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Abstract

Purpose of review: Environmental toxicants and psychosocial stressors share many biological 

substrates and influence overlapping physiological pathways. Increasing evidence indicates stress-

induced changes to the maternal milieu may prime rapidly developing physiological systems for 

disruption by concurrent or subsequent exposure to environmental chemicals. In this review, we 

highlight putative mechanisms underlying sex-specific susceptibility of the developing 

neuroendocrine system to the joint effects of stress or stress correlates and environmental toxicants 

(bisphenol A, alcohol, phthalates, lead, chlorpyrifos and traffic-related air pollution).

Recent findings: We provide evidence indicating that concurrent or tandem exposure to 

chemical and non-chemical stressors during windows of rapid development is associated with sex-

specific synergistic, potentiated and reversed effects on several neuroendocrine endpoints related 

to hypothalamic-pituitary-adrenal axis function, sex steroid levels, neurotransmitter circuits and 

innate immune function. We additionally identify gaps, such as the role that the endocrine-active 

placenta plays, in our understanding of these complex interactions. Finally, we discuss future 

research needs, including the investigation of non-hormonal biomarkers of stress.
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Summary: We demonstrate multiple physiologic systems are impacted by joint exposure to 

chemical and non-chemical stressors differentially among males and females. Collectively, the 

results highlight the importance of evaluating sex-specific endpoints when investigating the 

neuroendocrine system and underscore the need to examine exposure to chemical toxicants within 

the context of the social environment.
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Introduction

For decades, the fields of psychology and child development have embraced the concept that 

an “umbilical transference” [1] occurs during prenatal life, in which the developing fetus is 

not only susceptible to risks conferred by physical and chemical exposures, but is sensitive 

to the vicissitudes of maternal psychological state and affect. Indeed, in the 90 years since 

Freud inferred the importance of the maternal-fetal bond (“[there is] much more continuity 

between intra-uterine life and earliest infancy than the impressive caesura of birth would 

have us believe” [2]), maternal emotional state and hormonal fluctuations have been 

associated with spontaneous abortion, fetal distress, premature labor and other pregnancy 

complications [3–5].

More recently, the fields of toxicology and environmental epidemiology have begun to adopt 

these principles and move towards an ‘exposome’ approach, in which an individual’s 

cumulative “internal chemical environment” is thought to reflect exposure from both 

exogenous sources (i.e. environmental toxicants) and endogenous processes (i.e. stress-

induced hormonal changes) [6].

From a health perspective, embracing the exposome is critical as environmental toxicants 

and psychosocial stressors share many biological substrates and increasing evidence 

indicates that stress-induced changes to the maternal milieu may prime rapidly developing 

physiological systems for disruption by concurrent or subsequent exposure to environmental 

chemicals and vice versa [7, 8].

In this review, we summarize four putative mechanisms underlying sex-specific 

susceptibility of the developing neuroendocrine system to the joint effects of psychosocial 

stress and environmental toxicants (Figure 1). We focus on this system given the sex bias of 

many neurocognitive and behavioral disorders [9] and evidence demonstrating stress and an 

array of toxicants independently disrupt neurodevelopmental trajectories and alter 

programing of the fetal brain, including organization of sexually dimorphic regions [10–12]. 

We support each mechanism with examples from animal research, and when available, we 

discuss parallel epidemiologic findings. We draw from studies examining six well-

established developmental neurotoxicants, including: bisphenol A (BPA), alcohol, 

phthalates, lead, chlorpyrifos and traffic-related air pollution. An exhaustive review of sex-

specific neurodevelopmental effects associated with isolated exposure to psychosocial stress 

and these toxicants is beyond the scope of this paper, however, when available we point 
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readers to previously published review articles. Finally, we identify gaps in our current 

understanding of these complex interactions and discuss future research needs.

Background

Measures of Stress

Stress is a complex, multilevel construct characterized by cognitive appraisal of potentially 

stressful stimuli and consequent physiological reactions at both the cellular and emotional 

levels. Variation in stress responses reflects features of the stimuli (i.e. context, intensity, 

chronicity) and individual (i.e. sex, life stage, appraisal, coping capacity), thus requiring a 

diverse set of instruments and protocols for measurement. In epidemiologic research, 

measures of physical strain (e.g., malnutrition, sleep deprivation) and socioeconomic 

correlates of stress (e.g., education, resource accessibility), as well as scales of negative life 

events, stress perception, and negative affect are often used [13]. In experimental animal 

studies, common protocols include physical restraint, forced swimming or restricted access 

to bedding material. Additionally, both animal and human studies frequently measure 

biomarkers of stress, such as glucocorticoids (i.e. cortisol in humans or corticosterone in 

rodents), under basal conditions and/or following exposure to stressful stimuli. Similarly, 

researchers can evaluate the timing and intensity of stress responses by examining 

physiologic and molecular changes following administration of synthetic glucocorticoids.

