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MicroRNAs (miRNAs) control various biological processes by
inducing translational repression and transcript degradation of
the target genes. In mammalian development, knowledge of the
timing and expression pattern of each miRNA is important to
determine and predict its function in vivo. So far, no systematic
analyses of the spatiotemporal expression pattern of miRNAs
during mammalian neurodevelopment have been performed.
Here, we isolated total RNAs from the embryonic dorsal fore-
brain of mice at different developmental stages and subjected
these RNAs to microarray analyses. We selected 279 miRNAs
that exhibited high signal intensities or ascending or descending
expression dynamics. To ascertain the expression patterns of
these miRNAs, we used locked nucleic acid (LNA)-modified
miRNA probes in in situ hybridization experiments. Multiple
miRNAs exhibited spatially restricted/enriched expression in
anatomically distinct regions or in specific neuron subtypes in
the embryonic brain and spinal cord, such as in the ventricular
area, the striatum (and other basal ganglia), hypothalamus, cho-
roid plexus, and the peripheral nervous system. These findings
provide new insights into the expression and function of
miRNAs during the development of the nervous system and could
be used as a resource to facilitate studies in neurodevelopment.

The mammalian nervous system is the most complex struc-
ture of the body because of its unparalleled cellular diversity
and complex connectivity, which are responsible for highly
complex neural processes such as cognitive function, sensory
perception, voluntary motor control, and consciousness.
Numerous types of neurons and glial cells are produced with
striking precision throughout the development of the nervous
system, which require tight control of intrinsic signaling path-

ways and extrinsic factors to coordinate gene expression in a
spatially and temporally specific manner (1–3). Normal devel-
opment ensures that the correct complement of RNAs and pro-
teins are present in the correct cell at the correct time. There-
fore, delineation of gene expression profiles in distinct cell
subtypes at different stages and characterization of the functions
of these genes are critical steps in our understanding of the molec-
ular programs that govern cell fate determination, survival, matu-
ration, and connectivity during neural development.

Several high-throughput approaches were recently devel-
oped to identify the specific expression of genes and transcripts
at cellular resolution, for example: gene expression studies by
microarray or deep sequencing analysis of purified neuronal
subtypes (4 –6), microdissected regions of the neocortex
(7–10), or single cell analysis of different regions of the brain
(11–19); construction of transgenic mouse lines that express
reporter genes using the promoter regions of the lineage or cell
type-restricted genes and sorting the cells (20); and large-scale
screening technology for RNA in situ hybridization (ISH)3 to
map gene expression patterns on tissue sections (21–27). There
are several publicly available databases, such as The Genepaint
(23), the Brain Gene Expression Map (BGEM) (24), the Allen
Brain Atlas (ABA) (25), and the Eurexpress (26), which provide
comprehensive gene expression atlases for developing and
adult central nervous systems. However, these databases, as
well as other reports, contain large-scale in situ hybridizations
of thousands of transcripts that are essentially protein-coding
genes, and very few noncoding RNAs, particularly microRNAs
(miRNAs), are included.

miRNAs are �22–nucleotide, endogenous noncoding
RNAs that regulate gene expression via mediation of target
mRNA degradation or translational inhibition. These mole-
cules emerged as important post-transcriptional regulators of
various aspects of nervous system development (28 –30). A
large amount of evidence demonstrates that miRNAs play
important roles in vertebrate development and the expression
of miRNAs is genetically programmed in spatially and tempo-
rally dependent patterns (31, 32). Therefore, expression profil-
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ing of miRNAs is extremely necessary to reveal the biological
roles of miRNAs and miRNA-associated gene regulatory
networks. However, the detection of expression patterns of
miRNA in situ was technically challenging because of their
small size, until development of the locked nucleic acid (LNA)-
based technique (33–35).

The present study used LNA-modified probes of miRNAs to
screen the expression of 279 miRNAs in E12.5 and E16.5 mouse
embryos. By analyzing the spatiotemporal expression patterns
and cellular localizations of these 279 miRNAs at different
developmental stages, it revealed that many miRNAs exhibited
specific expression in different anatomical structures, such as in
different subtypes of neurons or brain regions, in the choroid
plexus or arachnoids, as well as that restricted expression in
non-nervous system tissues miRNAs. These data provide an
entry point for subsequent investigations of the function of
miRNAs in neural development processes.

