and C12. Interestingly, only FASs with highly specific thioesterases could generate these 

distributions (Figure 8B). The results thus indicate that changes in component ratios are 

sufficient to control the mean—but not the width—of fatty acid profiles.

Specialized variants of FabF provide an alternative—if less commonly explored—strategy 

for adjusting product distributions. In an early study, Dehesh and colleagues showed that 

steric obstructions in the binding site of this enzyme could prevent the elongation of long-

chain acyl-ACPs.45 To evaluate the control afforded by these “elongation-restricted” 

mutants, we optimized the enzyme concentrations of mutant-containing FASs around narrow 

distributions of fatty acids; to our surprise, mutants of FabF could achieve these distributions 

(Figure 8B). Our analyses thus indicate that both highly specific thioesterases and sterically 

hindered ketoacyl synthases permit the production of narrow product profiles.

A Sensitivity Analysis Provides General Rules for Tuning FASs.

Having established the ability of our model to recreate—and help explain—trends from in 

vitro and in vivo data, we used it to develop general rules for tuning FAS outputs. In brief, 

we applied the Morris method, a global sensitivity analysis, to identify the kinetic 

parameters that most strongly influence (i) average chain length, (ii) total production, and 

(iii) a fitting objective (i.e., ObjA, a measure of the similarity of predicted and measured 

trends in Figure 2A,B). This method supplies a metric, termed the normalized “elementary 

effect”, for the sensitivity of a specified output to a model parameter. To begin, we examined 

the sensitivity of each output to the 12 fit parameters; several lumped parameters (e.g., c2, 

which scales kcat for multiple enzymes), however, were highly influential (Figure 9A), so we 

decomposed them into enzyme-specific terms and reran our analysis (Figure 9B). Results of 

this second test indicated that average chain length was most sensitive to the substrate 

specificity of TesA and to the activities of TesA and FabF, while total production was most 

sensitive to the activities of FabD and FabZ. The sensitivity of the fitting objective reflected 

a simple sum of the two sets of effects. The contributions of TesA and FabF to chain length 

are consistent with their reported ability to alter product profiles;5,18,19 the contributions of 

FabZ and FabD to production, in turn, agree with their observed effects on yield and titer.
23,25,46

The results of our sensitivity analysis suggest an important limit on the effects afforded by 

single-component adjustments to FAS compositions. TesA and FabF influence both chain 

length and total production, while FabD and FabZ affect only the latter. Changes in the 

identity and/or expression level of individual components thus enable fine-tuning of total 

production, but not product profile, which requires coordinated changes in multiple 

enzymatic steps.
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CONCLUSIONS

Metabolic pathways use complex systems of interacting catalysts to convert simple inputs 

(e.g., glucose) into complex, dynamically adjustable outputs (e.g., the plasma membrane).
47,48 Efforts to engineer these pathways thus require an understanding of the kinetic 

relationships that govern catalytic collaboration within them. In this study, we developed a 

mechanistic kinetic model of the E. coli FAS and used it to determine how different enzymes 

work together to control FAS outputs. The model’s ability to predict trends from a range of 

in vitro and in vivo data sets indicates that the reactions on which it focuses (i.e., those 

catalyzed by the seven enzymes necessary to build saturated fatty acids) are largely 

responsible for those trends.

The central findings help explain perplexing results from experimental studies and provide 

new strategies for controlling fatty acid production in microbial systems. Perturbational 

analyses indicate that the modification and/or overexpression of one FAS component can 

depress fatty acid production (a commonly observed phenomenon5,9,49) by sequestering the 

proteins with which it interacts and/or by depleting common substrate pools. Importantly, 

we show that suboptimal concentrations of FabF can reduce fatty acid synthesis by lowering 

concentrations of acyl-ACPs targeted by thioesterases—a common target of metabolic 

engineering. Compositional studies, in turn, suggest that both (i) coordinated changes in the 

concentrations of catalytic components and (ii) adjustments to the substrate specificities of 

those components can alter the average length of fatty acids but indicate that adjustments to 

the distributions of those lengths require thioesterases and/or ketoacyl synthases with 

appropriately focused substrate specificities.

