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Abstract

One important goal in pharmaco-epidemiology studies is to understand the causal relationship 

between drug exposures and their clinical outcomes, including adverse drug events. In order to 

achieve this goal, however, we need to resolve several challenges. Most of pharmaco-

epidemiology data are observational and confounding is largely present due to many co-

medications. The pharmaco-epidemiology study data set is often sampled from large medical 

record databases using a matched case-control design, and it may not be representative of the 

original patient population in the medical record databases. Data analysis method needs to handle 

a large sample size that cannot be handled using existing statistical analysis packages. In this 

paper, we tackle these challenges both methodologically and computationally. We propose a 

conditional causal log-odds ratio (OR) definition to characterize causal effects of drug exposures 

on a binary adverse drug event adjusting for individual level confounders. Using a case-control 

design, we present a propensity score estimation using only case samples and we provide 

sufficient conditions for the consistency of the estimation of the causal log-odds ratio using case-

based propensity scores. Computationally, we implement a principle component analysis to reduce 

high-dimensional confounders. Extensive simulation studies are performed to demonstrate 

superior performance of our method to existing methods. Finally, we apply the proposed method 

to analyze drug-induced myopathy data sampled from a de-identified subset of medical record 

database (close to 5 million patient records), The Indiana Network for Patient Care. Our method 

identified 70 drug-induced myopathy (p < 0.05) out 72 drugs, which have myoathy side effects on 

their FDA drug labels. These 70 drugs include three statins who are known for their myopathy side 

effects.
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1 Introduction

One important goal in pharmaco-epidemiology (PE) studies is to investigate the causal 

relationship between drug exposures and their clinical outcomes. Such clinical outcomes can 

be either drug efficacy endpoints or adverse drug events (ADEs). For the latter, because it is 

unethical to conduct randomized trials in studying how drugs cause ADEs, PE studies are 

currently the best available and effective approaches to understand their causal relationship.1 

For example, in our motivating application, investigators are interested to detect novel drugs 

and/or drug–drug interaction-induced myopathy, which is defined by either ICD-9 codes or a 

laboratory claim of serum creatine renal kinase measurement.2 Data were obtained from an 

de-identified subset of The Indianan Network for Patient Care data, which contains coded 

prescription medications, diagnoses, and observational data for million of patients between 

2004 and 2009.3–6

To estimate the true relationship between drug exposure and ADEs, it is necessary to control 

potentially systematic difference between drug-exposed and unexposed patients.7,8 

Traditionally, the true causal relationship is defined as the mean difference between potential 

outcomes associated with exposed or unexposed drug status in a counterfactual outcome 

framework established by literatures.8,9 There have been a number of methods to infer this 

drug effect using observational data after sufficiently controlling potential confounders in 

analysis. Particularly, propensity scores, which describe the tendency of patient taking the 

drug of interest, are extensively used in these methods, and they reduce the imbalance of 

baseline covariates, like age, gender and comorbidity, between subjects who take the drug 

and who do not in observational studies.10 The propensity score methods include stratified 

analysis by propensity scores,11 matching analysis using propensity scores,12 and inverse 

probability weighting based on propensity scores.13

Since ADEs are measured as whether one specific case event occurs within certain time 

period, ADE outcomes are usually dichotomous. The standard practice in PE studies is to 

report log-odds ratios14 as the true relationship between drugs and ADEs, which has an easy 

interpretation for dichotomous outcomes, especially when ADEs rate is low. Many methods 

have been proposed to make inference on log-odds ratios, including frequentist approaches 

such as the Chi-square test, the Fisher’s exact test, the reporting odds ratio15 and the 

proportional reporting ratio,16 and empirical Bayesian methods including empirical Bayes 

geometric mean proposed by Bate et al.17 and DuMouchel.18 Tatonnetti et al.19 used the 

traditional propensity scores to screen the large scale drug-ADEs in Federal Adverse Events 

Reporting System (FAERS).

Previously, using chi-square and logistic regression methods, we have shown much increase 

myopathy risk due to simvastatin–loratadine and chloroquine–simvastain interactions.5,20
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However, all these approaches do not fully control potential confounders between drug-

exposed and unexposed groups. The obtained log-odds ratios may not reflect the true 

relationship in terms of odds of having ADE for two exactly same patients except for 

opposite exposure status.

In fact, estimating odds ratio between drugs and dichotomous ADEs in PE studies 

encounters several challenges. First, the definition of true causal relationships between drugs 

and ADEs in terms of odds ratio remains largely unclear even within a potential outcome 

framework, as this quantity cannot be expressed as the mean difference of potential 

outcomes. Second, because of the latter, propensity score methods in traditional causal 

inference, which rely on unbiased estimation separately for each potential outcome, are no 

longer applicable. Most importantly, in many PE studies, data are usually collected from a 

big database under some special sampling designs, mainly because of cost and efficiency 

concerns. In the motivating application of myopathy analysis, a case-control sampling frame 

was used to obtain patient’s ADE records and corresponding drug use history. Particularly, 

within the study period, all the case information with at least one ADE occurrence was 

obtained and for each case, 10 patients who had never experienced ADE within the time 

period were further sampled as matched controls. Then for each control patient, their drug 

use information within most recent month was obtained. When data are obtained from 

biased sampling designs, estimating causal relationship becomes even more challenging 

since the estimation must account for biased representation of the whole population in 

addition to potential confounders. For example, since traditional propensity scores are 

estimated from biased sample and so may not reflect the true tendency of patients taking this 

drug in the true population, all current methods could lead to artifactual modification and 

reduced ability to control for potential confounders as studied in Månsson et al.21 There 

have been some recent work attempting to address causal inference in a case-control design, 

including double robust inverse probability weighted methods by Wang et al.22 and targeted 

maximum likelihood estimation in Rose,23 but they both aim to estimate the prevalence of 

outcomes, instead of odds ratio.

