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Interactions between secreted immune proteins called chemo-
kines and their cognate G protein–coupled receptors regulate the
trafficking of leukocytes in inflammatory responses. The two-site,
two-step model describes these interactions. It involves initial
binding of the chemokine N-loop/�3 region to the receptor’s
N-terminal region and subsequent insertion of the chemokine
N-terminal region into the transmembrane helical bundle of the
receptor concurrent with receptor activation. Here, we test aspects
of this model with C-C motif chemokine receptor 1 (CCR1) and
several chemokine ligands. First, we compared the chemokine-
binding affinities of CCR1 with those of peptides corresponding to
the CCR1 N-terminal region. Relatively low affinities of the pep-
tides and poor correlations between CCR1 and peptide affinities
indicated that other regions of the receptor may contribute to bind-
ing affinity. Second, we evaluated the contributions of the two
CCR1-interacting regions of the cognate chemokine ligand CCL7
(formerly monocyte chemoattractant protein-3 (MCP-3)) using
chimeras between CCL7 and the non-cognate ligand CCL2 (for-
merly MCP-1). The results revealed that the chemokine N-termi-
nal region contributes significantly to binding affinity but that
differences in binding affinity do not completely account for differ-
ences in receptor activation. On the basis of these observations, we
propose an elaboration of the two-site, two-step model—the
“three-step” model—in which initial interactions of the first site
result in low-affinity, nonspecific binding; rate-limiting engage-
ment of the second site enables high-affinity, specific binding; and
subsequent conformational rearrangement gives rise to receptor
activation.

The interactions between chemokines and chemokine
receptors regulate the trafficking of leukocytes, a key feature of
inflammatory responses (1, 2). Chemokines are small proteins
secreted by various tissues as part of normal immune surveil-
lance or in response to tissue injury or infection. Chemokines
bind to and activate chemokine receptors, which are G
protein– coupled receptors (GPCRs)3 expressed in leukocyte
cell membranes. This initiates intracellular signal transduction,
leading to changes in leukocyte morphology and adhesion and
ultimately giving rise to accumulation of leukocytes in the
affected tissues. Due to the importance of this process in
numerous inflammatory diseases, there is substantial interest
in understanding the detailed molecular mechanisms of
chemokine–receptor interactions and signaling.

CCR1, a member of the C-C motif chemokine receptor
subfamily, is expressed on the surfaces of monocytes, natural
killer cells, and immature myeloid cells (3, 4). At least nine
C-C motif chemokines are reported to be cognate agonists of
CCR1 (5). Activation of CCR1 has been implicated in the
pathology of rheumatoid arthritis (6), multiple sclerosis (7),
multiple myeloma (8, 9), transplant rejection (10), diabetes
(11), osteopenia (12), and progressive kidney disease (13). As
with other chemokine receptors, clinical trials targeting
CCR1 with anti-inflammatory drug candidates have not
been successful to date, but CCR1 is still considered a valid
therapeutic target (14).

Numerous studies have investigated the molecular determi-
nants of chemokine receptor binding and activation. Early stud-
ies identified two distinct regions of chemokines that interact
with distinct regions of their receptors (15). The chemokine
“N-loop” and nearby �3 region, together defined as chemokine
site 1 (CS1), were found to bind to peptides corresponding to
the flexible N-terminal regions of chemokine receptors, defined
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as chemokine receptor site 1 (CRS1). In addition, the N-termi-
nal region of the chemokine (CS2) was found to be critical for
receptor activation, so it was proposed that this region interacts
with a second site on the receptor (CRS2), later found to be
predominantly located within the transmembrane (TM) bun-
dle of the receptor, with some contributions from extracellular
loops (16, 17).

Based on these early observations, Crump et al. (15) pro-
posed the two-site, two-step model as a general paradigm for
chemokine–receptor interactions. According to this model,
CS1–CRS1 interactions form first and contribute to binding
without receptor activation. Subsequently, engagement of CS2
with CRS2 induces a conformational change and receptor acti-
vation. This model remains consistent with much of the avail-
able functional and structural data, including a study of chime-
ric receptors formed by exchanging regions of CCR1 and the
related receptor CCR3 (18). However, a number of observa-
tions point to possible deficiencies in this simple model. In par-
ticular, mutations in CS2 can influence receptor-binding affin-
ity, suggesting that binding and activation are not simply
partitioned between the two structural sites (19, 20). Similarly,
different chemokine agonists of the same receptor can selec-
tively interact with different regions of a receptor (21) or can
“bias” a shared receptor toward activation of different signaling
pathways (22, 23), suggesting distinct activated conformations
of the receptor. Moreover, recent structural data and models
indicate that residues outside of the two primary sites may also
make important contributions to binding and receptor activa-
tion (16, 24). As discussed in a detailed review by Volkman and
colleagues (25), there is a need to consider possible elaborations
of the two-site, two-step model.

In the study described herein, we have taken two approaches
to evaluate specific aspects of the two-site, two-step model for
CCR1 and several of its chemokine ligands. First, we have com-
pared the chemokine-binding affinities of CCR1 with those of
peptides corresponding to the N terminus (CRS1) of CCR1,
allowing us to evaluate the contributions of CRS1 to both affin-
ity and selectivity of chemokine binding. Second, we have com-
pared CCR1 binding and activation by chimeric chemokines
derived from a high-affinity cognate chemokine and a low-af-
finity chemokine, enabling the contributions of CS1 and CS2 to
be evaluated. The data indicated that CS2–CRS2 interactions
contribute significantly to binding affinity but that differences
in binding affinity do not completely account for differences in
receptor activation. These results prompted us to propose an
extension of the two-site, two-step model (the “three-step”
model) in which initial CS1–CRS1 interactions result in low
affinity, nonspecific binding; rate-limiting engagement of CS2
with CRS2 enables high-affinity, specific binding; and subse-
quent conformational rearrangement gives rise to receptor
activation.

Results

Chemokine binding to N-terminal CCR1 peptides

The N-terminal regions of chemokine receptors are thought
to be flexible and essentially unstructured. Therefore, peptides
corresponding to this region are often used as simplified mod-

els of CRS1 (26 –38). If the site 1 interactions make a major
contribution to the binding interactions, one would anticipate
that the binding free energy of such N-terminal peptides for
chemokines would be a substantial proportion of the binding free
energy of intact receptors for the same chemokines. Moreover, it
would be expected that the binding free energies (or affinities) of
several chemokines would correlate for the N-terminal peptides
and the intact receptors. To test these hypotheses, we measured
the binding affinities of peptides with the N-terminal sequence of
CCR1 and of intact CCR1 expressed on mammalian cells to each
of four cognate chemokine ligands (CCL15/HCC-2, CCL5/
RANTES, CCL7/MCP-3, and CCL8/MCP-2) as well as two
chemokines that are not usually considered cognate ligands of
CCR1 (CCL2/MCP-1 and CCL26/eotaxin-3).