Results

Analysis of the expression of miRNAs in mouse embryos using
LNA probe in situ hybridization

Our initial plan was to systematically examine the expression
and function of miRNAs that regulate cerebral cortex develop-
ment. We first performed microarray analyses of RNAs isolated
from the embryonic dorsal forebrains at different stages (E12.5
and E16.5) based on the miRBase Database Release 10.0 (http://
www.mirbase.org/)4 (56) (data not shown). We repeated it
again through the updated miRBase Database Release 19.0 six
years later and analyzed the newly discovered miRNAs (Table
S1). However, microarray analysis did not provide sufficient
spatial and temporal details to determine the timing and loca-
tion of the miRNAs expression. Therefore, we performed fur-
ther ISH analyses to ascertain the expression of the miRNAs in
the developing mouse brain. We selected 279 miRNAs that
exhibited signal intensities at each stage that were higher than
500 or exhibited ascending or descending expression dynamics
during the process of cerebral cortex development for further
ISH analysis.

We first examined the accuracy of the LNA probes in the
detection of specific miRNA expression in ISH experiments.
We found the miR-128, miR-9, and several members of the let-7
family were abundantly expressed in the developing neocortex.
When mutated, 2, 3, and 4 nucleotides of the probes for let-7b,
miR-128, and miR-9, respectively, and the resultant probes did
not detect any specific ISH signals (Fig. S1, A–D). Moreover,
when transiently overexpressed, miRNAs in mouse embryos
and the LNA probes could recognize their exogenous miRNAs,
respectively. Also, the let-7a LNA probe only detected exoge-
nous let-7a, but not let-7b, and vice versa, although let-7a and
let-7b only differ in two nucleotides (Fig. S1, F–K). Addition-
ally, when using probes generated by two different companies
and with different LNA-modified sites of the same miRNA,
their signal distributions were also consistent (Fig. S1E). These
findings confirmed that the LNA probes for ISH could be used

to examine the spatial and temporal expression patterns of
miRNAs.

We then proceeded to perform ISH studies using LNA-mod-
ified probes (34) for different miRNAs and selected coronal
head and transverse body sections (to include the brain and
spinal cord, respectively) at E12.5 and coronal sections at E16.5
for the initial screening. Most miRNAs either showed ubiqui-
tous or no detectable expression in the nervous system. For
those showing specific patterns of expression, we performed a
secondary screen using additional sections from other develop-
mental stages. Overall, a total of 392 probes for 279 miRNAs
and 21 control probes (randomized sequence or for mutant
miRNAs) were generated and analyzed (Table S2).

The miRNAs enriched in embryonic neural progenitor cells

Neural progenitor cells in the embryonic nervous system,
which include stem cells and precursors with more limited self-
renewal capability and differentiation potential, mostly reside
in the ventricular zones (VZ). Radial glial cells are stem cells
responsible for producing most neurons for the neocortex,
which arise from the dorsal telencephalon, and express a tran-
scription factor called Pax6 (Fig. 1). We also used miR-124, a
neuron-specific miRNA not expressed in the progenitor cells,
to mark both the migrating neurons in the subventricular zone
(SVZ) and intermediate zone (IZ) and the mature neurons in
the cortical plate (CP) (Fig. S2, A and B). Multiple miRNAs were
highly expressed in the VZ of the dorsal forebrain during neu-
rogenesis (E12.5–E16.5), including the miRNAs that were
exclusively expressed in the VZ, and miRNAs that were
expressed in the VZ and the CP (Fig. 1 and data not shown).
Particularly, some miRNAs exhibited temporal-gradient ex-
pression patterns during neocortical development, such as
miR-92a and miR-92b, which exhibited similar patterns in the
microarray data (Table S1).