Mechanism 1: Disrupted HPA Axis Function

Circulating glucocorticoid levels are maintained by the Hypothalamic-Pituitary-Adrenal 

Axis (HPA), which regulates physiological responses to potentially stressful stimuli [14]. 

The HPA axis includes the hypothalamus and pituitary gland located in the brain, and the 

adrenal glands, which are situated above the kidneys. In response to signals from brain 

nuclei involved in emotion-regulation, hypothalamic neuroendocrine cells produce 

corticotropin releasing hormone (CRH), which triggers secretion of adrenocorticotropin 

hormone (ACTH) from the pituitary gland. ACTH signals the adrenal cortex to synthesize 

and release cholesterol, which undergoes steroidogenic conversion to glucocorticoids, 

mineralocorticoids, and to a lesser extent androgens (i.e. testosterone). Glucocorticoid 

receptors located on the hypothalamus and pituitary detect circulating levels and terminate 

axis activity though a feedback inhibition mechanism.

Bisphenol-a (BPA)

BPA is an endocrine disrupting chemical associated with sex-specific neurobehavioral 

problems in children [15]. It has been widely used in food cans, plastic bottles and other 

consumer products leading to nearly ubiquitous human exposure [15]. In silica research 

indicates BPA is a glucocorticoid receptor agonist [16], and it has been associated with 

altered HPA axis function in juvenile trout [17] and pregnant women [18]. During 

pregnancy, surges in glucocorticoid levels are essential for normal maturation of several 

organ systems, however, elevated glucocorticoids at incorrect developmental stages have 

been shown to disrupt fetal programming of the HPA axis [19, 20].
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Based on these factors, Pantagiotidou et al investigated sex-specific effects of perinatal 

exposure to BPA on HPA axis responsiveness during adolescence using a murine model 

[21]. Among female rats, BPA was associated with altered basal corticosterone (increased) 

and hypothalamic glucocorticoid receptor (decreased) levels. In response to acute stress 

(forced swimming), BPA-exposed females exhibited anxious coping behaviors and a 

dampened corticosterone response with failed downregulation of hypothalamic 

glucocorticoid receptor expression. In contrast, BPA-exposed males did not show altered 

basal HPA axis function, however, they failed to upregulate pituitary CRH receptor 1 

expression in response to acute-stress (Table 1). Taken together, these findings suggest 

prenatal BPA exposure may program a hyperactive HPA axis with impaired negative 

feedback responsiveness to circulating corticosterone levels among females and a dampened 

stress response among males. Notably, HPA axis hyperactivity has been associated with 

anxiety and depression-like behaviors in rats [22] and diagnosis of anxiety and major 

depressive disorder in children and adolescents [23]. These findings suggest sex-specific 

reprogramming of the HPA axis by in utero exposure to BPA may permanently alter 

individual responses to stressful stimuli and contribute to life-long neuropsychological 

problems.

Mechanism 2: Altered Sex Steroid Levels

Similar to adrenal steroidogenesis, the gonads produce sex steroids under the control of the 

Hypothalamic-Pituitary-Gonadal (HPG) axis. Precisely timed surges of gonadal and adrenal 

sex steroids are critical for sexually-dimorphic differentiation, including de-feminization and 

masculinization of the male brain [24, 25, 9].