The N terminus of CCR1 contains two predicted sites of
tyrosine sulfation (Tyr-10 and Tyr-18) (39), although it has not
been determined whether these sites are actually sulfated in
CCR1; sulfation could also be incomplete or vary for different
cell types. Considering that sulfation in the N-terminal regions
of chemokine receptors can alter both the affinity and selec-
tivity of chemokine binding (40), we prepared a set of pep-
tides with all four possible combinations of sulfation at these
two sites (Fig. 1A) and used an established competitive fluo-
rescence anisotropy binding assay (41) to measure their
binding affinities for the six chemokines (Fig. 1 (B–G), Table
1, Fig. S1, and Table S1). Affinities ranged from �40 nM to
�24 �M and were well-correlated between different peptides
(r2 � 0.70 – 0.98; Fig. S2), indicating that sulfation has only a
small influence on the selectivity of the CCR1 N-terminal
peptide for chemokine ligands.

Contribution of site 1 interactions to CCR1-binding affinity
and selectivity

We assessed the affinities of chemokines for CCR1 expressed
in Flp-In T-REx human embryonic kidney (HEK) 293 cells
using a radioligand displacement assay (Fig. 2 (A and B) and
Table 2). The results are consistent with previous reports of
chemokine–CCR1 binding affinities (42–44). Although the sul-
fation status of CCR1 is unknown, we also determined the affin-
ities of the same chemokines for CCR1 derived from cells
treated with 30 mM chlorate, which blocks tyrosine sulfation.
Effective prevention of sulfation by 30 mM chlorate was verified
using ELISA for two chemokine receptors N-terminally tagged
with both FLAG, for which antibody detection is blocked by
sulfation (45), and cMyc, which cannot be sulfated (Fig. S3). We
found that the chemokine affinities were not significantly dif-
ferent for CCR1 derived from untreated cells and cells treated
with 30 mM chlorate (Fig. 2 (A and B) and Table 2). This indi-
cates that either CCR1 is not sulfated in these cells or sulfation
has no effect on chemokine affinity.

As expected, the affinities of chemokines were higher for
CCR1 than for the N-terminal peptides. For most chemokines,
the intact receptor bound with affinities in the range 0.07– 60
nM, whereas the peptides bound about 1000-fold less tightly.
These data indicate that, in general, approximately two-thirds
of the receptor binding free energy can be attributed to the
interactions at site 1. The only exception was CCL26, which
bound to the peptides (Kd �0.1– 4 �M) but for which CCR1
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binding could not be detected at concentrations up to 0.1 �M.
CCL26 is not a cognate ligand for CCR1. It is possible that this
chemokine binds to CRS1 of CCR1 with an affinity comparable
with its affinity for the nonsulfated N-terminal peptide but
without any additional interactions with CRS2.

To assess the contribution of the receptor N terminus to the
selectivity of receptor binding, sulfopeptide-binding affinities
(pKd) were correlated with intact receptor-binding affinities
(pIC50). In all cases, the correlations were very poor (r2 � 0.02–
0.16; Fig. 3). One possible explanation for such poor correla-
tions is that the interactions of the chemokines at CRS1 may
differ substantially for the intact receptor and the receptor-
derived peptides or be substantially influenced by local struc-
tural constraints in the intact receptor. An alternative explana-
tion is that CRS1 interactions alone do not play a dominant role
in defining the chemokine-binding selectivity and additional
interactions of CRS2 also contribute.

Evaluation of site 1 and site 2 interactions using chemokine
chimeras

The chemokine CCL7 is a potent cognate ligand for CCR1
(42), whereas the closely related chemokine CCL2 has much
lower potency and affinity for CCR1 and is not generally con-
sidered a cognate ligand for this receptor. Therefore, these two
chemokines present an opportunity to dissect the contribu-
tions of different structural elements of chemokines to CCR1
binding and activation. For this purpose, we used two sets
of chimeric chemokines based on CCL2 and CCL7 (Fig. 4;
includes nomenclature); we used the obligate monomeric
mutant CCL2(P8A) to ensure consistency with the naturally
monomeric CCL7 (46, 47). In each chimera, one of three key
regions for receptor recognition (N terminus, N-loop, and �3
region) was substituted for the corresponding region from the
other chemokine, or all three regions were substituted together.
To avoid disrupting the folded structures of the chemokines,
hydrophobic core residues were excluded from being replaced.
As described in a previous study of their interactions with
CCR2, all of the chimeras are well folded (20).

For the parental chemokines and each chimera, we evaluated
binding to CCR1 using the radioligand displacement assay. In
addition, we measured signaling via CCR1 expressed on Flp-In
T-REx 293 cells using one proximal measurement of receptor
activation (recruitment of �-arrestin 2; �Arr) and three down-
stream, amplified signals: G protein activation, inhibition of
cAMP production, and phosphorylation of extracellular signal-
regulated kinases 1 and 2 (ERK1/2).

As expected, CCL7 bound with significantly higher affinity
than CCL2 to CCR1 (pIC50 values of 9.0 � 0.1 and 7.2 � 0.2,
respectively, p � 0.0001; Fig. 5A and Table 3), exhibited a higher
maximal effect (Emax) in the proximal �Arr assay (p � 0.0046;
Fig. 5B and Table 3), and displayed higher potency (pEC50) in
the three amplified signaling assays (p � 0.0001; Fig. 5 (C–E)
and Table 3). These data indicate that, relative to CCL7, CCL2
is a partial agonist of CCR1.

The chimera in which all three regions of CCL7 were
replaced by those of CCL2 (CCL7-222) had CCR1-binding
affinity very similar to that of CCL2, whereas the inverse chi-
mera (CCL2-777) had CCR1-binding affinity very similar to
that of CCL7 (Fig. 5A and Table 3). In addition, the chimera
CCL7-222 displayed the partial agonist activity of CCL2,
whereas CCL2–777 displays the full agonism of CCL7. This
trend was observed in all four measurements of receptor acti-
vation (Fig. 5 (B–E) and Table 3). These results verify that the
three swapped regions are the primary regions of these two
chemokines responsible for their differences in CCR1 binding
and activation.

Contributions of chemokine N-loop and �3 regions to CCR1
binding and activation

According to the two-site model, the N-loop and �3 regions
of chemokines, which together constitute CS1, are expected to
contribute to receptor-binding affinity. We found that replace-
ment of the �3 region of CCL2 with that of CCL7 (chimera
CCL2-227) or the inverse replacement (chimera CCL7-772)
had little influence on CCR1-binding affinity or on the signaling

Figure 1. Binding of C-C motif chemokines to CCR1 N-terminal pep-
tides. A, sequences of CCR1 peptides R1A-D; sulfated tyrosine residues
(sY) are indicated in boldface underlined red type, whereas nonsulfated
tyrosine residues are shown in boldface black type. B–G, competitive bind-
ing data and fitted curves (solid lines) for displacement of fluorescent pep-
tide Fl-R2D (sequence Fl-EEVTTFFDsYDsYGAP, in which Fl represents flu-
orescein and sY represents sulfotyrosine) from CCL2 (B), CCL5 (C), CCL7
(D), CCL8 (E), CCL15 (F), and CCL26 (G), using each of the four CCR1 N-ter-
minal peptides: R1A (blue circles), R1B (red squares), R1C (green triangles),
and R1D (purple inverted triangles). For all data points, the concentrations
of Fl-R2D and the chemokine were 10 and 100 nM, respectively. Data
points represent mean � S.E. (error bars) of at least three independent
experiments performed in duplicate.
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profiles of these chemokines (Fig. 6 (A–E) and Table 3). On the
other hand, replacement of the N-loop of CCL2 with that of
CCL7 (chimera CCL2-272) increased the CCR1-binding affin-
ity to be the same as that of WT CCL7, whereas replacement of
the N-loop of CCL7 with that of CCL2 (chimera CCL7-727)
decreased the binding affinity to be similar to that of CCL2 (Fig.
7A and Table 3). Interestingly, these two chimeras displayed
signaling profiles in all four assays that were intermediate
between the full agonism of CCL7 and the partial agonism of
CCL2 (Fig. 7 (B–E) and Table 3). This indicates that the replace-
ment of the N-loop alone is not sufficient to completely over-
come the differences in receptor activation despite conferring
the affinity of the donor chemokine.