Notably, miR-5130 was specifically expressed in the VZ. As
expected, the ISH signal of miR-5130 is co-localized with Sox2,
a marker for VZ neural progenitor cells, but not with interme-
diate progenitor cell marker Tbr2 in VZ and SVZ (Fig. S2, F–K).
The neural progenitors in the VZ exhibit a remarkable feature
termed interkinetic nuclear migration, in which their nuclei
migrate between the apical surface and the basal part of the VZ
as cell cycle progresses. S phase (DNA synthesis) nuclei are
located in the basal half of the VZ, and M phase (mitotic) nuclei
are largely restricted to the apical surface (36, 37). miR-5130
expressing cells include S-phase nuclei, which could be labeled
by a short (30 min) pulse of BrdU (Fig. S2, C–E). These results
indicate that the miR-5130 is specifically expressed in the VZ
progenitor cells.

miR-712 is another miRNA that is enriched in the germinal
region throughout the entire central nervous system, and it is
highly expressed in precursor cells from E11.5 to E16.5 (Fig. 1,
M–O, and Fig. S2, L and M). Unlike most other miRNAs, miR-
712 is derived from pre-rRNA (38), and its intracellular local-
ization is concentrated in dots, which likely exist in the nuclei
rather than throughout the cytoplasm (Fig. 1P). miR-712 sig-
nals also existed in cortical neurons, with enrichment in layer-V
of the neocortex, at E18.5 and postnatal day 1 (P1), after com-

4 Please note that the JBC is not responsible for the long-term archiving and
maintenance of this site or any other third party hosted site.
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paring with the markers of each layer of the neocortex (Fig. S2,
L and M, and data not shown).

The miRNAs exhibiting spatially restricted expression in the
brain

Among the 279 screened miRNAs exhibited, differential
regional enrichment in expression across the brain could be
categorized using anatomical regions.

miR-129-3p and miR-181b were enriched in the subpallial
structures of the brain. miR-129-3p was abundantly expressed
in the caudate-putamen complex (CPu) of the basal ganglia in
the coronal section of E16.5 to P3 mouse telencephalon (Fig. 2,
A–D). Notably, miR-129-3p was not expressed in all of the cells
in the area, but rather in bundles of subpopulation cells during
perinatal or early postnatal stages (Fig. 2, B and C). This result
indicates the presence of cytoarchitectural differences or sub-
divisions in the caudate-putamen domain. miR-129-3p was also

expressed in the cerebral cortex, but it was relatively weak dur-
ing cortical development. miR-181b was primarily expressed in
the ventral SVZ and weakly expressed in the dorsal germinal
area (Fig. 2, E and F, and E� and F�). miR-541 is another miRNA
that was majorly expressed in the ventral subpallial structures,
predominantly in the basal ganglia, thalamus, and hypothala-
mus of the diencephalon during E12.5 to E18.5 (Fig. 4, O and P).

miR-708, miR-135a, miR-135b, and miR-335 exhibited
enriched expression in the thalamus and hypothalamus in the
P0 brain. miR-135a and miR-135b were primarily expressed in
the epithalamus, dorsal thalamus, and hypothalamus of the
diencephalon at E14.5, E16.5, and P0, and especially in the
habenular nucleus of the epithalamus (Fig. 3, A–F, and Fig. S3).
miR-135a and miR-135b were more enriched in the habenular
nucleus (Fig. 3, C and F, and Fig. S3, C and F). miR-708 was
primarily expressed in the hippocampus and thalamus at E12.5,
and ISH signals were heavily detected in the hippocampus, cin-

Figure 1. miRNAs exhibit enriched expression in the ventricular zone in the developing mouse brain. The dynamics of Pax6 (A–D), miR-92a (E–H),
miR-92b (I–L), miR-5130 (M–P), and miR-712 (Q–T) expression in coronal sections of mouse brains at E12.5 (A, E, I, M, and Q), E14.5 (B, D, F, H, J, L, N, P, R, and T),
and E16.5 (C, G, K, O, and S). D, H, L, P, and T are the magnified images of the red dashed boxes in B, F, J, N, and R. The expression pattern of Pax6 was performed
by immunohistochemistry and miRNAs performed by in situ hybridization. All images show the same magnification. Scale bar: 500 �m.

MicroRNA expression in developing CNS

3446 J. Biol. Chem. (2019) 294(10) 3444 –3453

http://www.jbc.org/cgi/content/full/RA118.004390/DC1
http://www.jbc.org/cgi/content/full/RA118.004390/DC1
http://www.jbc.org/cgi/content/full/RA118.004390/DC1
http://www.jbc.org/cgi/content/full/RA118.004390/DC1


gulate cortex, as well as dorsal thalamus at E14.5 to E18.5, with
special abundance in the ventral lateral thalamic nucleus (Fig. 3,
H and I). Weak ISH signals of miR-708 were detected in layer VI
of the neocortex (Fig. 3I). Layer VI of the cerebral cortex sends

out connections to dorsal thalamus nuclei, and these results
may reflect information flow within the brain.