Motivated by the PE study of drug induced myopathy, we develop a novel framework to 

estimate the log-odds ratios of the true effect of drug on ADE. Our contributions are multi-

folds. First, we rigorously define the true causal relationship in terms of log-odds ratios and 

provide sufficient conditions to show when this quantity is estimable under a case-control 

design. Second, we propose a case-based propensity score approach for inference. Our 

method first obtains propensity scores using only case samples so avoids the bias 

representation when using mixed data from both cases and controls. We then estimate log-

odds ratios nonparametrically after matching on this one-dimensional propensity score 

instead of potentially high-dimensional confounders. We show that the proposed method 

results in consistent estimators of the log-odds ratios. Finally, when analyzing the PE study 

of myopathy, we develop effective computation algorithms based on data partition and meta 

analysis to handle the challenge in this big data analysis of 450,634 cases and 450, 634 × 10 

controls.

The paper is structured as follows. Section 2 describes the proposed method and gives 

theoretical justification for the method. The last part of Section 2 provides detailed 
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algorithms for method implementation. Section 3 summarizes the results from extensive 

simulation studies and makes comparison with some existing methods, where we consider 

both the situation of continuous confounders and the situation of dichotomous confounders. 

Section 4 presents the detail of analyzing the PE study of myopathy. Final remarks are given 

in Section 5.

2 Method

In this section, we first present a definition of a causal log-odds ratio (OR) for binary 

outcomes in the framework of counterfactual outcomes. We then provide sufficient 

conditions such that this quantity is estimable in a case-control design. Finally, we propose a 

case-based propensity score method to estimate the causal log-OR in the presence of high-

dimensional confounders.

2.1 Causal log-odds ratio

Let A be a dichotomous exposure status (A = 1: exposed to a risk; A = 0: not exposed). The 

outcome of interest is binary, denoted by D. Particularly, in our application, A is the status 

whether a candidate drug has ever been taken or not and D indicates whether an ADE has 

occurred in a given study period. To introduce the definition of a causal log-OR, we adopt 

the counterfactual framework in causal inference so let D(a) be the counterfactual outcome if 

a subject’s exposure status is A = a, where a is 0 or 1. Thus, every subject has a pair of the 

counterfactual outcomes {D(0), D(1)}. Traditional causal effect defines the average causal 

effect of A as E[D(1) – E[D(0), i.e. the risk difference given by P(D(1) = 1) – P(D(0) = 1), so 

it describes the difference of two ADE probabilities in our application. As ADE rate is 

usually low, we expect that this difference is small so it may not be scientifically meaningful 

to discriminate two exposure status. Therefore, a more meaningful quantity with causal 

interpretation is necessary to characterize the true causal relationship between A and D.

For a binary outcome D, the ORs, which is defined as

P(D = 1 A = 1)/P(D = 0 A = 1)
P(D = 1 A = 0)/P(D = 0 A = 0)

is extensively used in epidemiology to characterize the relationship between the drug 

exposure A and the ADE D. However, OR only describes the apparent associations that can 

be highly different from the actual causal relationship between A and the underlying 

counterfactual ADE, the one we are interested in. The latter can be especially true due to the 

presence of confounding, which may result in potentially different compositions of subjects 

in the drug exposed and unexposed groups. Hence, a proper OR with causal interpretation 

should be able to describe the effect of A on the potential outcomes within homogeneous 

subjects. This motivates our definition of the causal log-OR in the following. We let U be the 

set consisting of all potential confounders which can be either observed or latent. To define a 

causal log-OR, we assume the following model for the counterfactual ADE given U
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logP(D(a) = 1 U)
P(D(a) = 0 U) = g(U) + δa,     a = 0, 1 (1)

where g(·) is an unknown and arbitrary function and δ is a constant. We define δ as the 

causal log-OR. The goodness-of-fit of model (1) defined on the potential outcome can be 

checked by fitting a generalized partial linear model using existing methods when all 

potential confounders are collected, although this is usually not the case in practice.

Model (1) assumes that for the finest subpopulation with the same U’s value, the log-odds 

for the counterfactual ADE D(1) differs from the log-odds for the counterfactual ADE D(0) 

by a constant independent of U. Equivalently, we assume that the logarithm of the OR for 

D(1) and D(0) given U is a constant:

logP(D(1) = 1 U)/P(D(1) = 0 U)
P(D(0) = 1 U)/P(D(0) = 0 U) = δ

Thus, if we can partition the whole population as much as possible so that each partitioned 

group is perfectly homogeneous in terms of their counterfactual outcomes, then the OR from 

2 × 2 table given by D(1) and D(0) is eδ in this group. Different from the conditional odds 

ratio that is defined by Robins,24 the U in our definition contains both measured and 

unmeasured confounders. Particularly, in PE studies, U represents any prognostic factors 

that can lead to the ADEs. Conditioning on the U, δ is a precise measure of the effect of 

drug on ADEs. Essentially, for all the subjects with the same confounders, if their exposure 

levels were 1, as compared to the situation when their exposure status were 0, the odd of 

having ADE will be increased by a factor of eδ (δ > 0), or decreased by a factor of e|δ| (δ < 

0), or no change (δ = 0). As a note, our definition is different from the marginal causal log-

OR in Rose,23 which is defined without conditional on U. Since δ reflects the treatment 

effect for subjects with the same confounders, our causal interpretation is more meaningful 

than the average causal effect without conditional on U.

2.2 Estimability of causal log-OR in a case-control study

As in our motivating study, practical data are often collected from a case-control study. 

Suppose that the data consist of observations (Di, Ai, Xi), i = 1, …, n, where Di is the ADE, 

Ai is the drug exposure status, and Xi denotes all other observed covariates for subject i. Our 

goal is to estimate the causal log-OR using the data from such a biased sampling design.