Contribution of chemokine N terminus to CCR1 binding and
activation

In the two-site, two-step model, the chemokine N terminus
(CS2) is not involved in initial binding interactions but engages
with the receptor TM region (CRS2) in the second step to acti-
vate the receptor. However, we observed that swapping the N
terminus gives chimeras (CCL2-722 and CCL7-277) that dis-

Table 1
Affinities for binding of C-C motif chemokines to CCR1 N-terminal peptides
Binding constants are reported as pKd values (�log10 of the Kd; in M) � S.E. The corresponding Kd values (in �M) are shown in parentheses. CCL7 in each peptide’s data set
was used as a reference for statistical analysis. *, p � 0.05; **, p � 0.01; ***, p � 0.001.

Chemokine
Competitive binding pKd

R1A R1B R1C R1D

M

CCL2 5.1 � 0.07 (9.1) 5.8 � 0.03 (1.4)*** 6.4 � 0.04 (0.4)* 6.9 � 0.05 (0.1)***
CCL5 5.8 � 0.03 (1.7)*** 6.6 � 0.03 (0.2)*** 6.8 � 0.02 (0.2)* 7.1 � 0.03 (0.1)**
CCL7 5.3 � 0.05 (4.7) 6.1 � 0.03 (0.8) 6.6 � 0.04 (0.2) 7.3 � 0.02 (0.1)
CCL8 5.5 � 0.03 (3.2) 6.2 � 0.04 (0.6) 7.1 � 0.01 (0.1)*** 7.4 � 0.04 (0.04)
CCL15 4.6 � 0.06 (23.9)*** 5.1 � 0.05 (8.8)*** 5.4 � 0.05 (4.3)*** 5.6 � 0.04 (2.3)***
CCL26 5.4 � 0.06 (4.0) 6.1 � 0.05 (0.8) 6.4 � 0.05 (0.4)* 6.8 � 0.02 (0.1)***

Figure 2. Binding of C-C motif chemokines to CCR1. The radioligand dis-
placement assay was performed using 125I-CCL3 as a probe and membrane
preparations of Flp-In T-REx HEK 293 cells expressing His6-cMyc-CCR1 grown
in the absence (A) and in the presence (B) of 30 mM sodium chlorate. Receptor
expression was induced 24 h prior to membrane preparation by the addition
of 10 �g/ml tetracycline to cell medium. For the data shown in B, sulfation was
inhibited by treatment of the cells with chlorate for 48 h prior to membrane
preparation. Data points represent means � S.E. (error bars) of at least three
independent experiments performed in triplicate.

Table 2
Affinities for binding of C-C motif chemokines to CCR1
Binding was determined using a radioligand (125I-CCL3) displacement assay with
membranes prepared from cells grown in the absence of chlorate or the presence of
30 mM chlorate to inhibit sulfation for 48 h prior to membrane preparation. CCR1
expression was induced by the addition of 10 �g/ml tetracycline to the cell medium
24 h prior to membrane preparation. Inhibition constants are reported as pIC50
values (�log10 of the IC50; in M) � S.E. The corresponding IC50 values (in nM) are
shown in parentheses. CCL7 was used as a reference for statistical analysis. *, p �
0.05; ***, p � 0.001.

Chemokine
pIC50

(no chlorate treatment)
pIC50

(chlorate-treated cells)

M M

CCL2 7.2 � 0.1 (57.5)*** 7.7 � 0.1 (19.1)***
CCL5 9.2 � 0.2 (0.6) 9.7 � 0.1 (0.2)
CCL7 9.6 � 0.1 (0.4) 9.8 � 0.1(0.2)
CCL8 8.7 � 0.2 (1.8)* 8.7 � 0.1 (1.9)***
CCL15 10.1 � 0.2 (0.07) 10.0 � 0.1 (0.1)
CCL26 No binding 6.3 � 0.2 (457.1)***

Figure 3. Correlation of chemokines binding affinities of CCR1 and N-ter-
minal peptides. Data points represent the pIC50 value for CCR1 (x axis) and
the pKd values for R1A (A), R1B (B), R1C (C), and R1D (D) (y axis) for five chemo-
kines; data were not available for CCL26, as it did not bind detectably to CCR1
at concentrations tested. Data points represent mean � S.E. (error bars) of at
least three independent experiments. For all four graphs, the squared corre-
lation coefficient (r2) is �0.16.
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play an intermediate CCR1 affinity between those of the paren-
tal chemokines (Fig. 8A and Table 3). This indicates that the N
terminus does contribute to binding affinity. The activation
profiles of these chimeras were also intermediate between those
of the full and partial agonist activities of the parental chemo-
kines (Fig. 8 (B–D) and Table 3). This suggests that the N-ter-

minal region of the chemokines contributes not only to high
affinity binding of the receptor but is also a determinant of
receptor activation.

Discussion

The two-site, two-step model suggests that most of the bind-
ing energy is provided by site 1 interactions. In this study, we
observed that peptides derived from the N-terminal region
(CRS1) of CCR1 bind to cognate chemokines with affinities
ranging from �40 nM to �24 �M. In comparison, CCR1 on cell
membranes bound to the same chemokines with affinities of
�70 pM to �2 nM. It is not straightforward to deduce the rela-
tive free energies of binding interactions at each site because
both receptor binding and peptide binding are expected to be
accompanied by loss of overall rotational and translational
entropy. Moreover, the peptides used here (and those used in
other studies) may differ substantially in their structural
ensembles and constraints from the N-terminal region of the
intact receptor. Nevertheless, under the assumption that the
affinities of the peptides are a reasonable approximation of
the contributions of site 1 to binding affinity, our data indicate
that the site 1 interactions contribute at least �50% of the total
free energy for chemokine–receptor binding if the receptor is
not sulfated and �60 –90% (depending on the chemokine) of
the total binding free energy if the receptor is sulfated at both
possible sites. This conclusion can be taken as supporting the
importance of site 1 for binding. However, it also highlights that
subsequent interactions may also contribute a substantial pro-
portion of binding free energy.