Some miRNAs were abundantly expressed in the developing
thalamus, and some miRNAs were abundantly and selectively
expressed in the developing hypothalamus. Coronal sections of
P0 brains revealed the specific expression of miR-7a and
miR-7b in the paraventricular nucleus (PVN) and the suprachi-
asmatic nucleus (SCN) in the mouse hypothalamus (Fig. 4, D
and H, and Fig. S4). miR-7a was expressed in the pallidal differ-
entiating zone and anterobasal nucleus at E12.5 (Fig. 4A).
Transverse sections of E14.5 embryos revealed limited
expression of miR-7a in the ventral part of the hypothalamus
(Fig. 4B). Frontal and horizontal sections through the telen-
cephalon of E16.5 mouse embryos revealed the selective
expression of miR-7a in supraventricular and paraventricu-
lar nuclei (Fig. 4C and Fig. S4), according to the updated
anatomic reference atlas redrawn from the Allen Developing
Mouse Brain Atlas (http://developingmouse.brain-map.org/).4

miR-7b exhibited an expression pattern similar to miR-7a.
Sagittal sections of E16.5 mouse brains revealed heavily
enriched miR-7b in the hypothalamus region (Fig. 4G). miR-
335 was primarily expressed in the posterior hypothalamic
and paraventricular nucleus in E12.5, E14.5 and E16.5, and it
is more obvious in the paraventricular nucleus at E18.5 (Fig.
4, I–L).

Some miRNAs were expressed in special types of neurons.
For example, miR-137 was enriched in the dorsolateral nucleus
and the ventral posterolateral nucleus of the thalamus, the
striatum, and nucleus accumbens of the telencephalon, and
cerebral peduncle of the midbrain. A layer distribution pattern
of miR-137 was observed for the ISH signals in the neocortex at
E16.5 (Fig. 4, M and N, and data not shown). These structural
distributions suggest that miR-137 is related to cholinergic
neurotransmission neurons (39). The spatially restricted ex-
pression of miRNAs in anatomically distinct brain regions or
specific neuron subtypes reveals the highly localized enrich-
ment of the miRNAs that are associated with the developmen-
tal or functional of related neurons.

Figure 2. The restricted expression pattern of miRNAs in the mouse ventral forebrain. In situ hybridization patterns of miR-129 –3p (A–D) and miR-181b
(E, F, E�, and F�) on sections during the brain development. A–D, the expression patterns of miR-129-3p in coronal sections of mouse brain at E16.5 (A), E18.5 (B),
P0 (C), and P3 (D). E, F, E�, and F�, the miR-181b signals in the coronal section of mouse brains at E16.5 (E and E�) and E18.5 (F and F�). The indicated areas of E and
F are magnified in E� and F�. Nc, neocortex; Str, striatum. Scale bar in A is 500 nm for A–D, scale bars in E and F are 500 �m.

Figure 3. The expression of thalamus-enriched miRNAs at E14.5 to E18.5
mouse brain. The dynamics of miR-135a (A–C), miR-135b (D–F), and miR-708
(G–I) expression in coronal sections of mouse brains during E14.5 (A, D, and
G), E16.5 (B, E, and H), and E18.5 (C, F, and I), were performed by in situ
hybridization. nc, neocortex; Str, striatum; Th, thalamus. Scale bars in A, D,
and G are 500 nm, scale bars in B, E, and H are 500 nm, scale bars in C, F, and
I are 500 �m.
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miRNAs exhibit restricted expression in motor neurons of the
developing spinal cord

Multiple miRNAs also showed region-specific expression
in the developing spinal cord. miR-218 and miR-23a were
expressed in the ventrolateral spinal cord, where motor neu-
rons reside, in E12.5 thoracic spinal slices (Fig. 5, C and O).
Weaker miR-218 signals were observed in the motoneurons of
the spinal cord at E10 during the onset of motor neuron differ-
entiation. miR-218 maintained its exclusive motor neuron
expression pattern throughout embryonic spinal cord develop-
ment (Fig. 5, A–D), and it was detected in all subtypes of motor
neurons from the medulla to the spinal cord, and in lateral
motor column and medial motor column spinal motor neurons
from cervical to lumbar regions (Fig. 5, G–L). miR-218 was also
selectively expressed in the brainstem motor nucleus to the
spinal cord motor neurons in cross-sections of E12.5 embryos