It is well known that a case-control study can provide a consistent OR of A for the observed 

ADE D if a logistic regression model also holds for D given (A, X). Therefore, it is natural 

for one to verify whether this OR is equivalent to the casual OR, δ, as defined previously. 

Unfortunately, this is no longer true in general. Instead, we need the following estimability 

conditions:

(C1) (completeness of confounders) A is independent of (D(0), D(1)) given U in the 

population.
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(C2) (consistency) D = ∑a I(A = a)D(a).

Condition (C1) stipulates that U in model (1) should include all possible confounders which 

explain the dependence between the exposure and the counterfactual ADE. For example, if 

U contains all the variables accurately predict the drug exposure status, then this assumption 

holds. This condition is similar to no unobserved confounder assumption in the usual causal 

inference, but we allow U to contain latent confounders. Condition (C2) is the consistency 

assumption, which states that the observed ADE is the same as corresponding counterfactual 

ADE with the same exposure status. This condition is standard in causal inference.

Under (C1) and (C2), for d = 0, 1

P(D(a) = d U) = P(D(a) = d A = a, U) = P(D = d A = a, U)

Hence, model (1) also implies that

logP(D = 1 A, U)
P(D = 0 A, U) = δA + g(U) (2)

In other words, if we observed the complete set of potential confounders U, then the causal 

log-OR δ can be estimated consistently by fitting the logistic regression model (2) with D 
regressing on both A and U, where g needs to be estimated nonparametrically.

However, U is unlikely to be all observed in practice; instead, only a subset of U, X, is 

available. Thus, our next question is how to estimate δ using available information X in a 

case-control design. Specifically, the following theorem provides the feasibility with one 

additional assumption.

(C3) (conditional independence in the case population) A is independent of U given X in the 

case population (D = 1).

Theorem 2.1. Under assumptions (C1) to (C3), it holds

logP(D = 1 A, X)
P(D = 0 A, X) = α + δA + g(X) (3)

where P(D = d | A, X) denotes the conditional probability in the case-control sample, and

α = logP(D = 1)P(D = 0)
P(D = 0)P(D = 1)

g(X) = log 𝔼 exp g(U)−1 X, D = 1
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Condition (C3) gives one key condition such that we can infer the causal log-OR by fitting a 

partial linear logistic regression model using the case-control observations. In contrast to 

traditional causal inference, the conditional independence is not assumed for the whole 

sample. The main reason is that the sample is from a case-control design so the sample is 

biased. This condition requires that there does not exist latent variable differentiating the 

exposure status in the case population. In other words, the observed exposure distribution is 

random within each stratum of X in the case sample. For example, in our motivating 

example, U, the set of all possible confounders to the drug exposure can be fully captured by 

X, say the demographical factors, comorbidity or comedication. Or it is very likely that the 

part of U that is not contained in X is independent to the drug exposure. With this condition, 

Theorem 1 implies that if we can fit a logistic regression given A and X but allow the effect 

of X to be nonparametric and additive, then the coefficient of A in the regression is the same 

as the causal log-OR δ. In addition, the additive effect of X depends on g(U) in model (1) 

through expression log 𝔼[exp g(U) | X, D = 1] . In general, the independence may not hold 

between U and A when conditioning on D. But we further condition on X, this independence 

is more likely to hold. Without this assumption, it is not possible to estimate the causal log-

OR theoretically. However, as we will show in the simulation study, when the assumption is 

slightly violated, our proposed method will still provide good estimates.

Interestingly, the same result holds if we replace the case population by the control 

population (D = 0). Particularly, we have the following result.

Proposition 2.2. Under (C1) and (C2), condition (C3) is equivalent to (C3′) (conditional 

independence in the control population) A is independent of U given X in the control 

population (D = 0).

By our experience, using either only control samples or only case samples lead to similar 

results and same conclusions in practice. One can choose according computation efficiency 

and numerical stability. In our motivating example, since drug use is more frequent in case 

samples, we recommend case samples to estimate propensity scores which is more reliable.

The proofs of Theorem 2.1 and Proposition 2.2 are given in Appendix 1.

2.3 Inference procedure

Recall that we observe (Di, Ai, Xi), i = 1, …, n, from n independent subjects. Under model 

(3), the likelihood equals to

∏
i = 1

n exp Di δAi + g Xi
1 + exp δAi + g Xi

where g is a nonparametric function of X, see Theorem 2.1. Our inference shall be based on 

maximum likelihood estimation where we estimate g nonparametrically via spline 

approximation. However, the dimensionality of X is often high in practice so the 

nonparametric estimation of g may not be feasible. To handle this challenge, we introduce a 
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similar propensity score approach as in the usual causal inference in order to reduce 

dimension in the estimation, but the score will be derived using the case data only.

Specifically, if let Z ≡ π (X) = P (A = 1|X, D = 1), then it is clear that condition (C3) holds if 

we replace X by π(X). This is because

P(A = 1 π(X), U, D = 1) = E[P(A = 1 X, U, D = 1) π(X), U, D = 1]
= E[P(A = 1 X, D = 1) π(X), U, D = 1] = π(X)

As a result, model (3) holds if we replace X by Z. Therefore, using the reduced data (Di, Ai, 
Zi), we can maximize the likelihood)

∏
i = 1

n exp Di δAi + λ Zi
1 + exp δAi + λ Zi

to estimate δ and λ. Note that the spline function λ is to nonparametrically estimate the g
function and is only a univariate function. Thus, the latter can be well estimated using spline 

approximation or stratified analysis with moderate sample sizes.

In summary, our estimation procedure can be described as follows.