Two aspects of the peptide binding data point to possible
deficiencies in the two-site, two-step model. First, we found
that the N-terminal peptides bound to two non-cognate
chemokines of CCR1 (CCL2 and CCL26) with affinities com-
parable with those of cognate ligands; as expected, these
chemokines bound more weakly than the cognate ligands to
CCR1 on cell membranes. Second, there was no correlation
between peptide affinities and receptor affinities (Fig. 3), indi-
cating that site 1 interactions may not play a dominant role in
controlling the chemokine selectivity of the receptor. These
observations suggest that site 1 may be the initial site of chemo-
kine binding for both cognate and non-cognate ligands, but that
additional interactions are required for selective recognition of
cognate ligands.

The CCR1-binding affinities of the CCL7/CCL2 chimeras
support the contention that both sites 1 and 2 contribute to
binding affinity. Whereas substitution of the N-loop (CS1) was
sufficient to almost completely swap the affinity of one chemo-
kine to that of the other, substitution of the N terminus (CS2)
also changed the affinity of each chemokine to be closer to that
of the other. Importantly, the affinity contributions of these two
regions were not simply additive, indicating that the interac-
tions of one region influence those of the other. Our conclusion
that site 2 contributes to chemokine–receptor binding is con-
sistent with a study of CCR1-CCR2 chimeric receptors in which
regions other than the receptor N terminus were found to be
required for high-affinity binding of the CCR1 ligand CCL3/
MIP-1� (48).

Figure 4. Design and nomenclature of CCL2/CCL7 chimeras. A, structure of
CCL7 (Protein Data Bank code 1BO0) showing the three regions swapped in
the chimeras. B, schematic diagrams of the chimeras with regions from CCL2
and CCL7 in blue and red, respectively.

Figure 5. Binding and activation of CCR1 by CCL2, CCL7, and triple-swap
chimeras. A, competitive displacement was measured using membrane
preparations of His6-cMyc-CCR1 Flp-In T-REx 293 cells and 125I-CCL3 as a
probe. B, �-arrestin 2 recruitment was measured using parental HEK 293 cells
transiently transfected with plasmids encoding CCR1-RLuc8 and �-Arr2-YFP.
C, G protein activation was measured using His6-cMyc-CCR1 Flp-In T-REx 293
cells and G�i2. D, cAMP inhibition was measured using His6-cMyc-CCR1 Flp-In
T-REx 293 cells transiently transfected with a BRET-based cAMP biosensor. E,
ERK1/2 phosphorylation assay was performed using His6-cMyc-CCR1 Flp-In
T-REx 293 cells, and the amount of phosphorylated ERK1/2 was measured by
AlphaScreen detection. Data points represent means � S.E. (error bars) of at
least three independent experiments.
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The CCL7/CCL2 chimeras also provided insights into the
roles of chemokine structural regions in receptor activation.
Our data indicate that both the N-terminal region and the
N-loop contribute to the higher efficacy of CCR1 activation (e.g.
Emax in the proximal �Arr assay) by the full agonist CCL7 com-
pared with the partial agonist CCL2. The contribution of the
N-terminal region (CS2) is expected for the two-site, two-step
model. However, the contribution of the N-loop (CS1) again
suggests interdependence of the site 1 and site 2 interactions,
possibly mediated by some of the additional interactions iden-
tified by structural modeling (24). These results are consistent

with the observation of Pease et al. that both the N-terminal
region and elements outside of the N-terminal region are
required to support CCR1 activation by CCL3 (18).

In summary, the results described here indicate that both
sites 1 and 2 contribute to binding interactions but that high
affinity receptor binding is not sufficient to give rise to full
receptor activation. These results can be rationalized by a fairly
simple elaboration of the two-site, two-step model to a “three-
step” model (Fig. 9), in which step 1 involves nonspecific, low-
affinity binding between CS1 and CRS1; step 2 represents spe-
cific binding and involves engagement of CS2 with CRS2,

Table 3
CCR1 binding and activation parameters for CCL2/CCL7 chimeras
Binding inhibition constants are reported as pIC50 values (�log10 of the IC50; in M) � S.E. Potency values for receptor activation are reported as pEC50 values (�log10 of the
EC50; in M) � S.E. The corresponding IC50 and EC50 values (in nM) are in parentheses. Maximal effects (Emax) are reported as normalized values; the maximal response used
for normalization was CCL7 (1 �M) for �Arr and GPA assays, forskolin (10 �M) for the cAMP assay, and FBS (10%) for the pERK assay. CCL7 was used as a reference in each
assay for statistical analysis. ND, values that could not be determined from the data. *, p � 0.05; **, p � 0.01; ***, p � 0.001.

CCR1 binding,
pIC50

�-Arrestin-2 assay GPA assay (�i2) cAMP assay pERK assay
pEC50 Emax pEC50 Emax pEC50 Emax pEC50 Emax

M M M M M

CCL2 7.2 � 0.2 (57)*** 7.8 � 0.3 (17) 58.6 � 8** �6.5 (�300) ND �6.5 (�300) ND 6.9 � 0.1 (130)*** 24.2 � 2***
CCL2-722 8.0 � 0.1 (9.3)*** 7.8 � 0.2 (14) 72.1 � 6 �6.5 (�300) ND 6.9 � 0.2 (277)** 38.4 � 5 7.6 � 0.2 (24)* 33.7 � 2*
CCL2-272 9.0 � 0.1 (1.0) 7.8 � 0.1 (16) 70.5 � 4 �6.5 (�300) ND 7.3 � 0.1 (54) 42.5 � 3 7.7 � 0.2 (22) 31.4 � 2**
CCL2-227 7.2 � 0.1 (63)*** �7.0 (�300) ND �6.5 (�300) ND �6.5 (�300) ND 7.0 � 0.1 (110)*** 27.1 � 2***
CCL2-777 9.8 � 0.1 (0.2)*** 8.3 � 0.1 (5.6) 107.0 � 6 7.3 � 0.1 (45.9) 93.6 � 4 7.6 � 0.1 (26) 49.5 � 3 7.8 � 0.1 (15) 37.8 � 2
CCL7 9.0 � 0.1 (1.0) 8.3 � 0.1 (5.2) 97.8 � 5 7.4 � 0.1 (35.7) 105.5 � 5 7.9 � 0.2 (14) 44.2 � 3 8.2 � 0.2 (6.0) 43.7 � 2
CCL7-277 8.1 � 0.1 (7.2)*** 8.2 � 0.2 (6.7) 76.5 � 6 �6.5 (�300) ND 7.5 � 0.2 (33) 37.9 � 3 7.2 � 0.2 (64)*** 32.3 � 3**
CCL7-727 7.8 � 0.1 (16)*** 8.2 � 0.2 (6.8) 82.6 � 6 �6.5 (�300) ND 7.2 � 0.1 (62)* 39.7 � 3 7.6 � 0.1 (24)* 40.5 � 1
CCL7-772 8.5 � 0.2 (3.4)* 8.7 � 0.2 (2.0) 97.4 � 7 7.6 � 0.1 (27.1) 90.4 � 11 7.9 � 0.1 (14) 50.3 � 2 8.2 � 0.1 (6.8) 50.2 � 2
CCL7-222 7.2 � 0.1 (61)*** ND ND �6.5 (�300) ND �6.5 (�300) ND 6.5 � 0.1 (350)*** 22.1 � 3***

Figure 6. Binding and activation of CCR1 by �3 swap chimeras. Compet-
itive displacement (A), �-arrestin 2 recruitment (B), G protein activation (C),
cAMP inhibition (D), and ERK1/2 phosphorylation (E) were measured as
described for Fig. 5. Data points represent means � S.E. (error bars) of at least
three independent experiments.