The results of this study suggest two general rules for FAS design. (i) They indicate that the 

exchange of nonnative components with native ones (e.g., alternative versions of ACP, TesA, 

FabF, or FabH for wild-type variants) will likely require concomitant changes in 

concentration or activity of other FAS components. (ii) They suggest that single-component 

adjustments—at least within the FAS of E. coli—enable independent tuning of production 

levels but not product profiles. The relevance of the specific controls identified (i.e., FabD, 

FabZ, TesA, and FabF) to other FASs merits exploration in future work; the general ability 

of some components to adjust one output, while others influence several, however, is broadly 

interesting because the interdependence of different kinetic steps is rarely considered in 

engineering efforts. Broadly, the findings of this study highlight the precision afforded by 

coordinated changes in the composition of FASs and provide new strategies for building 

biocatalytic systems (and microbial hosts) with precisely defined product profiles.

MATERIALS AND METHODS

Assembly and Solution of the Kinetic Model.

Our mechanistic kinetic model captures the combined activities of the enzymes depicted in 

Figure 1 with a system of rate equations derived from the mechanisms depicted in Table 1 

and Table S1 (Appendix 1 in the Supporting Information). Our model uses physiologically 

relevant concentrations of enzymes, substrates, and cofactors as described by Khosla and 

colleagues.23 We generated numerical solutions to our final system of differential equations 
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(a system that is stiff at early time points) by using the MATLAB solver ode15s with a 

relative error tolerance of 1e-4 and an absolute error tolerance of 1e-6.

Parameterization of the Kinetic Model.

We based initial estimates of model parameters on the results of detailed experimental 

studies (Table S4). We used estimates of kcat as given, and we decomposed estimates of Kd 

and KM, which rely on equilibrium or steady-state assumptions, by using eqs 1 and 2, 

alongside literature-based estimates of koff. In our fitting routine, we adjusted values of koff 

by using eqs 1 and 2 to recalculate kon under the assumption that KM or Kd are constants.

Kd =
koff
kon

(1)

Kd = KM −
kcat
kon

(2)

Materials and Resources.

We purchased reagents for buffer and media from Thermo Fisher Scientific (Waltham, MA), 

substrates and cofactors for kinetic experiments from Sigma-Aldrich (St. Louis, MO), 

enzymes for cloning from New England Biolabs (Ipswich, MA), and kits for DNA 

extraction and purification from Qiagen (Hilden, Germany). We performed distributed 

computing with the Google Cloud Compute Engine (https://cloud.google.com/).

Design of Plasmids.

We used three plasmids to express apo-ACP, TesA, and Sfp (a 4′-phospho-pantetheinyl 

transferase from Bacillus subtilis) in E. coli. For TesA, we isolated genomic DNA from E. 
coli by using the DNeasy Blood and Tissue Kit (Qiagen); we amplified the TesA gene by 

using primers that add 6X polyhistidine tags to the N-terminus (we removed its native N-

terminal signal sequence): 

ATATCCATGGGCAGCAGCCATCATCATCATCATCACATGGCGGACACGTTATTGATT

CTG (forward) and 

TTTTTGGATCCATTATGAGTCATGATTTACTAAAGGCTGCAACTGCTTCGCCAT 

(reverse), and we cloned the amplified gene into pET16b (Novagen). For Sfp and apo-ACP, 

we used plasmids with N-terminal polyhistidine-tagged versions of each protein (i.e., 

pET29b and pET22b, respectively); these plasmids were supplied by the Barkart lab. We 

verified all sequences with Sanger sequencing (Quintara Bio).

Expression and Purification of Proteins.

We expressed TesA, apo-ACP, and Sfp by carrying out the following steps. (i) We 

transformed each plasmid into E. coli BL21(DE3) by using heat shock. (ii) We spread the 

transformed cells onto antibiotic-containing LB plates (100 μg/mL of carbenicillin or 50 
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μg/mL of kanamycin) and incubated them at 37 °C for 12 h. (iii) We used a single colony, 

thus generated, to inoculate 20 mL LB media (100 μg/mL of carbenicillin), and we placed 

this culture in an incubator shaker (37 °C, 150 rpm) for 4–5 h until it turned visibly cloudy. 