Step 1. Using the data from the case sample, we estimate the case propensity score Z = π(X) 

by fitting a logistic regression model regressing A on X. When X is very high dimensional, 

we will use the first few principal components of X to replace X in the regression. Denote 

the estimate for π as π.

Step 2. Reconstruct the data as Di, Ai, Z i  where Z i = π Xi . We then fit a partial linear 

logistic regression model by maximizing the likelihood (4) where λ (z) is approximated by 

a finite sequence of splines. Particularly, we will a histogram spline so λ is approximated by 

a piece-wise constant function so this step is equivalent to a stratified logistic regression. 

The number of splines will be determined using a model selection approach such as AIC or 

BIC.

Denote the estimate for δ as δ  after Step 2. To make inference δ , either direct estimation of 

the asymptotic variance using an analytic expression,25,26 or a resampling approach can be 

used. However, in our experience, the variability in estimating π from Step 1 is often 

negligible so the variance for δ  can be estimated from the standard logistic regression in Step 

2, treating π as known.

Finally, under conditions (C1) top (C3) and assuming that the model for estimating the case 

propensity score π(X) is correct, we can show that n δ − δ0  where δ0 is the true causal log-

OR, converges in distribution to a mean-zero normal distribution when the number of splines 

is chosen to increase with n at a certain rate. The proof follows the similar argument as in 

Lin and Zeng,25 and,26 since our model (3) is equivalent to the model used in their 

development. We skip the proof in this paper.
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3 Simulation study

In this section, we conduct extensive simulation studies to evaluate the performance of our 

method and compare with standard propensity score-based methods. We consider a case 

control design with n cases and m controls. For each subject i, we generate Ui = (Xi,Wi) 

which contains both observed confounders Xi and unobserved ones Wi. To generate Di(0) 

and Di(1), we use the following models

log
P Di(0) = 1 Ui
P Di(0) = 0 Ui

= g Ui

log
P Di(1) = 1 Ui
P Di(1) = 0 Ui

= g Ui + δ

(5)

for some given function g(U) to be determined later. Thus, the true causal log-OR is given 

by δ. Next, the exposure status for subject i, Ai, is simulated from a Bernoulli distribution 

with probability b(Ui). Since it only depends on Ui, Ai is independent of Di(0) and Di(1), 

and so condition (C1) is satisfied. Furthermore, to ensure condition (C3) to hold, we 

particularly choose b(Ui) to be

b Ui =
exp β0 + βTXi exp g Ui + δ + 1

exp δ exp g Ui + 1 + exp β0 + βTXi exp g Ui + δ + 1
(6)

for some constant (β0, β), where β can be a scalar or vector. For this choice of b(Ui), since 

some algebra gives

P Ai = 1 Ui, Di = 1

P Ai = 0 Ui, Di = 1
=

b Ui
1 − b Ui

exp δ exp g Ui + 1

exp g Ui + δ + 1

it implies

log
P Ai = 1 Ui, Di = 1

P Ai = 0 Ui, Di = 1
= β0 + βTXi

Therefore, (C3) holds, i.e. Ai is independent of Ui given Xi in the case samples.

We consider two simulation scenarios. In the first scenario, both Xi and Wi are generated 

from continuous distributions. Specifically, (Xi, Wi) follows a bivariate normal distribution 

with the mean zeros and covariance matrix 
1 ρ
ρ 1 , where ρ = 0 or 0.2. We then generate 

(Di(1), Di (0)) using model (5), where g Ui = γ0 + γ1Xi + γ2Xi
2 + θW i The exposure Ai is 

from a Bernoulli distribution with probability b(Ui) given by equation (6). The true 

parameter values in both models (5) and (6) are set as γ0 = −2, γ1 = 0.3, γ2 = 0.8,θ = 0.8, β0 

Zhu et al. Page 9

Stat Methods Med Res. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



= −4 and β = 2. Finally, to best mimic the real data in our motivating example, we set the 

ratio of cases and controls, i.e. n: m, as 1 vs. 10. We considered the true causal log-OR to be 

δ = 1 or 1.5. The number of case samples in the simulation study is 2000 or 4000.

In the second simulation scenario, both Xi and Wi are generated from Bernoulli distribution 

to mimic drug use variables in the real study. The data Ui = (Xi, Wi) is a multivariate binary 

random variate marginal probabilities of 0.5 and correlation matrix

1 ρ ⋯ ρ
ρ 1 ⋯ ρ
⋮ ⋮ ⋱ ⋮
ρ ρ ⋯ 1

where ρ = 0 or 0.2. We then generate (Di(1), Di(0)) using model (5), where

g Ui = γ0 + ∑
j = 1

6
γ jX j + ∑

j = 7

10
θ jW j

The exposure Ai is from a Bernoulli distribution with probability b(Ui)given by equation (6). 

The value of all parameters in equations (5) and (6) is γ0 = −3, γ1 = γ2 = ⋯ = γ6 = 0.3, θ7 = 

⋯ = θ10 = 0.8 and β0 = −4. Since Xi is a vector of six elements, we have the corresponding β 
= (β1, …, β6) and β1 = ⋯ = β6 = 0.8. Similar to the first scenario, we set the ratio of cases 

and controls as 1:10. The true value of δ was 1 or 1.5. The number of the cases is 2000 or 

4000.

For each simulated data, we apply the proposed method to estimate δ. In the proposed 

method, we first fit a logistic regression model of A given X using the case data (D = 1). 

This gives the case-based propensity score Z = π (X) = P (A = 1 | X = x, D = 1) which 

predicts the probability for each subject. We then construct K strata based on Z’s quantiles 

and then fit another stratified logistic regression for D regression on A. By stratifying the 

case-based propensity score, we believe that the population is well stratified with 

homogeneous prognostic factor. The coefficient of A is used as the estimator for δ. The 

number of strata K is chosen from {5, 10, 15, 20, 30 }, and the final number of strata is 

selected by the BIC. The variance for the estimate is obtainedffrom the usualgstratified 

logistic regression.