Figure 7. Binding and activation of CCR1 by N-loop swap chimeras. Com-
petitive displacement (A), �-arrestin 2 recruitment (B), G protein activation
(C), cAMP inhibition (D), and ERK1/2 phosphorylation (E) were measured as
described for Fig. 5. Data points represent means � S.E. (error bars) of at least
three independent experiments.
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possibly accompanied by the formation of additional interac-
tions outside the two principal sites; and step 3 involves a con-
formational change of the chemokine–receptor complex
resulting in receptor activation and transmembrane signaling.

The proposed three-step model can be used to understand
the interactions of a chemokine receptor with a variety of dif-
ferent types of chemokine ligands (Fig. 9). Non-cognate chemo-
kines would participate in step 1 but not in subsequent steps.
Cognate chemokine antagonists (or inverse agonists) would
participate in steps 1 and 2 but not enable receptor activation.
Chemokine agonists would participate in all three steps and
would shift the equilibrium between the inactive state and the
activated state; full agonists would shift this equilibrium
strongly toward the activated state, whereas partial agonists
would shift it less strongly.

The proposal that site 1 is involved in nonspecific binding
but that additional interactions are required for specific bind-
ing is supported by considerations of binding thermodynamics.
Physiological concentrations of chemokines are typically
thought to be in the low nanomolar range, although there
remains some uncertainty about effective local concentrations,
which are expected to be influenced by factors such as oligo-
merization and glycosaminoglycan binding. Thus, the relatively
low affinities of chemokines for the N-terminal regions of their
receptors (Kd values in the high nanomolar to low micromolar
range) indicate that there will be a relatively low (probably
�10%) occupancy of receptor site 1 in the absence of additional

interactions. On the other hand, the high affinities of intact
receptors for cognate chemokines (Kd values ��1 nM) will
result in high (perhaps �90%) receptor occupancy.

It is also important to consider the kinetics of binding inter-
actions. Previous NMR studies from our laboratory and others
(26 –38) have shown that binding of both cognate and non-
cognate chemokines to receptor N-terminal peptides is typi-
cally fast (dissociation rate constants koff �� 1 s�1), whereas
dissociation of cognate chemokines from their receptors is
much slower (koff �� 0.1 s�1), as required for radioligand-bind-
ing assays. Moreover, conformational transitions from inactive
to active states of GPCRs occur with rate constants on the order
of �1 s�1 (49). These kinetic considerations suggest that cog-
nate and non-cognate chemokines may bind to and dissociate
from site 1 of a receptor many times before a cognate chemo-
kine engages receptor site 2, giving rise to a conformational
change and receptor activation. Thus, within the proposed
three-step model, step 1 is likely to represent a rapid pre-equi-
librium process, whereas step 2 is likely to be the rate-determin-
ing step, as indicated by the free energy profiles in Fig. 9.

Conclusion

We have proposed a simple three-step model to account for
the contributions of site 2 interactions to chemokine–receptor
binding affinity and to separate high-affinity binding from

Figure 8. Binding and activation of CCR1 by N-terminal swap chimeras.
Competitive displacement (A), �-arrestin 2 recruitment (B), G protein activa-
tion (C), cAMP inhibition (D), and ERK1/2 phosphorylation (E) were measured
as described for Fig. 5. Data points represent means � S.E. (error bars) of at
least three independent experiments.

Figure 9. Proposed “three-step” model for chemokine receptor binding
and activation. Top, mechanistic model in which the three steps (left to right)
represent 1) fast association of receptor (R) and ligand (L) via site 1 to give
low-affinity, nonspecific complex (RLNS); 2) slow formation of site 2 interac-
tions to give a high-affinity, specific complex (RLSpec); and 3) a conformational
change to the ligand-bound, activated state of the receptor (RLAct). Bottom,
corresponding, hypothetical free energy profile for an agonist (solid black
curve) at a concentration (typically 10 –100 nM) intermediate between the Kd
values for high-affinity receptor binding and low-affinity binding at site 1
only. Also shown are the free energy profiles expected for a high-affinity
antagonist (red curve) and a low-affinity non-cognate ligand (cyan curve) at a
similar concentration. The basal activity of the unliganded receptor is repre-
sented by the dashed black curve.
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receptor activation. This model extends the popular two-site,
two-step model and may serve as an improved paradigm for
interpretation of structure–function and mechanistic experi-
ments. Further elaboration of this model would be possible to
incorporate such phenomena as allosteric receptor interactions
and ligand-biased receptor activation.

Experimental procedures

Materials

Dulbecco’s modified Eagle’s medium and Hanks’ balanced
salt solution (HBSS) were purchased from Invitrogen. Blastici-
din and hygromycin B were purchased from InvivoGen (San
Diego, CA). Fetal bovine serum was purchased from In Vitro
Technologies (Noble Park, Victoria, Australia). Polyethylenei-
mine (PEI) was purchased from Polysciences, Inc. (Warrington,
PA). Coelenterazine h was purchased from NanoLight (Pin-
etop, AZ). Sulfopeptides were synthesized, and their concen-
trations were determined as described (27, 50). Unless oth-
erwise noted, all of the other reagents were purchased from
Sigma-Aldrich.

Chemokine expression and purification

CCL2 and all chimeras containing the N-terminal region of
CCL2 contain the P8A mutation to ensure that these proteins
are monomeric. The form of CCL15 used in this study is the
active, high-affinity form CCL15(�26), which has the N-termi-
nal sequence HFAAD (52). All chemokines and chimeras were
expressed and purified as described (20, 46). Briefly, the N-ter-
minal His6-tagged protein was expressed from BL21 (DE3)
E. coli in lysogeny broth medium by induction with isopropyl
1-thio-�-D-galactopyranoside. Inclusion bodies containing the
fusion (i.e. His6-tagged) proteins were isolated and dissolved in
denaturing buffer and then purified by Ni2	-affinity chroma-
tography. The fusion protein was refolded by rapid dilution, the
His6 tag was removed using human thrombin or tobacco etch
virus protease, and the untagged protein (containing the native
N terminus) was further purified by size-exclusion chromatog-
raphy. Purity was evaluated by SDS-PAGE, and protein identity
was confirmed by MALDI-TOF MS.