(iv) We used our initial culture to inoculate 1 L of expression media (20 g of tryptone, 10 g 

of yeast extract, 5 g of NaCl, 4 g of M9 salts, 4 g of glucose, and 100 mg of carbenicillin), 

and we placed this new culture in an incubator shaker (37 °C, 150 rpm) for 2–3 h until it 

reached an OD600 value of 0.5–0.8. (v) We induced expression by adding isopropyl β-D-1-

thiogalactopyranoside (IPTG) at a concentration of 0.1–0.5 mM, and we returned the culture 

to an incubator shaker set to 20 °C. (vi) After 16–20 h, we pelleted the cells.

We purified all proteins with the following steps. (i) We lysed the cell pellets by incubating 

them (1 h, rocking platform) with lysis buffer (4 mL/g pellet): 4 mL of B-PER [Thermo 

Fisher], 1 mg of MgSO4, 2 mg of Nα-p-tosyl-L-arginine methyl ester hydrochloride, 3.5 mg 

of tris(2-carboxyethyl)phosphine (TCEP), 3.75 μL of phenylmethylsulfonyl fluoride, 0.5 mg 

of lysozyme, and 10 μL of DNase). (ii) We clarified the lysate by pelleting the cell debris 

and adding saturated ammonium sulfate at 20% (v/v), followed by immediate centrifugation. 

(iii) We exchanged the protein into Tris-HCl buffer (50 mM Tris-HCl, pH 7.5, 0.5 mM 

TCEP) by using a desalting column (HiPrep 26/10, GE Healthcare). (iv) We flowed the 

desalted lysate over a nickel column (HisTrap HP) and eluted the purified protein with 

imidazole (a step gradient of Tris-HCl buffer with 300 mM imidazole). (v) We exchanged 

the eluent back into Tris-HCl buffer (50 mM Tris-HCl, pH 7.5, 0.5 mM TCEP), flowed the 

resulting solution over an anion exchange column (HiPrep Q HP 16/10, GE Healthcare), and 

eluted the protein with NaCl (a gradient of Tris-HCl buffer with 1 M NaCl). (vi) We stored 

the final desalted proteins in 20% glycerol at −80 °C.

Synthesis of Holo-ACP.

We synthesized holo-ACP by using Sfp to transfer the 4′-phosphopantetheinyl moiety of 

coenzyme A to apo-ACP.50 In brief, we incubated apo-ACP, Sfp, and CoA at 37 °C for 3 h 

(50 μM ACP, 2 μM Sfp, 200 μM CoA, 1 mM MgCl2, 1 mM TCEP, 50 mM Tris HCl, pH 

7.5), and we used anion exchange to separate holo-ACP and apo-ACP from the final 

mixture. We stored the purified holo-ACP as described above.

Parameterization of TesA Activity.

To parametrize the activity of TesA, we fit values of kcat and KM to previously collected 

kinetic data describing the activity of TesA on acyl-CoAs of different lengths (Figure S2A 

and Table S2),19 and we used eqs 1 and 2 to convert values of KM to estimates of Kd (for 

this effort, we estimated koff to be 2.0 s−1, an intermediate value; Table S4). For C4, C18, and 

C20 acyl-CoAs, we estimated values of kcat, KM, and Kd by extrapolating trends exhibited by 

values of kcat, KM, and Kd for C6–C16 acyl-CoAs (Figure S2B–D).

In our optimization routine, we adjusted the activity of TesA with three fit parameters. The 

first, c3, scales estimates of kcat by retaining their relative values (Figure S2B); the second 

two, d1 and d2, adjust a subset of Kd values with a linear free-energy relationship (eq 3, 

Figure S2D).
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lnKd = d1 × length + d2 (3)

In brief, we retained original estimates of Kd for short substrates (≤C12) and used the linear 

free-energy relationship for long substrates (i.e., eq 3 passes through the point (C12, ln 

Kd-C12) with d1 and d2 as fit parameters). Interestingly, despite their different bases of 

estimation, final values of ln Kd for all acyl-ACPs fell onto a single line (Figure S2D).

Parameterization of Enzyme-holo-ACP Binding.