For comparison, we also consider the standard logistic regression and the traditional 

propensity score.12 For the former, we fit a standard logistic regression for D regression on 

A and X, and the coefficient of A is used as the estimator for δ. In other words, we assume 

that logit P(D|A, X) was a linear function of A and X, and regard the estimated OR as the 

causal log-OR. In the traditional propensity score approach, we fit a logistic regression 

model of A on X using the entire data to estimate the propensity score Z* = P(A = 1 | X = x). 

Then we fit a logistic regression for D regression on A and Z*.

Table 1 summarizes the simulation results from 10,000 replicates for both scenarios. The 

results indicate that the proposed method always performs better than the standard logistic 
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regression and the propensity score adjusted method. For the proposed method, the bias is 

small and the confidence intervals have proper coverages. Furthermore, the estimated 

variance from the stratified logistic regression agrees well with the empirical standard 

deviations the estimates. On the other hand, the standard logistic regression yields the 

estimate for the causal log-OR with large bias and incorrect inference, mainly because the 

model in this approach is misspecified. For example, in Appendix 1, we show that the 

component of X in the logistic regression is nonlinear in the first simulation scenario. The 

estimates from the propensity score-adjusted method still have larger bias than the proposed 

method and the confidence intervals constructed in this method tend to have lower 

coverages. In scenario 2, when the confounders are discrete, the proposed method and 

logistic regression method perform similarly, and both are better than the propensity score 

adjusted method. Finally, in the proposed method, the BIC almost always chooses K = 10 in 

the stratified logistic regression for continuous confounder, and chooses K = 5 or K = 15 for 

binary confounder.

4 Sensitivity analysis

We also conduct extensive simulation studies to evaluate the performance of our method and 

compare with standard propensity score-based methods when the assumption of conditional 

independence is slightly violated. Still, we consider a case control design with n cases and m 
controls. For each subject i, we generate Ui = (Xi, Wi) which contains both observed 

confounders Xi and unobserved ones Wi. Again, Di (0) and Di (1) are generated using model 

(5). The true causal log-OR is given by δ. Next, the exposure status for subject i, Ai, is 

simulated from a Bernoulli distribution with probability b(Ui). Since it only depends on Ui, 
Ai is independent of Di(0) and Di(1) so condition (C1) is satisfied. Furthermore, to ensure 

condition (C3) to hold, we choose b(Ui) to be

b Ui =
exp β0 + βTXi + ζTWi exp g Ui + δ + 1

exp δ exp g Ui + 1 + exp β0 + βTXi + ζTWi exp g Ui + δ + 1

for some constant (β0, β, ζ), where β and ζ can be scalars or vectors. For this choice of 

b(Ui)

log
P Ai = 1 Ui, Di = 0

P Ai = 0 Ui, Di = 0
= β0 + βTXi + ζTWi

Therefore, (C3) is violated, i.e. Ai is not independent of Ui given Xi in the case sample.

We consider two simulation scenarios. In the first scenario, both Xi and Wi are generated 

from continuous distributions. Specifically, (Xi, Wi) follows a bivariate normal distribution 

with the mean zeros and covariance matrix 
1 ρ
ρ 1  where ρ = 0 or 0.2. We then generate (Di 

(1), Di (0)) using model (5), where g Ui = γ0 + γ1Xi + γ2Xi
2 + θW i The exposure Ai is from a 

Bernoulli distribution with probability b(Ui) given by equation (6). The true parameter 
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values in both models (5) and (6) are set as γ0 = −2, γ1 = 0.3, γ2 = 0.8, θ = 0.8, β0 = −4 and 

β = 2. We considered ζ in a range of 0.01–0.05. Finally, to best mimic the real data, we set 

the ratio of cases and controls, i.e. n: m, as 1 vs. 10. We considered the true causal log-OR to 

be δ = 1 or 1.5. The number of the cases in the simulation study is 2000 or 4000.

In the second simulation scenario, both Xi and Wi are generated from Bernoulli distribution 

to mimic drug use variables in the real study. The data Ui = (Xi, Wi) is a multivariate binary 

random variate marginal probabilities of 0.5 and correlation matrix

1 ρ ⋯ ρ
ρ 1 ⋯ ρ
⋮ ⋮ ⋱ ⋮
ρ ρ ⋯ 1

where ρ = 0 or 0.2. We then generate (Di(1), Di(0)) using model (5), where

g Ui = γ0 + ∑
j = 1

6
γ jX j + ∑

j = 7

10
θ jW j

The exposure Ai is from a Bernoulli distribution with probability b(Ui) given by equation 

(6). The value of all parameters in equations (5) an (6) are γ0 = −3, γ1 = γ2 = ⋯ = γ6 = 0.3, 

θ7 = ⋯ = θ10 = 0.8, β0 = −4 and β = (β1, …, β6), β1 = ⋯ = β6 = 0.8 Since Wi is a vector of 

four elements, we considered the corresponding coefficients ζ = (ζ1⋯,ζ4), ζ1 = … = ζ4 

from 0.01 to 0.05. Similar to the first scenario, we set the ratio of cases and controls as 1:10. 

The true value of δ was 1 or 1.5. The number of the cases is 2000 or 4000.

For each simulated data, we apply the proposed method to estimate δ. In the proposed 

method, we first fit a logistic regression model of A given X using the case data (D = 1). 

This gives the case-based propensity score Z = π (X) = P(A = 1|X = x, D = 1) which 

predicts the probability for each subject. We then construct K strata based on Z’s quantiles 

and then fit another stratified logistic regression for D regression on A. The coefficient of A 
is used as the estimator for δ. The number of strata K is chosen from {5, 10, 15, 20, 30}, and 

the final number of strata is selected by the BIC. The variance for the estimate is obtained 

from the usual stratified logistic regression.