Fluorescence anisotropy assay

Peptides R1A–R1D (Fig. 1A) and Fl-R2D (Fig. 1A) were pre-
pared by solid-phase peptide synthesis and purified by HPLC,
as described (41). Samples for fluorescence anisotropy binding
assays were prepared in 50 mM MOPS buffer (pH 7.4) using
Greiner non-binding, black, flat-bottomed, 96-well microplates
and a final volume of 200 �l/well. Direct binding assays were
performed using final chemokine concentrations of 31–2000
nM (2-fold increments) and a final concentration of fluorescent
sulfopeptide Fl-R2D of 10 nM. Competitive binding assays were
performed using invariable final concentrations of the chemo-
kine (100 –500 nM; chosen to have �80% of the chemokine
bound to the probe) and Fl-R2D (10 nM) and with a range of
concentrations for the competitor (nonfluorescent sulfopep-
tides R1A–R1D), serially 2-fold diluted from the highest final
concentrations of 100 �M (for R1A), 50 �M (for R1B and R1C),
and 10 �M (for R1D). After 5 min, fluorescence anisotropy was

measured at 25 °C using a PHERAstar plate reader (BMG
Labtech, Ortenberg, Germany) equipped with a fluorescence
polarization module with dedicated excitation and emission
wavelengths of 485 and 520 nm, respectively. Assays were per-
formed in duplicate, three times independently.

Mammalian cell culture

Assays (except the �-arrestin recruitment assay) were per-
formed using Flp-InTM T-RExTM 293 cells (Invitrogen) stably
transfected with the plasmid pcDNA5/FRT/TO-His6-cMyc-CCR1
to express human CCR1 with N-terminal His6 and cMyc tags.
Cells were grown and maintained in full medium composed of
Dulbecco’s modified Eagle’s medium (Gibco) supplemented
with 5% (v/v) tetracycline-free fetal bovine serum (FBS; Gibco),
5 �g/ml blasticidin to maintain selection of cells stably trans-
fected with the tetracycline repressor gene (tetR) and 200 �g/ml
hygromycin B to maintain selection of cells stably transfected
with the CCR1 gene. Cells were grown and maintained at 37 °C
in 5% CO2 in 175-cm2 flasks and were detached from the flask
by washing with Versene (PBS/EDTA), followed by incubation
in 1% (w/v) trypsin in Versene for 5 min. For selected experi-
ments, tyrosine sulfation was inhibited 48 h prior to each exper-
iment by the addition of 30 mM sodium chlorate to cell medium.
Receptor expression was induced 24 h prior to each experiment
by the addition of 10 �g/ml tetracycline to cell medium.

Membrane preparation

Cell membranes were prepared by detaching the cells from
the flasks, centrifugation at 1500 
 g for 3 min, and resuspen-
sion in ice-cold 50 mM MOPS buffer containing 5 mM MgCl2
and 0.1% CHAPS, pH 7.4. The lysates were homogenized by
sonication and centrifuged at low speed for 5 min. Membrane
and cytosolic fractions were separated by centrifugation at
40,000 relative centrifugal force for 30 min at 4 °C. The pellet
containing membranes was resuspended in MOPS buffer con-
taining 5 mM MgCl2 and 0.1% CHAPS, pH 7.4, and stored at
�20 °C. Protein concentrations were measured using a BCA
protein determination assay (53).

Radioligand binding assays

Competitive binding assays were performed as described by
Zweemer et al. (54). Briefly, binding assays were performed in a
100-�l reaction volume containing 50 mM MOPS buffer (pH
7.4), 5 mM MgCl2, 0.1% CHAPS, 10 �g of membranes, variable
concentrations of chemokines, and 50 pM 125I-CCL3 (Perkin-
Elmer Life Sciences). Nonspecific binding was determined in
the presence of 10 �M BX471, a CCR1 antagonist. Samples were
incubated for 2 h at 37 °C. Binding was terminated by dilution
with ice-cold 50 mM MOPS buffer (pH 7.4) supplemented with
0.05% CHAPS and 0.5 M NaCl, followed by rapid filtration
through a 96-well GF/C filter plate precoated with 0.5% PEI
using a Filtermate harvester (PerkinElmer Life Sciences). Filters
were washed three times with the same ice-cold wash buffer
and dried at 50 °C, and 25 �l of MicroScint-O scintillation mix-
ture (PerkinElmer Life Sciences) was added to each well. Radio-
activity was determined using a MicroBeta2 LumiJET 2460
microplate counter (PerkinElmer Life Sciences).
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�-Arrestin recruitment assay

Recruitment of �-arrestin-2 to CCR1 was assessed in
Flp-InTM T-RExTM 293 cells transiently transfected with
CCR1-RLuc8 and �-arrestin-2-YFP as described previously
(55). Briefly, CCR1-RLuc8 and �-arrestin-2-YFP were trans-
fected at a receptor/arrestin ratio of 1:4 using PEI at a DNA/PEI
ratio of 1:6 (56). After 24 h, cells were replated in poly-D-lysine–
coated 96-well white opaque CulturPlates (PerkinElmer Life
Sciences); then, 48 h after transfection, cells were rinsed and
preincubated in HBSS for 30 min at 37 °C. Coelenterazine h was
added to each well (final concentration 5 �M) followed by the
addition of receptor ligands 5 min later. Cells were incubated
for a further 10 min in the dark at 37 °C. BRET measurements
were obtained using a PHERAstar plate reader (BMG Labtech,
Ortenberg, Germany) that allows for sequential integration of
the signals detected at 475 � 30 and 535 � 30 nm, using filters
with the appropriate band pass. Data are presented as a ligand-
induced BRET ratio (baseline-corrected by subtracting the
BRET ratio of vehicle-treated cells). All experiments were per-
formed in duplicate and repeated independently at least three
times.

ERK1/2 phosphorylation

Phosphorylation of ERK1/2 was measured using the
AlphaScreen� SureFire� phospho-ERK1/2 (Thr-202/Tyr-204)
assay kit (PerkinElmer Life Sciences, TGR Biosciences) follow-
ing the manufacturer’s instructions. Briefly, 4 
 105 cells/well
were seeded in a poly-D-lysine– coated plate in full medium
containing 10 �g/ml tetracycline and serum-starved overnight.
Initial time course experiments determined that peak levels of
ERK1/2 phosphorylation were achieved 5 min after the addi-
tion of chemokines. Therefore, for all concentration–response
experiments, cells were stimulated with chemokine for 5 min at
37 °C. 10% (v/v) FBS was used as a positive control. The reaction
was terminated by removal of the medium and the addition of
SureFire lysis buffer (100 �l). Cell lysis was assisted by shaking
the plates at 600 rpm for 5 min. 5 �l of lysate was transferred to
a white 384-well ProxiplateTM followed by the addition of 8 �l
of SureFire AlphaScreen Detection Mix (240:1440:7:7 (v/v/v/v)
dilution of SureFire Activation Buffer/SureFire Reaction Buff-
er/AlphaScreen acceptor beads/AlphaScreen donor beads).
The plate was incubated in the dark for 1.5 h at 37 °C, and the
AlphaScreen signal was read on an Envision� plate reader
(PerkinElmer Life Sciences). Data were normalized to the signal in
the absence of chemokine (0% response) and in the presence of
10% (v/v) FBS (100% response). All experiments were performed
in duplicate and repeated independently at least three times.