Alcohol

Increasing evidence indicates stressful stimuli [26] and environmental toxicants [27] disrupt 

the fetal HPG axis. Given these findings, Ward et al. conducted a series of rodent studies to 

examine the effects of combined exposure to prenatal stress (restraint) and alcohol on fetal 

testosterone patterns and later sexual behavior [28]. Male rats born to dams exposed to 

alcohol or stress during pregnancy were characterized by a testosterone surge (timing and 

duration) similar to that of controls, however, at each gestational day studied levels of 

testosterone were elevated in the alcohol-only group and depressed in the stress-only group 

[28]. Among males in the combined exposure group, the fetal testosterone surge was 

significantly delayed and abbreviated (p=0.02) compared to the unexposed and single-

exposed groups [28]. As adults, males in the combined exposure group displayed feminized 

sexual behavior (e.g., lordosis) and reduced incidence of copulation with estrous females 

(Table 1) [29, 30]. Notably, in typically developing rats, the fetal testosterone surge 

corresponds with development of the sexually dimorphic nucleus in the hypothalamic 

preoptic area (SDN-POA), which plays important roles in controlling expression of sexual 

behaviors [26]. These findings suggest that combined exposure to alcohol and stress may 

desynchronize the temporal overlap between the fetal testosterone surge and development of 

the SDN-POA, resulting in feminization of the male brain.
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Phthalates

Consistent with the effects of alcohol, exposure to phthalates during the fetal 

masculinization window has been shown to alter rat gonadal steroidogenesis [31–33] and 

disrupt development of the male reproductive tract. In humans, prenatal exposure to 

phthalates has been associated with altered sex steroid levels [34–36] and de-masculinized 

phenotypes among boys, including reduced anogenital distance [37]. In turn, anogenital 

distance is considered a sensitive marker of androgen activity in early gestation [38] and 

correlates with sex-specific neurobehaviors [39]. Dibutyl phthalate (DBP) is a plasticizer 

that has been used extensively in toys and personal care products [40]. Given nearly 

ubiquitous human exposure to both DBP and stressful stimuli, Drake et al used a rat model 

to investigate the effects of concurrent exposure to DBP and the synthetic glucocorticoid 

dexamethasone [41]. Compared to unexposed controls, male offspring prenatally exposed 

DBP had lower fetal intra-testicular testosterone levels, reduced expression of key genes 

(StAR, CYP11a1) involved in gonadal steroidogenesis, and several anatomical 

malformations, including shortened anogenital distance. Exposure to dexamethasone alone 

showed no effects on male reproductive endpoints, however, when combined with DBP it 

enhanced the severity or incidence of most DBP-induced effects. Furthermore, combined 

exposure revealed effects on anogenital distance at lower doses of DBP (Table 1).

Diethylhexyl phthalate (DEHP) is a second anti-androgenic phthalate that is used to enhance 

flexibility of plastic-based consumer products [42]. Using data from a multi-center birth 

cohort, Barrett et al investigated prenatal exposure to stress and DEHP among a sample of 

infants (n=137 boys, n=136 girls) [43]. Stress was measured using a scale of stressful life 

events administered to couples during pregnancy and DEHP metabolites were measured in a 

maternal spot urine sample. Consistent with previous findings [44], stressful life events and 

DEHP exposure were independently associated with reduced anogenital distance among 

boys, albeit the association with stressful life events was not statistically significant [43]. 

Interestingly, when stratified by stress (<4 vs. 4+ stressful life events), DEHP metabolites 

were associated with reduced anogenital distance only among boys in the low stress group. 

These findings suggest that among males, stress in combination with DEHP exposure may 

interact such that their joint exposure protects against the anti-androgenic effects conferred 

by each in isolation. Among girls, prenatal stress was associated with significantly longer 

anogenital distance, indicative of a masculinizing phenotype, however, no interaction with 

DEHP metabolites was observed. Importantly, given the relatively small size of the study 

sample, it is important that these findings be replicated by future studies.

Collectively, these results provide evidence that in rats exposure to stress during pregnancy 

may augment the effects of concurrent exposure to environmental chemicals on male 

reproductive track outcomes and development of sexually-dimorphic brain regions, however, 

more research is needed to translate these findings to humans.

Mechanism 3: Changes to Neurotransmitter Systems

The brain is organized into complex neural networks that rely on the action of 

neurotransmitter-specific synapses for communication. Several of these circuits, such as the 

mesocorticolimbic dopamine circuit, also innervate key regulatory systems, including the 
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HPA axis [45]. The mesocorticolimbic neurotransmitter system projects from the ventral 

tegmental area to the nucleus accumbens, striatum, cortex and limbic centers; its coordinated 

function is important in motivation, memory, and positive reinforcement of emotion-related 

behaviors [46].