We measured the affinity of TesA for holo-ACP by examining TesA-catalyzed hydrolysis of 

p-nitrophenylbutyrate (pNP4) in the presence of holo-ACP (Figure S2E). In brief, we 

prepared a 96-well plate (100 μL, 50 mM Tris-HCl, pH 7.5, 0.1 mM TCEP, 0.1 μM TesA, 

5% DMSO) with varying concentrations of pNP4 (100 μM to 10 mM) and holo-ACP (0, 2, 

and 10 μM), and we monitored hydrolysis by measuring absorbance at 405 nm (4-

nitrophenol) with a SpectraMax M2 plate reader. To our surprise, the kinetic data fit well to 

an activation model in which the TesA-ACP complex had a Kd value of ~9 μM (Figure S2E 

and Table S3). The ability of holo-ACP to activate TesA-catalyzed hydrolysis of small 

substrates is intriguing, but because holo-ACP and acyl-ACPs likely share the same binding 

site, we used the Kd determined in our kinetic study as an estimate of KI for competitive 

inhibition.

Previous studies indicate that holo-ACP binds to FabG, FabZ, FabI, and FabF;51–54 data on 

the affinity of these interactions, however, is scarce. We used our estimate of Kd for the 

TesA-ACP complex as an initial estimate of the Kd values for complexes between holo-ACP 

and FabG, FabZ, FabI, and FabF. By contrast, for FabH, where the inhibitory effect of holo-

ACP is ill-defined,15,54 we assumed a binding constant that is 100-fold weaker than those of 

other enzymes.

Parameterization of FabH Inhibition.

Long-chain acyl-ACPs regulate flux through the fatty acid pathway by inhibiting FabH—a 

form of negative feedback.48 We parametrized this inhibition in three steps. (i) We fit a 

detailed kinetic model of FabH-catalyzed condensation of acetyl-CoA and malonyl-ACP 

(lines (3) and (4) in Table 1) to previously reported initial rates measured at varying 

concentrations of these two substrates (Figures S3A,B)55. (ii) With this model as a starting 

point, we fit inhibition constants for palmitoyl-ACP (i.e., KI,1 and KI,2 as defined in Table 

S1) to initial rates measured under varying concentrations of this inhibitor (Figure S3C,D). 

(iii) We estimated length-specific values of inhibition constants by fitting them to data 

showing the inhibitory effects of acyl-ACPs of various lengths (Figure S3E).

Parameterization of FabZ.

The equilibrium of the dehydration reaction catalyzed by FabZ favors substrates over 

products by a ratio of ~4:1;56 however, to develop our model, we approximated this reaction 

as irreversible in the presence of FabI, which rapidly consumes enoyl-acyl-ACP.22 An 

examination of the concentrations of β-hydroxyacyl-ACP and enoyl-acyl-ACP, which are 
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present at a ratio of ~60:1 in the base model and ~500:1 in the model with a reduced kcat 

value for FabZ (Figure 4B), supports this approximation (Figure S4A,B).

Optimization of the Kinetic Model.

We optimized estimates of scaling parameters by carrying out the following steps. (i) We 

used diffusion calculations (Note 1 in the Supporting Information) and previously reported 

kinetic measurements to estimate physically relevant ranges of each kinetic parameter (Table 

S5) and, subsequently, to estimate ranges of each scaling parameter (Table S6). (ii) We 

constructed 500 initial guesses of 11 scaling parameters (all but “e” as defined in Table 1) by 

randomly sampling the range associated with each (i.e., we sampled a uniform distribution 

defined by the logarithm of the upper and lower limits of each range). (iii) We used 

distributed computing to determine if the model, when parameterized with the 500 sets of 

guesses, could predict the time-course profile and product distribution depicted in Figure 

2A,B. (We note that the experimental systems used to generate Figures 2A–C, 3, and 4 and 

Figure S5 include FabA and FabB, which are neglected by our model; our fits—and, later, 

our model predictions—assume that these enzymes make a negligible contribution to trends 

in production rates and length-specific product distributions of the FAS.) (iv) We compared 

predicted and measured trends with ObjA = SSEset1 × SSEset2; here, SSEset1 and SSEset2 

represent the sums of squared errors for Figure 2A,B, respectively. (v) We used the 20 best-

performing sets of guesses (i.e., those with the lowest values of ObjA) to fit our model to the 

data in Figure 2A,B. Here, we used MATLAB function “fminsearch” (an implementation of 

the Nelder–Mead simplex method) with ObjA. (vi) We used the two best optimized sets of 

parameters to assess our model’s ability to predict the inhibitory effects of FabH and FabF 