Inhibition of forskolin-induced cAMP production

Cells were plated in a Petri dish (about 2.5 
 106 cells/dish)
and allowed to grow overnight in full medium at 37 °C, 5% CO2.
The following day, cells were transfected with a CAMYEL
cAMP BRET biosensor (56). Transient transfection was per-
formed using PEI at a DNA/PEI ratio of 1:6. After 24 h, cells
were replated in poly-D-lysine– coated 96-well white opaque
CulturPlates (PerkinElmer Life Sciences). 48 h after transfec-
tion, cells were rinsed and preincubated in HBSS for 30 min at
37 °C. Cells were then incubated with the RLuc substrate coel-

enterazine h (final concentration 5 �M) for 5 min, followed by a
further 5-min incubation with various concentrations of
chemokine. Forskolin was then added for an additional 5 min to
a final concentration of 10 �M. BRET measurements were
obtained using a PHERAstar plate reader (BMG Labtech,
Ortenberg, Germany) that allows for sequential integration of
the signals detected at 475 � 30 and 535 � 30 nm, using filters
with the appropriate band pass. BRET ratio was calculated as
the ratio of YFP to RLuc signals, and data are expressed as the
percentage of the forskolin-induced signal.

G protein activation assay

Cells were plated in a Petri dish (�2.5 
 106 cells/dish) and
allowed to grow in full medium at 37 °C in 5% CO2 overnight.
The following day, cells were transfected in full medium using
DNA ratios of 2:1:1:1 for G�i/G�-Venus (C terminus)/G�-Ve-
nus (N terminus)/masGRK3-ct-Rluc (57) and a 1:6 total DNA/
PEI ratio. Cells were allowed to grow in transfection medium
mix for 24 h at 37 °C, 5% CO2. Cells were then replated in a
poly-D-lysine– coated 96-well white-bottom CulturPlate in full
medium containing 10 �g/ml tetracycline and allowed to grow
for another 24 h. Cells were then washed once with 100 �l of
HBSS and incubated in fresh HBSS for �30 min at 37 °C. Cells
were stimulated in HBSS to a total volume of 100 �l/well. The
Rluc substrate coelenterazine h was added to each well (final
concentration of 5 �M), and cells were incubated for 5 min at
37 °C. After 5 min, cells were stimulated with chemokines and
incubated for a further 10 min at 37 °C. Venus and Rluc emis-
sion signals (535 and 475 nm, respectively) were measured
using a PHERAstar plate reader, and the ratio of Venus/Rluc
was used to quantify relative levels of trimeric G protein disso-
ciation in each well. Data are presented as a ligand-induced
BRET ratio (baseline-corrected by subtracting the BRET ratio
of vehicle-treated cells). All experiments were performed in
duplicate and at least three times independently.

Data analysis and statistics

All data points represent the mean, and error bars represent
the S.E. of at least three independent experiments. Data were
analyzed using Prism version 6.0 (GraphPad Software Inc., La
Jolla, CA).

Direct fluorescence anisotropy binding data were fitted with
a nonlinear 1:1 binding equilibrium model described by the
equation,

Y � Yi � �Yf 	 Yi� 
 � 1

2Pt
���Pt � Lt � Kd�

	 ���Pt � Lt � Kd�
2 	 4PtLt�� (Eq. 1)

in which Y is the observed anisotropy; Yi and Yf are the initial
and final anisotropy, respectively; Pt is the total concentration
of Fl-R2D; Lt is the total concentration of the chemokine; and
Kd is the fitted equilibrium dissociation constant.

Competitive fluorescence anisotropy binding data were fit-
ted with the nonlinear 1:1 competitive displacement equation
derived by Huff et al. (58), in which the concentration of the
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nonfluorescent peptide was the independent variable, whereas
the dependent variable was the observed anisotropy. Fixed
input parameters were as follows: the total concentrations of
Fl-R2D and chemokine; the final anisotropy value, which cor-
responds to the anisotropy of free Fl-R2D; and the affinity
between Fl-R2D and chemokine (Kd value obtained from the
direct binding assay). The fitted parameters were the initial ani-
sotropy and the log(Kd) between the competitor and the
chemokine.

For radioligand binding, the concentration of agonist that
inhibited half of the 125I-CCL3 binding (IC50) was determined
using the equation,

Y �
bottom � �top 	 bottom�

1 � 10�X 	 logIC50�nH
(Eq. 2)

in which Y denotes the percentage specific binding; top and
bottom denote the maximal and minimal asymptotes, respec-
tively, of the concentration–response curve; IC50 denotes the X
value when the response is midway between bottom and top;
and nH denotes the Hill slope factor.

All data from concentration–response signaling assays were
normalized as outlined above and fitted to the equation,

Y � bottom �
top 	 bottom

1 � 10�logEC50 	 logA�� (Eq. 3)

in which top and bottom represent the maximal and minimal
asymptotes of the concentration–response curve; [A] is the
molar concentration of agonist; and EC50 is the molar concen-
tration of agonist required to give a response half way between
bottom and top.

All statistical comparisons were performed using (negative)
logarithmic parameters (pKd, pIC50 or pEC50), as distributions
of these parameters are approximately Gaussian (51). Multiple
t test comparison with Holm–Sidak correction or one-way
analysis of variance was used as stated in the figure legends.
Significance is indicated as follows: *, p � 0.05; **, p � 0.01; ***,
p � 0.001.
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7. Trebst, C., Sørensen, T. L., Kivisäkk, P., Cathcart, M. K., Hesselgesser, J.,
Horuk, R., Sellebjerg, F., Lassmann, H., and Ransohoff, R. M. (2001)
CCR1	/CCR5	 mononuclear phagocytes accumulate in the central nerv-
ous system of patients with multiple sclerosis. Am. J. Pathol. 159,
1701–1710 CrossRef Medline

8. Karash, A. R., and Gilchrist, A. (2011) Therapeutic potential of CCR1
antagonists for multiple myeloma. Future Med. Chem. 3, 1889 –1908
CrossRef Medline

9. Vallet, S., and Anderson, K. C. (2011) CCR1 as a target for multiple my-
eloma. Expert Opin. Ther. Targets 15, 1037–1047 CrossRef Medline

10. Horuk, R., Clayberger, C., Krensky, A. M., Wang, Z., Grone, H. J., Weber,
C., Weber, K. S., Nelson, P. J., May, K., Rosser, M., Dunning, L., Liang, M.,
Buckman, B., Ghannam, A., Ng, H. P., et al. (2001) A non-peptide func-
tional antagonist of the CCR1 chemokine receptor is effective in rat heart
transplant rejection. J. Biol. Chem. 276, 4199 – 4204 CrossRef Medline

11. Ribeiro, S., and Horuk, R. (2005) The clinical potential of chemokine re-
ceptor antagonists. Pharmacol. Ther. 107, 44 –58 CrossRef Medline

12. Hoshino, A., Iimura, T., Ueha, S., Hanada, S., Maruoka, Y., Mayahara, M.,
Suzuki, K., Imai, T., Ito, M., Manome, Y., Yasuhara, M., Kirino, T., Yama-
guchi, A., Matsushima, K., and Yamamoto, K. (2010) Deficiency of chemo-
kine receptor CCR1 causes osteopenia due to impaired functions of
osteoclasts and osteoblasts. J. Biol. Chem. 285, 28826 –28837 CrossRef
Medline