(Fig. 5, M and N). miR-218 is conserved in vertebrates, and it
exhibits similar expression patterns in chicken embryos. miR-
218 was specifically expressed in motor neuron regions at Ham-
burger and Hamilton (HH) stage 22 (Fig. 5F), which was further
confirmed using the generic motor neuron markers Islet-1/2.
Co-labeling experiments in the spinal cords of E11.5 mice
revealed that most miR-218 –positive cells co-expressed Islet-
1/2 (Fig. 5, E and E�, and Fig. S5, A and B).

miRNAs exhibit choroid plexus-enriched expression in the
developing mouse brain

The choroid plexus is a highly vascularized secretory tissue in
the brain ventricles. The choroid plexus is responsible for reg-
ulation of brain homeostasis via the production of cerebrospi-
nal fluid (CSF), and it acts as the blood-CSF barrier (40). miR-
204 and miR-449 were specifically expressed in the choroid

Figure 4. miRNAs are enriched in the developing mouse hypothalamus. In situ hybridization patterns for miR-7a (A–D), miR-7b (E–H), miR-335 (I–L), miR-137
(M and N), and miR-541 (O and P) in sections during brain development. A–D, the expression patterns of miR-7a in coronal sections of mouse brain at E12.5 (A),
E14.5 (B), E16.5 (C), and E18.5 (D). E–H, miR-7b expression in coronal (E, F, and H) and sagittal sections (G) of mouse brain at E13.5, E16.5 and P0. I–L, O, and P,
frontal sections through the telencephalon of E12.5-P0 mice, at a rostral or middle level of the pallidum, showing the dynamic expression of the miR-335 (I–L)
and miR-541 (O and P) in the hypothalamus. The material shown corresponds to E12.5 (I, I�, and O), E14.5 (J), E16.5 (K and N), E18.5 (L), and P0 (P). M and N, in situ
hybridization of miR-137 shows its expression pattern in the brain at E12.5 (M) and P0 (N). Scale bars in A–P are 500 �m.
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plexuses of the lateral and 3rd ventricles at E12.5 and E16.5 (Fig.
6). The expression of miR-204 in the developing mouse embryo
was primarily localized to the choroid plexus in the coronal
section of E12.5 to E16.5 embryonic mouse brains (Fig. 6,
D–F). miR-449 was also specifically expressed in the choroid
plexus from E12.5 to E16.5, as well as miR-204 (Fig. 6).
Higher magnification analyses of the distribution of miR-449
in the choroid plexus revealed that the signal primarily local-
ized to the ependyma of the choroid plexus (Fig. 6, A–C, and
data not shown).

miRNAs exhibit enriched expression in the ganglion cells of the
peripheral nervous system

Early embryos (E11.5–E13.5) were frozen as whole-mount,
and our analyses included the entire head, the upper cervical
segment, and the lumbar region. Therefore, our data provide
spatial expression information on miRNAs in developing cra-
nial facial tissues and spinal cord. Some miRNAs were enriched
in sensory organs. At E12.5, miR-96 and miR-182 were promi-
nently expressed in ganglion cells of the dorsal root ganglia
(DRG), which are located peripherally alongside the spinal
cord, and trigeminal ganglia, which are in the roof of the
neopallial cortex in horizontal views of the brain (Fig. 7). The
DRG and TG are agglomerate-formed tissue that contain
thousands of primary afferent neurons, including the noci-
ceptive, mechanoreceptive, and proprioceptive sensory neu-
rons. However, it was difficult to determine the positive cells
of miR-96 and miR-182 because of one of the subcategories
or all of them.

miRNAs exhibit restricted expression in non-nervous system
tissues

Several nervous system-specific miRNAs were identified,
such as miR-9 and miR-128. We also found that some miRNAs
were not expressed in the nervous system but exhibited tissue-
specific expression. The in situ hybridization signals of miR-
199a-5p, miR-199a-3p, and miR-199b* were highly restricted to