(i.e., Figures 2C and 3C); poor agreement between predicted and experimental trends, 

however, suggested that our model did not accurately capture the strength of interactions 

between enzymes and holo-ACP. (vii) We introduced a twelfth parameter—e, which scales 

values of Kd that describe the binding of both FabH and FabF to holo-ACP and FabH to 

acyl-ACPs—and we reoptimized our model to the data in Figure 2. Here, we used the two 

parameter sets from step vi and ObjB = SSEset1 × SSEset2 × SSEset3, where SSEset3 

represents the sum of squared errors for Figure S2C. (vii) The set of fit parameters with the 

lowest value of ObjB served as our starting point for all analyses described in this study 

(Table S6).

Parameterization of Plant-Derived Thioesterases.

We parametrized the activity and substrate specificity of plant-derived thioesterases by using 

data sets from two in vivo studies. The first data set included total fatty acids generated by 

strains of E. coli containing TesA or UcFatB (Figure S9A).57 The second data set included 

product distributions generated by strains containing BfTES, CpFatB1, or UcFatB (Figure 

S9B–D).5 These two sets of data, when combined, allowed us to parametrize both the 

activities and substrate specificities of BfTES, CpFatB1, or UcFatB. For context, BfTES was 

most active on C4 acyl-ACP and showed slight activity on C6 and C8 acyl-ACPs (Figure 

S9B), CpFatB1 was most active on C8 acyl-ACP and showed minor activity on C6 and C10 

acyl-ACPs (Figure S9C), and UcFatB was most active on C12 acyl-ACP and showed some 

activity on C10 and C14 acyl-ACPs (Figure S9D). We optimized kinetic parameters by fitting 

FASs with plant-derived thioesterases to the production levels depicted in Figure S9A. For 

Ruppe and Fox Page 13

ACS Catal. Author manuscript; available in PMC 2019 March 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



BfTES, we adjusted absolute values of kcat and Kd but maintained their relative values 

between substrates (i.e., for C4, C6, and C8 acyl-ACPs, we based initial estimates of kcat and 

Kd on measurements of kcat and Kd for TesA activity on C16, C18, and C20 substrates, 

respectively; for all other substrates, we set values of kcat to zero). For CpFatB1 and UcFatB, 

we adjusted values of kcat and Kd for major substrates by simultaneously moving both 

parameters along the lines depicted in Figure S2B,D; for minor substrates, we held values of 

kcat and Kd constant. (We based initial estimates of kcat and Kd for major substrates on 

measurements of kcat and Kd for TesA activity on C6 acyl-CoA; for minor substrates, we 

used TesA activity on C20 acyl-CoA, and for all other substrates, we set values of kcat to 

zero.)

Parameterization of Mutants of FabF.

We modeled elongation-restricted mutants of FabF by eliminating their activity on substrates 

longer than the specified “restriction length”. For example, for the mutant incapable of 

elongating beyond eight carbons (Figure 8B, left), we set values of kcat for C8–C20 to zero; 

for the mutant incapable of elongating beyond 12 carbons (Figure 8B, right), we set values 

of kcat for C12–C20 to zero. This parametrization is consistent with the results of in vitro 

studies, which indicate that elongation-restricted mutants of FabF retain their activities on 

substrates shorter than the restriction length.45

Sensitivity Analysis of the Kinetic Model.

We performed a sensitivity analysis of scaling parameters (Figure 9A) and enzyme-specific 

decompositions of those parameters (Figure 9B) by calculating the mean elementary effects 

as defined by the Morris method.58 (An elementary effect is the mean of a set of derivatives 

calculated at semirandom points within a model’s parameter space.59) We restricted the 

values of parameters explored in the sensitivity analysis to ranges that spanned up to 3 

orders of magnitude (centered at the initial fit parameters). We used the SAFE toolbox60 to 

implement the analysis with the radial method (r = 100 trajectories) as described previously.
59 Figure S10, which illustrates the convergence of the mean elementary effects, provides 

additional details of our analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Fatty acid synthase (FAS) of E. coli. This type II FAS formally includes FabD, FabH, FabG, 