13. Ninichuk, V., and Anders, H. J. (2005) Chemokine receptor CCR1: a
new target for progressive kidney disease. Am. J. Nephrol. 25, 365–372
CrossRef Medline

14. Gladue, R. P., Zwillich, S. H., Clucas, A. T., and Brown, M. F. (2004) CCR1
antagonists for the treatment of autoimmune diseases. Curr. Opin. Inves-
tig. Drugs 5, 499 –504 Medline

15. Crump, M. P., Gong, J. H., Loetscher, P., Rajarathnam, K., Amara, A.,
Arenzana-Seisdedos, F., Virelizier, J. L., Baggiolini, M., Sykes, B. D., and
Clark-Lewis, I. (1997) Solution structure and basis for functional activity
of stromal cell-derived factor-1; dissociation of CXCR4 activation from
binding and inhibition of HIV-1. EMBO J. 16, 6996 –7007 CrossRef
Medline

16. Qin, L., Kufareva, I., Holden, L. G., Wang, C., Zheng, Y., Zhao, C., Fenalti,
G., Wu, H., Han, G. W., Cherezov, V., Abagyan, R., Stevens, R. C., and
Handel, T. M. (2015) Structural biology. Crystal structure of the chemo-
kine receptor CXCR4 in complex with a viral chemokine. Science 347,
1117–1122 CrossRef Medline

17. Burg, J. S., Ingram, J. R., Venkatakrishnan, A. J., Jude, K. M., Dukkipati, A.,
Feinberg, E. N., Angelini, A., Waghray, D., Dror, R. O., Ploegh, H. L., and
Garcia, K. C. (2015) Structural biology. Structural basis for chemokine
recognition and activation of a viral G protein-coupled receptor. Science
347, 1113–1117 CrossRef Medline

18. Pease, J. E., Wang, J., Ponath, P. D., and Murphy, P. M. (1998) The N-ter-
minal extracellular segments of the chemokine receptors CCR1 and CCR3
are determinants for MIP-1� and eotaxin binding, respectively, but a sec-
ond domain is essential for efficient receptor activation. J. Biol. Chem. 273,
19972–19976 CrossRef Medline

19. Mayer, M. R., and Stone, M. J. (2001) Identification of receptor binding
and activation determinants in the N-terminal and N-loop regions of
the CC chemokine eotaxin. J. Biol. Chem. 276, 13911–13916 CrossRef
Medline

Extension of two-site, two-step model at CCR1

J. Biol. Chem. (2019) 294(10) 3464 –3475 3473

http://dx.doi.org/10.1016/j.it.2003.12.005
http://www.ncbi.nlm.nih.gov/pubmed/15102366
http://dx.doi.org/10.1046/j.1365-2796.2001.00867.x
http://www.ncbi.nlm.nih.gov/pubmed/11489059
http://dx.doi.org/10.1084/jem.177.5.1421
http://www.ncbi.nlm.nih.gov/pubmed/7683036
http://dx.doi.org/10.1038/nri1964
http://www.ncbi.nlm.nih.gov/pubmed/17124512
http://dx.doi.org/10.3390/ijms18020342
http://www.ncbi.nlm.nih.gov/pubmed/28178200
http://dx.doi.org/10.1136/annrheumdis-2011-201605
http://www.ncbi.nlm.nih.gov/pubmed/22589376
http://dx.doi.org/10.1016/S0002-9440(10)63017-9
http://www.ncbi.nlm.nih.gov/pubmed/11696431
http://dx.doi.org/10.4155/fmc.11.144
http://www.ncbi.nlm.nih.gov/pubmed/22023033
http://dx.doi.org/10.1517/14728222.2011.586634
http://www.ncbi.nlm.nih.gov/pubmed/21609295
http://dx.doi.org/10.1074/jbc.M007457200
http://www.ncbi.nlm.nih.gov/pubmed/11054419
http://dx.doi.org/10.1016/j.pharmthera.2005.01.004
http://www.ncbi.nlm.nih.gov/pubmed/15894378
http://dx.doi.org/10.1074/jbc.M109.099424
http://www.ncbi.nlm.nih.gov/pubmed/20571024
http://dx.doi.org/10.1159/000087185
http://www.ncbi.nlm.nih.gov/pubmed/16088077
http://www.ncbi.nlm.nih.gov/pubmed/15202722
http://dx.doi.org/10.1093/emboj/16.23.6996
http://www.ncbi.nlm.nih.gov/pubmed/9384579
http://dx.doi.org/10.1126/science.1261064
http://www.ncbi.nlm.nih.gov/pubmed/25612609
http://dx.doi.org/10.1126/science.aaa5026
http://www.ncbi.nlm.nih.gov/pubmed/25745166
http://dx.doi.org/10.1074/jbc.273.32.19972
http://www.ncbi.nlm.nih.gov/pubmed/9685332
http://dx.doi.org/10.1074/jbc.M011202200
http://www.ncbi.nlm.nih.gov/pubmed/11297526


20. Huma, Z. E., Sanchez, J., Lim, H. D., Bridgford, J. L., Huang, C., Parker, B. J.,
Pazhamalil, J. G., Porebski, B. T., Pfleger, K. D. G., Lane, J. R., Canals, M.,
and Stone, M. J. (2017) Key determinants of selective binding and activa-
tion by the monocyte chemoattractant proteins at the chemokine receptor
CCR2. Sci. Signal. 10, eaai8529 CrossRef Medline

21. Xanthou, G., Williams, T. J., and Pease, J. E. (2003) Molecular character-
ization of the chemokine receptor CXCR3: evidence for the involvement
of distinct extracellular domains in a multi-step model of ligand binding
and receptor activation. Eur. J. Immunol. 33, 2927–2936 CrossRef
Medline

22. Rajagopal, S., Bassoni, D. L., Campbell, J. J., Gerard, N. P., Gerard, C., and
Wehrman, T. S. (2013) Biased agonism as a mechanism for differential
signaling by chemokine receptors. J. Biol. Chem. 288, 35039 –35048
CrossRef Medline

23. Corbisier, J., Galès, C., Huszagh, A., Parmentier, M., and Springael, J. Y.
(2015) Biased signaling at chemokine receptors. J. Biol. Chem. 290,
9542–9554 CrossRef Medline

24. Ziarek, J. J., Kleist, A. B., London, N., Raveh, B., Montpas, N., Bonneterre,
J., St-Onge, G., DiCosmo-Ponticello, C. J., Koplinski, C. A., Roy, I., Ste-
phens, B., Thelen, S., Veldkamp, C. T., Coffman, F. D., Cohen, M. C., et al.
(2017) Structural basis for chemokine recognition by a G protein-coupled
receptor and implications for receptor activation. Sci. Signal. 10, eaah5756
CrossRef Medline

25. Kleist, A. B., Getschman, A. E., Ziarek, J. J., Nevins, A. M., Gauthier, P. A.,
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