Lead (Pb)

Prenatal exposure to Pb and stress have each been shown to independently act on the 

mesocorticolimbic circuit [47, 48], leading Cory-Slechta et al to investigate the effects of 

combined exposure in a series of rat studies. The researchers found that among adult female 

rats prenatally exposed to acute stress (restraint) and Pb, but neither in isolation, frontal 

cortex dopamine levels were reduced and circulating corticosterone levels were elevated 

[49]. Females in the combined exposure group also exhibited learning deficits [50] and 

increased rates of stress-induced food reward responding, an indicator of impulsive choice 

behavior [48]. Parallel findings were not observed among males. In a subsequent study, the 

research group found indications of a trend towards disrupted mesocorticolimbic serotonin 

function and altered delay discounting behavioral performance among males exposed to Pb 

and stress, however, a statistically significant interaction was not observed [51]. Serotonin is 

a critical mediator of dopamine function [52], is important to HPA axis programming [53], 

and has been associated with sex-specific impulsive choice behavior in rats [54] and humans 

[55]. While substantial evidence indicates that stress and Pb act at the intersection of the 

mesocorticolimbic dopamine circuit and HPA axis, future research is needed to understand 

whether serotonin modulates this interaction.

Chlorpyrifos

Chlorpyrifos is a widely used agricultural pesticide [56] that disrupts neurotransmitter 

circuits by inhibiting acetylcholinesterase, the enzyme responsible for breaking down 

acetylcholine at neuromuscular junctions. Unsurprisingly, human exposure results in similar 

effects on acetylcholine systems [57], as well as disruption of serotonin circuits [58, 59]. 

Among children, prenatal exposure has been associated with tremor [60] and lower scores 

on measures of cognitive and neurobehavioral development [61, 62]. Glucocorticoids also 

target cholinergic [63] and serotonergic [64] circuits and recent findings suggest prenatal 

exposure to glucocorticoids may prime these neurotransmitter systems for enhanced 

disruption by subsequent chlorpyrifos exposure. Using a murine model, Slotkin et al 

examined several neurochemical and behavioral endpoints in offspring exposed to the 

synthetic glucocorticoid dexamethasone and/or chlorpyrifos during the prenatal and neonatal 

periods, respectively [65–67]. Among males, each exposure was associated with reduced 

presynaptic acetylcholine activity and combined exposure demonstrated additive effects on 

this endpoint. Conversely, among females, dexamethasone and chlorpyrifos were each 

associated with increased presynaptic activity, whereas tandem exposure was associated with 

significantly reduced presynaptic activity (indexed by decreased choline transport protein 

binding and reduced choline acetyltransferase activity) and lost postsynaptic reactivity 

(indexed by decreased postsynaptic receptor binding) [66]. Tandem exposure was also 

associated with enhanced deficiencies in serotonin turnover, an indicator of pre-synaptic 

impulse activity, and attenuated upregulation of both serotonin receptor and transport protein 

expression [65]. Notably, serotonin effects were stronger among male pups, who 
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additionally exhibited significantly greater hyperactivity compared to males in the control 

and single-exposure groups (Table 1) [67]. These findings suggest prenatal exposure to 

elevated glucocorticoids may enhance vulnerability of cholinergic (girls) and serotonergic 

(boys) systems to disruption by postnatal chlorpyrifos exposure.

Mechanism 4: Immune Dysregulation

Exposure to stress during fetal and neonatal life has been shown to alter fetal immune 

pathways [68, 69, 70], which play important roles in development of sexually dimorphic 

brain regions. For example, research conducted in male rodents suggests that increased 

estradiol levels resulting from aromatization of testosterone upregulates several microglial 

immune response genes resulting in the release of inflammatory signaling molecules (e.g. 

cytokines, prostaglandins) [71]. In turn, elevated prostaglandin E2 triggers a signaling 

cascade that ultimately augments dendritic spine density in the medial preoptic area, which 

play a central role in the ability of males to detect olfactory cues from sexually receptive 

females (71). This complex molecular pathway has been substantiated by experimental 

studies demonstrating male copulatory behavior during adulthood is completely suppressed 

among rats subjected to microglial ablation during the neonatal period (72). Additional 

pathways through which the immune system influences programming of the developing 

brain have been reviewed by Bilbo et al. [73].