Figure 5. The dynamics expression of miRNAs in mouse spinal cord and brainstem. The expression patterns of miR-218 (A–N), miR-23b (O), miR-137 (P),
and miR-92a (Q and R) in the mouse spinal cord and brainstem during E10.5 (A), E11.5 (B, E–E�, G–L, and Q), E12.5 (C, M–P, and R), and E13.5 (D), using in situ
hybridization. E and E�, a section of a WT E11.5 mouse spinal cord double-labeled for Islet-1/2 protein and miR-218 miRNA. F, the expression patterns of miR-218
in the HH22 stage of chicken spinal cord. G–L, show the selected images of serial sections of miR-218 expression from the cervical segment to lumbar segments.
Scale bars in A–E and O–R are 200 nm, scale bars in G and M and are 500 �m, the same for H–L and N, respectively.

Figure 6. miRNAs exhibit choroid plexus-enriched expression in the devel-
oping mouse brain. In situ hybridizationpatternsofmiR-449a(A–C)andmiR-204
(D–F) in sections during the brain development. A–C, the expression patterns of
miR-449a in the coronal section of mouse brain at E12.5 (A), E14.5 (B), and E16.5
(C). D–F, the expression of miR-204 during brain development at E12.5 (D), E14.5
(E), and E16.5 (F). nc, neocortex; LGE, lateral ganglionic eminence; MGE, medial
ganglionic eminence; Th, thalamus. Scale bar in A–C and D–F is 500 �m.
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epithelial tissues in E12.5 embryos (Fig. S6, A, E, and I) and in
the meningeal tissue outside of nerve tissue (Fig. S6, A–L). miR-
451 was primarily expressed in the liver, but it was also found in
cerebrovascular structures during development (Fig. S6, M and
S-V). miR-154 was not expressed in the liver, but it was specifically
expressed in the inferior vena cava (Fig. S6P). Frontal sections
exhibited miR-205 robust expression in the nasal lumen epithe-
lium (Fig. S6, N and O), and miR-429 was primarily expressed in
vomeronasal and olfactory epithelium (Fig. S6, Q–R).

Discussion

Ascertaining the spatiotemporal dynamics of transcriptomes
is important to understand the gene regulation networks of
organ development and function, and the elucidation of the tim-
ing and location of each gene, including miRNAs, is crucial to
predict the physiological function in biological processes. In this
study, we systematically analyzed the expression patterns of 279
miRNAs during nervous system development of embryonic mice
and found tissue or region-specific expression of some miRNAs.

As mentioned earlier, due to the difficulty of in situ hybrid-
ization of miRNAs, we carefully examined various aspects of
the validity and reliability of our miRNA probes by mutating
nucleotides, detecting exogenous miRNAs, and showing a loss
of signal in Dicer mutants (data not shown). miRNA ISH exper-
iments were repeated using at least 3 sets of embryos. We also
used different companies to synthesize probes for the same
miRNAs since we started the project in 2007, and we purchased
LNA-modified probes from companies such as Takara before
Exiqon had applied for an LNA patent. We also confirmed the
consistency and reliability of the results.

Our findings are consistent with previous sporadic reports.
Pfaff and colleagues (41) and Lee and colleagues (42) found
miR-218 expression in spinal motor neurons. miR-449 was also

found that specifically expressed in the choroid plexuses of the
lateral and 3rd ventricles at E13.5 and E15.5 (43). miR-451
exhibited strong hybridization signals in the embryonic liver,
which is consistent with previous reports that miR-451 is
required for erythroid development (44, 45) and the mainte-
nance of hepatic gluconeogenesis (46). These results further
confirm the reliability of our in situ hybridization results.