FabZ, FabA, FabI, FabB, FabF, and holo-ACP; many studies, however, supplement it with a 

periplasmic variant of TesA.9,19,23 Our model captures the activities of the seven enzymes 

(orange) necessary for de novo biosynthesis of saturated fatty acids from malonyl-CoA and 

acetyl-CoA.
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Figure 2. 
Optimization of the kinetic model. We optimized our model with simultaneous fits to three 

data sets: (A) a time course of total fatty acids generated by a reconstituted FAS (1 μM of 

each Fab, 10 μM holo-ACP, 10 μM TesA, 1 mM NADPH, 1 mM NADH, 0.5 mM malonyl-

CoA, and 0.5 mM acetyl-CoA),23 (B) the product distribution generated by a strain of E. coli 
overexpressing TesA,19 and (C) initial rates of fatty acid synthesis (calculated over 2.5 min) 

exhibited by reconstituted FASs with varying concentrations of FabH (i.e., mixtures with 0.2 

mM acetyl-CoA that are otherwise identical to the mixture from (A)).23 We used the in vivo 
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product distribution (B) as an approximation for the in vitro distribution (not reported) at 

12.5 min; for (C), we optimized our model against normalized initial rates. Panel (C) 

compares two modified models. In the first (triangles), FabH cannot bind to ACP or acyl-

ACPs. In the second (squares), the first is further modified to include two FabDs that 

generate FabH- and FabF-specific pools of malonyl-ACP. Only the second modified model 

is insensitive to high concentrations of FabH, suggesting that inhibition results from 

competition between FabH and FabF for malonyl-ACP.
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Figure 3. 
Influence of ACP, FabF, and TesA on FAS activity. Initial rates of fatty acid synthesis 

exhibited by reconstituted FASs (1 μM of each Fab, 10 μM TesA, 10 μM holo-ACP, 1 mM 

NADPH, 1 mM NADH, 0.5 mM malonyl-CoA, and 0.2 mM acetyl-CoA, 2.5 min) with 

varying concentrations of (A) ACP, (C) FabF, and (E) TesA. The model captures the 

inhibitory effects of each component and provides a mechanistic explanation. (A) High 

concentrations of ACP reduce initial rates by (B) sequestering enzymes from the reaction 

mixture. In (A), a modified model that lacks interactions between enzymes and holo-ACP 
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shows no inhibition (dashed blue line). Similarly, high concentrations of (C) FabF and (E) 

TesA reduce initial rates by (D, F) sequestering ACP. Modified models that lack (D) FabF-

ACP or (F) TesA-ACP interactions show no inhibition (dashed blue lines).
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Figure 4. 
Influence of FabI and FabZ on FAS activity. Initial rates of fatty acid synthesis exhibited by 

reconstituted FASs (1 μM of each Fab, 10 μM TesA, 10 μM holo-ACP, 1 mM NADPH, 1 

mM NADH, 0.5 mM malonyl-CoA, and 0.2 mM acetyl-CoA) with varying concentrations of 

(A) FabI and (B) FabZ. As enzyme concentrations increase, initial rates increase in a 

hyperbolic manner. Model-predicted optima occur at lower enzyme concentrations than 

experimental optima; however, when modeled values of kcat for FabI or FabZ are reduced by 

100- and 10-fold, respectively, predicted and experimental trends agree well (dashed blue 
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lines). FabZ improves initial rates over a wider range of enzyme concentrations than FabI 

and may, thus, limit FAS activity over a wider range of conditions.
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Figure 5. 
Influence of carbon flux on FAS outputs. (A) Total production and average length of fatty 

acids generated by modeled FASs (1 μM of each Fab, 10 μM TesA, 10 μM holo-ACP, 1 mM 

NADPH, 1 mM NADH, and 0.5 mM acetyl-CoA, 12.5 min) with varying concentrations of 

malonyl-CoA. As concentrations of malonyl-CoA increase, production levels increase 

gradually, while average length increases abruptly over a narrow range of concentrations. 