Comparing to the standard logistic regression and the traditional propensity score, our 

proposed method yields similar results as in the simulation study. Table 2 summarizes the 

simulation results from 10,000 replicates for both scenarios for different values of β2. The 

results indicate that the performance of proposed method is also good even when the drug 

exposure depends on the unmeasured confounders, if the unmeasure confounders are 

independent with the measured confounders. For the proposed method, the bias is small and 

the confidence intervals have proper coverages. We can also notice that the performance of 

the proposed methods improves as the sample size increasing. In scenario 2 when the 

confounders are discrete, the proposed method also provides reasonable estimates. We can 

also notice that under this scenario, the proposed method does perform similarly to the 

scenario where the drug exposure is independent to the unmeasured confounders conditional 
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on the measured confounders. Finally, for the proposed method, the BIC almost always 

chooses K = 10 in the stratified logistic regression.

5 Application to myopathy study

The Indiana Network for Patient Care (INPC) is a health information exchange data 

repository containing medical records for over 15 million patients throughout the state of 

Indiana. The Common Data Model (CDM) is a derivation of the INPC containing coded 

prescription medications, diagnoses, and observational data for 2.2 million patients between 

2004 and 2009. The CDM contains over 60 million drug dispensing events, 140 million 

patient diagnoses, and 360 million clinical observations (e.g. laboratory results, diagnose 

codes, medications). These data were anonymized and architected specifically for research 

on adverse drug reactions through collaboration with the Observational Medical Outcomes 

Partnership project.27

Using our previous defined myopathy phenotype,3 450, 634 myopathy cases were selected 

from the CDM-5 database. Among patients having a myopathy event, the drug–condition 

relationship is anchored by its date in the database. In our analysis, any drug exposure 

occurring within a one-month drug exposure window before the diagnosis of myopathy was 

considered as a positive exposure. In order to select a control patient and his/her drug 

exposure window, an index time was first matched with the myopathy case event time. Then 

control patients were selected from those patients without myopathy. Finally, we randomly 

selected 10 control patients who are of the same gender and age range for each myopathy 

case. Anchored by the index time, a one-month drug exposure window was defined; and the 

exposure to a drug or no drug was defined similarly as for the cases. Eventually for each 

case, 10 controls that match the index time, gender and age group were selected. As a result, 

we have a total of 4,956,974 records in the data.

Our goal is to estimate the causal effect of each drug on myopathy. To control for possible 

confounding due to the other drug usage, it is ideal to include all comedications in this case-

based propensity score model. Ideally, all other drug usage information should be used to 

derive the case-based propensity score. However, one practical challenge is that the drug 

usage for each drug is often sparse so the regression including these drugs will be 

numerically unstable. Instead, we use Principal Components (PCs) instead of original drugs 

usage as condensed information for all the confounding variables when computing the case-

based propensity scores. Particularly, we use the first 10 PCs derived from the correlation 

matrix of drug usage.

To be specific, for each of the drug, we first created a binary variable from the raw data, 

denoted as dj for drug j. For each subject i, dij = 1 if the drug j has been taken with in one 

month prior to condition by this subject, and dij = 0 otherwise. Then, we checked the 

frequency of drug use, and we only considered the drugs that have been used more than five 

times per 10,000 records in the analysis. This was because that including drugs that have few 

use will lead to the unstable result. We had 100 drugs left after applying the criteria. With 

these 100 drugs, we did the eigen-decomposition on the correlation matrix of drugs among 
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case samples. We then computed the PCs for case and control samples with the eigenvectors 

from last step.

Given the principal components, we then apply the proposed method as described above. 

Specifically, the occurrence of ADE was treated as D, the use of a specific drug was treated 

as A, and the PCs, age and gender were treated as X. The results are shown in Figure 1.

The causal associations between 100 drugs and myopathy are analyzed using our proposed 

method. The estimated log ORs vary from −0.41 to 3.46, with a median of 1.49 and mean 

1.54 across 100 drugs. Almost all drugs have significant effect on adverse conditions based 

on the results. The detailed drug information is given in the Supplementary material. For 

most of the drugs, the estimated log OR from proposed method is close to the log OR 

estimated from marginal logistic regression. For the other drugs, our proposed method 

provides smaller log OR than the marginal logistic regression. We believe that for these 

drugs, our proposed method provides the log OR closer to their true log OR on myopathy, 

for we controlled the confounder through case-based propensity score. The log OR from the 

marginal logistic regression is falsely large because this log OR actually reflected the causal 

effect on myopathy of confounder rather than the drug. This systematic trend indicates that 

the actual causal effects of single drug on ADE from the standard logistic regression model 

are likely to be overestimated, when confounding effects from other drug uses were not well 

controlled.

Among these 100 drugs, 72 drugs have reported myopathy adverse drug events in their drug 

labels (www.sideeffects.embl.de), in which 70 drugs have increased myopathy risk (p < 

0.05). In particularly, three statins (atorvastatin, lotavastatin, simvastatin) have increased 

myopathy risk, ORs are (2.61, 1.99, 3.22), respectively. These are highly consistent to the 

clinical trial data that myopathy are primary statin side effects28. Also, in the top 10 drug-

myopathy causal association pairs based on the log OR, 6 of them are reported to have ADE 

related to myopathy.

6 Discussion

In this paper, we have proposed a new concept called the causal log-OR to evaluate the 

causal effect of one exposure risk on a dichotomous outcome. This new causal effect differs 

from the traditional causal effect defined as the marginal mean difference. Since the latter is 

often small for rare disease such as ADEs in our application, the new causal effect is 

clinically meaningful and useful to evaluate the exposure risk. We then proposed a set of 

conditions to describe how such a causal effect can be estimated under a case-control design. 