Traffic-Related Air Pollution

Prenatal exposure to traffic-related air pollution is associated with sex-specific disruption of 

brain development, neurocognitive and behavioral endpoints, and innate immune function 

[74]. The effects of combined exposure to stress and diesel exhaust particles on immune 

markers was recently studied using a murine model. Bolton et al found that male rat pups 

born to dams exposed to diesel exhaust and subjected to nest restriction during pregnancy 

had significantly elevated expression of microglial toll-like receptor-4 (TLR4) and its 

downstream effector caspase-1. TLR4 is an innate immune receptor responsive to both 

exogenous and endogenous danger-associated molecular patterns [75]. As adults, male pups 

in the combined exposure group also exhibited a greater pro-inflammatory bias (pro-

inflammatory IL-1β /anti-inflammatory IL-10 ratio) in microglial derived cytokine levels 

compared to females. Subsequent analyses demonstrated these sex-specific molecular 

changes extended to cognitive and behavioral impairments, with males displaying significant 

hippocampal-dependent memory deficiency and increased anxiety-like behavior compared 

to males in the control and single-exposure groups (Table 1) [75]. These findings suggest 

maternal stress-induced changes in TLR4 signaling may enhance the effects of diesel 

exhaust exposure through microglia-mediated inflammation pathways within the fetal rat 

brain.

Using data from a Boston, MA-based birth cohort, we previously investigated relationships 

between maternal report of negative life events during pregnancy and prenatal exposure to 

black carbon, a measure of traffic-related air pollution, on memory and learning domains 

among 6-year old children (n=145 boys, n=113 girls) [76]. Consistent with Bolton et al, we 

found that high exposure to black carbon was associated with significant deficits in 
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attention-concentration scores only among boys born to mothers with high negative life 

event scores. While we did not study immune pathways, previous research in children has 

demonstrated stress [77] and black carbon [78] are independently associated with significant 

increases in pro-inflammatory IL-1β levels, supporting the role of the immune system as a 

potential mediator of our observed findings.

Summary of Mechanisms

Collectively, the studies reviewed here demonstrate that psychosocial stress and chemical 

toxicants interact to disrupt several physiological systems important to neurodevelopment 

and that these interactions vary by sex. However, given the limited research on these 

complex interactions, especially among humans, consistent patterns of disruption across 

chemicals, stressors and physiological systems remain poorly understood.

Future Research Needs

Role of the Placenta

While the studies summarized here focus directly on the fetal and maternal systems, 

emerging research indicates the placenta also plays a critical role in shaping sex-specific 

neurodevelopment [79]. Despite its design as a constitutional barrier between the mother and 

fetus, the placenta is penetrated by several neurodevelopmental toxicants and recent research 

indicates it is sensitive to changes in maternal state [79–81]. For example, in mice exposure 

to stressful stimuli during pregnancy has been shown to downregulate placental expression 

of O-linked-N-glycosyl transferase (OGT), an x-linked gene involved in regulating 

epigenetic modification of a global repressive histone mark (H3K27me3) [82, 83]. Notably, 

OGT escapes x-inactivation, leading to basal levels that are twice as low in males compared 

to females [82, 83]. The additional stress-induced decrease in OGT may result in an 

activated state among males via reduced transcriptional repression, ultimately rendering 

males more sensitive to concurrent or subsequent insults. Moreover, prenatal exposure to 

stress has been shown to significantly reduce associations between OGT and the 17-beta-

hyroxysteroid dehydrogenase-3 (HSD17β3) gene locus in male placentas. This decrease 

results in a corresponding reduction in placental expression of HSD17β3, which is 

responsible for converting androstenedione to testosterone [82]. As expected, prenatally 

stressed male mice present with increased androstenedione and decreased testosterone, as 

well as a dysmasculanized behavioral phenotype characterized by stress responses, cognitive 

function, and spatial strategies more similar to control females than control males. Despite 

these findings, no studies have investigated the sex-specific combined effects of stress and 

neurotoxicants on placental structure or function. Future research at the intersection of the 

maternal-placental-fetal unit is needed to more fully understand how gestational 

perturbations affect placental function, including altered gene expression patterns.