(B) Enhanced production levels correlate with an increase in initiation events; average chain 
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length, with an increase in the ratio of elongation to initiation events (i.e., the relative 

activities of FabF and FabH on malonyl-ACP).
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Figure 6. 
Influence of relative concentrations of FabH, FabF, and TesA on FAS outputs. Ternary 

diagrams show (A) total production and (B) average length of fatty acids generated by 

modeled FASs (1 μM of each Fab, 10 μM holo-ACP, 1 mM NADPH, 1 mM NADH, 0.5 mM 

malonyl-CoA, and 0.5 mM acetyl-CoA, 12.5 min) in which ratios of FabH, FabF, and TesA 

vary (i.e., [FabH] + [FabF] + [TesA] = 12 μM). Compositional adjustments in region 1 

change average length (C12–C16) but leave production levels nearly unaltered (38–43 μM); 
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adjustments in region 2, by contrast, alter production levels (25–44 μM) but not chain length 

(C18). The reference point (filled circle) denotes the composition examined in Figure 2A.
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Figure 7. 
Analysis of the interdependence of thioesterase specificity and FabF concentration. (A) 

Product distributions for modeled FASs (1 μM of each Fab, 10 μM thioesterase, 10 μM holo-

ACP, 1 mM NADPH, 1 mM NADH, 0.5 mM malonyl-CoA, and 0.5 mM acetyl-CoA, 12.5 

min) containing thioesterases specific for C4 (BfTES), C8 (CpFatB1), C12 (UcFatB), and 

C14 acyl-ACPs (TesA). (B) Total production by FASs from (A) with varying concentrations 

of FabF. FASs that contain thioesterases with narrow substrate specificities (e.g., CpFatB1 

and UcFatB) show a pronounced sensitivity to FabF concentration. (C) Optimal 
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concentrations of FabF increase with the length of thioesterase targets in both (i) the base 

model and (ii) a modified model that lacks inhibition of FabH by acyl-ACPs. The similarity 

in trends generated by these two models suggests that optimal FabF concentrations do not 

minimize inhibition but, rather, maximize the availability of acyl-ACPs targeted by 

thioesterases.
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Figure 8. 
Analysis of product distributions. (A, B) Top: Modeled FAS compositions with enzyme 

concentrations optimized to generate different average chain lengths (base system: 10 μM 

holo-ACP, 1 mM NADPH, 1 mM NADH, 0.5 mM acetyl-CoA, and 0.5 mM malonyl-CoA). 

Differences in the total colored area of each plot reflect differences in total enzyme 

concentration between compositions. Bottom: product distributions associated with each 

composition (12.5 min). (B) Top: FAS compositions optimized to generate narrow product 

distributions (orange, bottom). Compositions are identical to those in (A) but, where 

indicated, include non-native components (i.e., CpFatB1, UcFatB, or versions of FabF that 

cannot elongate beyond 8 or 12 carbons) in place of native ones. Bottom: Narrow 

distributions require specialized thioesterases or elongation-restricted mutants of FabF.
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Figure 9. 
Sensitivity analysis. (A) Normalized mean elementary effect for each fit parameter (Table 1). 

The average chain length is most sensitive to c2, c3, d1, and d2, and total production is most 

sensitive to b1 b2, b3, and c2. (B) An expanded analysis shows mean elementary effects of 

enzyme-specific contributions: The average length is most sensitive to the substrate 

specificity of TesA (d1 and d2) and the activities of FabF and TesA (c24 and c3, respectively), 

while total production is most sensitive to the activities of FabD (b11, b2, and b31) and FabZ 

(c22; Table 1). The sensitivity of the fitting objective is simply additive. A comparison of the 
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sensitivities indicates that FabD and FabZ primarily affect total production, while TesA and 

FabF affect both production and product profile.
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Table 1.

Kinetic Mechanisms and Parameters
a

a
Legend: (†) FabD*, FabH*, and FabF* refer to acyl-enzyme intermediates. (‡) For the expanded sensitivity analysis, we divided scaling 

parameters as follows: b11 scales kr for (1) and (2); b12, kr for (3); b13, kr for (10); b31, Keq for (2); b32, Keq for (3); b33, Keq for (10); c21, 

kcat for (6); c22, kcat for (7); c23, kcat for (9); c24, kcat for (11).
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