Both theoretical results and numerical results showed that the proposed method is valid and 

performs superior to some naive method. In our applications, we proposed both principal 

component analysis and meta-analysis techniques to handle the challenges of sparse 

predictors and the computational challenges due to a vast number of data records. In 

analyzing the de-identified Indiana medical record database, our method identifies 70 out of 

72 drugs that have myopathy side effects in their labels. These 70 drugs including statins are 

well known for their myopathy side effect.
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Our work is not the first attempt to mining drug ADE associations using causal inference 

model framework in the health record databases. Early work by Tatonnetti et al.19 used the 

traditional propensity scores to screen the large-scale drug-ADEs in Federal Adverse Events 

Reporting System (FAERS). Unlike our longitudinal CDM medical record database, FAERS 

is a cross-sectional database containing self-reported ADEs and potentially associated drugs. 

Analyzing drug-ADE associations in FAERS does not need additional sampling and/or case 

control matching, and the propensity score method implemented in the Tatonnettis paper 

does not have to worry about the sampling bias. However, in analyzing drug-ADE 

associations using longitudinal medical record databases, sampling is needed for proper 

case/control matching. In our motivating data problem, we use the event time of cases as 

index times, and collect corresponding controls that did not have events before the index 

time. We collect drug information before one month window before the index time. Our 

research in this paper shows that potential sampling bias has impact on the propersity score 

calculation, and its follow-up causal drug-ADE association estimation. Our research moves a 

significant step forward in developing drug-ADE data mining algorithms using longitudinal 

medical record database. Though the longitudinal signal is weak in this sample, it would be 

interesting to incorporate other longitudinal features in the records and challenging to 

estimate drug effects in this setting in further studies.

Although we only considered a case-control design, our general idea can be extended to 

other bias-sampling design such as outcome-dependent sampling or stratified sampling, 

while the outcome of interest can be either continuous or censored survival event. The key 

condition (C.3) is necessary to be modified to adapt to each specific sampling design. 

However, one main message is that traditional propensity score methods, which ignore 

biased sampling designs, may no longer be valid, since the propensity scores estimated from 

the biased sample do not represent the actual likelihood of being exposed or unexposed in 

the underlying population.

Our current causal log-OR method cannot differentiate the causal drug-ADE associations 

from the drug-incidence associations. It is primarily due to our initial pharmaco-

epidmiological study design, where the temperal order of drug exposure and ADEs was not 

restrained. We expect that a more rigorous design will reduce the drug-incidence 

associations. Our current method is based on additive model, which controls for individual 

level confounders, and estimates the causal effects of drugs averaged among homogeneous 

subjects. Our model cannot be used to estimate the interaction among drugs and individual 

covariates. However, our model can be used to estimate the drug effect in any given defined 

subpopulation.

We only consider the causal log-OR of one single drug. The approach can be easily 

generalized to study the causal effect of drug-drug interactions from multiple drugs, after 

controlling for confounding effects of other comedications. In this case, the case-based 

propensity scores will be multidimensional to reflect the likelihood of receiving each 

combination of candidate drugs and will be incorporated into the downstream logistic 

regression.
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Appendix 1: Proof of Theorem 2.1

With loss of generality, we assume U to be discrete. For continuous U, the summation in the 

following proof will be replaced by integration with respect to certain dominating measure 

for U’s distribution. Since

logP(D = 1 U, A)
P(D = 0 U, A) = g(U) + δA

we obtain

P(X, A |D = 0) = ∑
U

P(U, X, A D = 0)
P(U, X, A |D = 1)P(U, X, A |D = 1)

= ∑
U

P(D = 0 U, X, A)
P(D = 1 U, X, A)

P(D = 1)
P(D = 0)P(U, X, A |D = 1)

= ∑
U

[exp(g(U) + δA)]−1P(D = 1)
P(D = 0)P(U, X, A |D = 1)

where the summation is over U which is compatible with X. Therefore

P(X, A |D = 0) = exp(δA)−1P(D = 1)
P(D = 0) ∑U

exp[g(U)]−1P(U, X, A |D = 1)

From condition (C3), P(U, X, A|D = 1) = P(U|X, D = 1)P(X, A|D = 1) so it gives

P(X, A |D = 0) = exp δA −1P(D = 1)
P(D = 0)P(X, A |D = 1)exp g(X)

where g(X) = log ∑U exp[g(U)]−1P(U | X, D = 1) = log E exp g(U) −1 | X, D = 1  In other 

words

P(D = 1 X, A)
P(D = 0 X, A) = P(X, A D = 1)

P(X, A D = 0)
P(D = 1)
P(D = 0) = P(D = 1)P(D = 0)

P(D = 0)P(D = 1)exp[δA + g(X))]

Theorem 2.1 holds.
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Proof of Proposition 2.2

We only prove one direction and the other direction holds using the same arguments. 

Assume (C3′) holds. Note that

P(U, A | X, D = 1) = exp g(U) + δA P(D = 0)
P(D = 1)P(U, A | X, D = 0)P(X D = 0)

P(X |D = 1)

Since U and A are independent given X in the control population, then P(U,A|X,D = 1) can 

be factorized into a production of two parts, one only involving (U, X) and the other part 

only involving (X, A). This implies that A is independent of U given X in the control 

population (D = 0).