Improved Biomarkers of Stress

The majority of biomarkers currently used as indicators of stress are hormones (i.e. cortisol), 

which typically fluctuate in response to acute stress [84], may not accurately reflect maternal 

stress responses during pregnancy due to altered endocrine system homeostasis [85], and are 
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affected by variation in several enzymes, including placental HSD11β2, which converts 

cortisol to inactive cortisone [86]. Recently, telomeres have been identified as a potential 

biomarker of cumulative wear and tear on the body [87, 88]. Telomeres are repetitive, non-

coding T2AG3 sequences located at terminal chromosome ends. During cell division, 

chromosomes erode owing to limitations of DNA replication machinery, thus telomeres 

serve a self-sacrificing role against damage and degradation of protein coding regions [89]. 

Several recent epidemiological studies have demonstrated associations between early life 

social disadvantage and shorter telomere length [90–93], however, these studies are largely 

limited by cross-sectional designs, small sample sizes, and retrospective reporting of 

childhood experiences. Future research investigating telomere dynamics during pregnancy 

and throughout early life is needed to understand whether telomeres can serve as a stress-

sensitive biomarker during periods of rapid growth and development.

Expanded Research in Humans

As is evident from our focus on animal research, epidemiologic research investigating sex-

specific neuroendocrine effects of developmental exposure to chemical and non-chemical 

stressors is limited. While animal research provides a unique opportunity to experimentally 

manipulate and control study conditions, substantial anatomical, functional, developmental 

and behavioral differences between species limit the generalizability of results to humans. 

For example, rat adrenal glands to not produce androgens, which are important contributors 

to sexually dimorphic differentiation of the brain in humans [94]. Likewise, the 

masculinization programming window is only 3–5 days in rats compared to 4–6 weeks in 

humans, potentially providing a greater time-opportunity for physiological disruption or 

recovery [41]. More observational epidemiology research investigating stress-chemical-sex 

interactions is needed to confirm the biological mechanisms elucidated by animal research.

Investigation of Other Systems and Mechanisms

The reviewed studies do not encompass all psychosocial stressors, toxicants, physiological 

systems or biological mechanisms known to influence brain development, but rather were 

selected to highlight enhanced disruption of pathways central to sex-specific programming. 

Moreover, while reviewed separately, these pathways overlap extensively and should be 

conceptualized as contributing to a single integrated system. For example, the immune 

system plays an important role in regulating levels of stress-sensitive neurotransmitters [95], 

in turn, neurotransmitters influence sex steroid levels via modulation of the HPG axis at the 

level of the hypothalamus [96]. Moreover, the extent to which stress may act to increase 

exposure at the biological level is poorly understood. For example, rats exposed to stress 

have increased brain Pb [51] and decreased blood alcohol [97] levels compared to non-

stressed animals exposed to the same dose of chemical. These results suggest that rather than 

directly acting on overlapping biological substrates, stress may alter blood brain barrier 

permeability, alcohol metabolism, and/or other pathways involved in toxicant distribution 

and excretion. Expanded research on the integration of these systems, as well as studies on 

other biological systems (i.e. autonomic) and cellular mechanisms (i.e. oxidative stress) 

sensitive to stress and chemical toxicants is needed to more fully understand the pathways 

through which these exposures interact.
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Implications for Health Disparities

Members of low-income, minority communities experience more frequent negative life 

events, such as witnessing violence and suffering discrimination, which in turn may activate 

stress responses and precipitate feelings of anxiety, exclusion, and anger [98–102]. Likewise, 

the multiple challenges associated with financial strain, such as inadequate housing 

conditions, inability to afford food, and reduced access to health care, can tax individual 

coping strategies and lead to heightened emotional distress [103, 104]. In addition, parents 

facing multiple adversities are less likely to spend time at home (i.e. due to working multiple 

jobs with longer commutes and unfavorable shifts [105]) and are more likely to employ 

controlling, restrictive and punitive parenting strategies, often as an adaptive and protective 

response to neighborhood crime or other dangerous circumstances [104].

As described extensively by the environmental justice literature, minority and 

socioeconomically disadvantaged individuals not only experience greater levels of 

psychosocial stress, but often bear a disproportionate burden of environmental risk [106–

108]. For example, nationwide statistics indicate members of racial and ethnic minorities are 

more likely to live within 150 meters of a major U.S. highway, putting these groups at 

increased risk for exposure to traffic-related air pollution [109]. Likewise, exposure to Pb 

has historically been higher among black [110] and low-income [111] children, who 

disproportionately live in urban neighborhoods with older housing that may contain 

deteriorating lead-based paint.

The socioeconomic and environmental challenges faced by these populations likely 

contribute to the persistence of health disparities across ethnic and economic groups in the 

United States [109]. For example, the rate of premature birth is significantly higher among 

black (17%) compared to white (11%) infants [109]. Premature birth is estimated to account 

for one third of all infant deaths and is associated with numerous childhood and later life 

disorders, including neurocognitive and behavioral problems [112]. Notably, black children 

(8.4%) and those living below the federal poverty level (11%) are more likely to be 

diagnosed with a learning disability or attention deficit hyperactivity disorder compared to 

white children (7.5%) and those living at or above 200% of the poverty level (5.8%), 

respectively [113]. Likewise, infants born to mothers with less than a high school education, 

an indicator of socioeconomic status, are nearly twice as likely to die in the first year of life 

and approximately six times more likely to be rated in poor or fair health during childhood 

[114]. Similar trends have been documented for other indicators of socioeconomic status 

(i.e. family structure) and childhood morbidities (i.e. asthma) [113].

Conclusions

Health inequalities, including disparities in neurocognitive and behavioral outcomes, persist 

across ethnic and economic groups in the United States. As demonstrated here, multiple 

sexually dimorphic biological systems involved in programming the developing brain are 

susceptible to enhanced disruption by concurrent or consecutive exposure to psychosocial 

stress and chemical toxicants, which often co-occur among minority and socioeconomically 

disadvantaged communities. The reviewed studies highlight the importance of examining 

exposure to chemical toxicants within the context of the social environment, as well as the 
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need to consider the influence of sex when investigating neuroendocrine and immune 

endpoints. Despite challenges associated with investigating these relationships among 

humans, such as the large sample size requirements needed to investigate 3-way interactions 

in observational studies and ethical considerations associated with randomized controlled 

trials, future research focused on studying these interactions among human populations is 

critically needed.
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Figure 1. 
Conceptual model illustrating sex-specific neuroendocrine targets of chemical and non-

chemical stressors. All toxicant associations reflect interactions with stress; however, stress 

is not visually depicted. Abbreviations: 5-HT: serotonin; ACh: acetylcholine; ACTH: 

adrenocorticotropic hormone; BPA: bisphenol A, CRH: corticotropin releasing hormone; 

CPF: chlorpyrifos; DA: dopamine; DBP: dibutyl phthalate; ETH: alcohol; FSH: follicular 
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stimulating hormone; GnRH: gonadotropin releasing hormone; LH: luteinizing hormone; 

Pb: lead; TRAP: traffic related air pollution.
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Table 1.

Summary of effects from combined exposure to stress and several developmental toxicants on neuroendocrine 

and immune endpoints in rodents

Toxicant Stressor Male Female Ref

BPA (prenatal) Forced swimming (adolescence) Failed upregulation of 
pituitary corticotropin 
releasing hormone receptor 1

↑ anxious coping behavior, ↓ 
corticosterone response; failed 
down regulation of 
hypothalamic glucocorticoid 
receptor expression

[21]

Alcohol (prenatal) Restraint (prenatal) Delayed & abbreviated fetal 
testosterone surge, feminized 
sexual behavior

Not studied [28, 29]

DBP (prenatal) Dexamethasone (prenatal) ↓ fetal intra-testicular 
testosterone levels, ↓ 
expression of gonadal 
steroidogenesis genes, ↑ 
severity & incidence of 
reproductive organ 
malformations

Not studied [41]

Pb (prenatal) Restraint (prenatal) Disrupted mesocorticolimbic 
serotonin function and altered 
delay discounting behavioral 
performance (trend only, not 
significant)

↓ frontal cortex dopamine 
levels; ↑ circulating 
corticosterone levels, ↑ 
learning deficits; ↑ impulsive 
choice behavior

[48, 49, 50, 
51]

Chlorpyrifos (neonatal) Dexamethasone (prenatal) ↓ serotonin turnover, ↓ 
upregulation of serotonin 
receptor & transport protein 
expression, ↑ hyperactivity

↓ choline transport protein 
binding, ↓ choline 
acetyltransferase activity, ↓ 
postsynaptic receptor binding

[65, 66, 67]

Diesel exhaust Nest restriction (prenatal) ↑ expression of microglial 
toll-like receptor-4 and 
caspase-1, ↑ pro-
inflammatory bias, ↑ anxiety

No interaction observed [75]

BPA: bisphenol a; DBP: dibutyl phthalate; Pb: lead
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