Analytic expression of the effect of X(g(X)) in the first simulation setting

Since in Theorem 2.1 we established

P(D = 1 X, A)
P(D = 0 X, A) = exp[δA + g(X))]

We derive the expression of g(X) from the first simulation study. After some algebra, we 

obtain

g(X) = log∫ exp[g(U)]P(W X, D = 0)dW

= γX + log ∫ exp(θW) P(D = 0 U)P(U)
∫ P(D = 0 U)P(U)dW dW

Using the simulation setting for P(D = 1|U, A) and P(A|U), we have

g(X) = γX + log ∫ exp(θW + 2ρXW − W2 / 2 1 − ρ2

exp[a(U)] + 1 + exp(βX)exp[a(U) + δ] + 1dW

− log ∫ exp 2ρXW − W2 2 1 − ρ2

exp[a(U)] + 1 + exp(βX)exp[a(U) + δ] + 1dW

Clearly, g(x) is a nonlinear function of x. Thus, fitting a standard logistic regression model 

with linear effects of X in the regression will result in a biased estimate for δ.
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Figure 1. 
Estimated log OR from proposed method by estimated log OR from marginal logistic 

model.
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Table 1.

Summary of estimated δ in the simulation study from 10,000 replicates.

δ ρ N

Proposed method Logistic Reg. Propensity score

Bias Std ESE CP Bias Std ESE CP Bias Std ESE CP

Scenario 1: continuous confounders

1 0.0 2000 −0.00 0.11 0.11 0.94 1.00 0.10 0.09 0 −0.00 0.11 0.11 0.95

4000 −0.01 0.08 0.08 0.95 1.00 0.07 0.07 0 −0.00 0.08 0.08 0.94

1.5 0.0 2000 −0.00 0.12 0.12 0.94 1.00 0.11 0.10 0 0.02 0.12 0.12 0.94

4000 −0.01 0.08 0.08 0.95 1.00 0.08 0.07 0 0.02 0.08 0.08 0.94

1 0.2 2000 0.02 0.11 0.11 0.95 0.90 0.10 0.09 0 0.03 0.11 0.11 0.93

4000 0.01 0.08 0.08 0.95 0.90 0.07 0.07 0 0.03 0.08 0.08 0.93

1.5 0.2 2000 0.02 0.12 0.12 0.95 0.90 0.11 0.10 0 0.06 0.12 0.12 0.91

4000 0.01 0.09 0.08 0.95 0.90 0.08 0.07 0 0.06 0.09 0.09 0.88

Scenario 2: binary confounders

1 0.0 2000 0.02 0.06 0.06 0.93 0.00 0.06 0.06 0.95 0.02 0.06 0.06 0.94

4000 0.01 0.05 0.04 0.94 0.00 0.04 0.04 0.95 0.02 0.04 0.04 0.93

1.5 0.0 2000 0.02 0.07 0.07 0.93 0.00 0.07 0.06 0.95 0.03 0.07 0.07 0.93

4000 0.01 0.05 0.05 0.94 0.00 0.05 0.05 0.95 0.03 0.05 0.05 0.91

1 0.2 2000 0.01 0.06 0.06 0.95 0.01 0.06 0.06 0.95 0.07 0.07 0.06 0.79

4000 0.00 0.04 0.04 0.95 0.01 0.04 0.04 0.95 0.07 0.05 0.05 0.64

1.5 0.2 2000 0.01 0.07 0.07 0.95 0.00 0.06 0.07 0.95 0.11 0.07 0.07 0.59

4000 0.00 0.05 0.05 0.95 0.00 0.05 0.05 0.95 0.12 0.05 0.05 0.32
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Table 2.

Summary of estimated δ in the sensitivity analysis from 10,000 replicates, where condition C.3 is violated.

δ ρ N

ζ = 0.01 ζ = 0.03 ζ = 0.05

Bias Std ESE CP Bias Std ESE CP Bias Std ESE CP

Scenario 1: continuous confounders

1 0.0 2000 0.01 0.11 0.11 0.94 0.02 0.11 0.11 0.94 0.03 0.11 0.11 0.93

4000 −0.00 0.07 0.08 0.96 0.01 0.07 0.08 0.95 0.03 0.07 0.08 0.94

1.5 0.0 2000 0.01 0.12 0.12 0.94 0.02 0.12 0.12 0.93 0.03 0.12 0.12 0.93

4000 −0.00 0.08 0.08 0.96 0.01 0.08 0.08 0.96 0.02 0.08 0.08 0.95

1 0.2 2000 0.03 0.11 0.11 0.95 0.04 0.10 0.11 0.94 0.05 0.11 0.11 0.93

4000 0.02 0.08 0.08 0.95 0.03 0.08 0.08 0.93 0.04 0.08 0.08 0.90

1.5 0.2 2000 0.03 0.12 0.12 0.95 0.04 0.11 0.12 0.95 0.05 0.12 0.12 0.93

4000 0.02 0.08 0.08 0.94 0.03 0.08 0.08 0.93 0.05 0.09 0.08 0.92

Scenario 2: binary confounders

1 0.0 2000 0.03 0.06 0.06 0.93 0.04 0.06 0.06 0.90 0.05 0.06 0.06 0.87

4000 0.02 0.04 0.04 0.93 0.03 0.04 0.04 0.89 0.04 0.04 0.04 0.83

1.5 0.0 2000 0.03 0.06 0.06 0.93 0.04 0.06 0.06 0.90 0.05 0.06 0.06 0.87

4000 0.02 0.05 0.05 0.93 0.03 0.05 0.05 0.90 0.04 0.04 0.04 0.84

1 0.2 2000 0.02 0.06 0.06 0.94 0.03 0.06 0.06 0.91 0.05 0.06 0.06 0.86

4000 0.01 0.04 0.04 0.94 0.03 0.04 0.04 0.90 0.05 0.04 0.04 0.81

1.5 0.2 2000 0.02 0.07 0.07 0.94 0.03 0.07 0.07 0.92 0.05 0.07 0.06 0.87

4000 0.01 0.05 0.05 0.94 0.03 0.05 0.05 0.90 0.05 0.05 0.05 0.83
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