Many miRNAs are frequently arranged into clusters that are
transcribed as a single polycistronic primary transcript and pro-
cessed into multiple individual mature miRNAs by RNA-bind-
ing proteins. miR-96 and miR-182 belong to the miR-183
cluster, which consists of miR-183, -96, and -182. miR-96 and
miR-182 show similar expression patterns in mouse embryos
during development, and these miRNAs are highly enriched in
ganglion cells of the peripheral nervous system. Our results
indicate that the miR-183 cluster should be transcribed
together and processed similarly. Kitamoto and colleagues (47)
used quantitative real-time PCR analyses and confirmed miR-
183 cluster enrichment in DRG in adult rats. Other studies
demonstrated that miR-183 cluster miRNAs regulated sensory
perception, including the development of the retina and inner ear
(48, 49), and point mutations in the seed region of miRNA-96
caused hearing loss in mice (50) and human (51). miR-183/96/182
null mice display severe deficits in vision, hearing, balance, and
smell (49). Peng et al. (52) revealed that the miR-183 cluster con-
trolled the gene networks of physiological and dysfunctional pain
via targeting the majority of pain-regulated genes in mice.

Therefore, the specific expression patterns of these miRNAs
reveal their exact roles in development or functional mainte-
nance. For example, miR-92b could regulate the differentiation
of neural progenitor cells and the precise development of cor-
tical neurons, which when overexpression of miR-92b reduce
the proportion of precursor cells, especially Tbr2� cells, and
lead the cells distributed in the superficial layer of the neocortex
(Fig. S7). miR-7a and miR-7b were specifically expressed in the
PVN and the SCN in the hypothalamus of mice at different
developmental stages. PVN is an important neurosecretory
nucleus in the hypothalamus, and it is the main secretor of
oxytocin. SCN is the most important circadian pacemaker in
mammals, and it regulates a series of physiological behaviors
and activities. Loss of a mammalian circular RNA locus causes a
neuropsychiatric disorder phenotype that may be the results of
miR-7 deregulation (53).

In conclusion, several miRNAs exhibited spatially restricted/
enriched expression in anatomically distinct regions or in specific
neuron subtypes in the embryonic brain and spinal cord, such as in
the ventricular area, the striatum (and other basal ganglia), hypo-
thalamus, choroid plexus, and the peripheral nervous system.
There are also miRNAs exhibiting restricted/enriched expression
outside the nervous system. These findings will facilitate further
studies to understand the development and function of these neu-
rons and to insights for treating neurodegenerative diseases.

Experimental procedures

Animals

All animals used for experiments were 8 –12-week-old CD1
mice from the Beijing Vital River Laboratory Animal Limited

Figure 7. miRNAs show enriched expression in the ganglion cells of the
peripheral nervous system. The expression patterns of miR-96 (A and B) and
miR-182 (C and D) in mouse brains, nerve ganglia, and spinal cord. The signal
of miR-96 expression in horizontal sections of whole body (A) and spinal cord
(B) at E12.5 is shown. The expression patterns of miR-182 in horizontal sec-
tions of whole body (C) and spinal cord (D) at E13.5 is shown. TG, trigeminal
ganglia; SC, spinal cord; Scale bars in A and C are 500 �m, scale bars in B and D
are 200 �m.
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Company (Beijing, China). Mice were maintained in the Ani-
mal Centre of Peking Union Medical College. All animal care
and experiments were approved by the Institutional Animal
Care and Use Committee of the Chinese Academy of Medi-
cal Sciences and Peking Union Medical College with all
procedures in compliance with the Experimental Animal
Regulations (China Science and Technology Commission
Order No. 2).

Tissue preparation

Timed pregnant mouse embryonic and postnatal tissues
were harvest for the day of the vaginal plug was defined as
embryonic day (E) 0.5, and the day of birth as postnatal day (P)
0. The embryonic brain tissues were directly fixed at 4 °C over-
night in 4% paraformaldehyde (PFA) in 100 mM phosphate-
buffered saline (PBS, pH 7.4). For postnatal brain, the pups were
transcardially perfused with 4% PFA (100 mM PBS), followed by
brain dissection and further PFA fixation at 4 °C overnight.
Fixed tissues were cryoprotected in 25% sucrose in PBS and
equilibrated in the O.C.T. Compound (Sakura, Finetek, Japan)
for 15–30 min before freezing. Sixteen-�m thick cryosections
were generated and stored at �80 °C.

ISH

The ISH procedure was performed as described (54). Probes
of miRNAs labeled with digoxigenin for in situ hybridization
were purchased from Exiqon (Denmark), Takara (Japan),
and Sangon (China). A total of 392 probes containing 279
miRNAs and 21 control or mutant miRNAs were generated
(Table S1).

Immunohistochemistry

Immunohistochemical analyses of the cryosections and
cells were performed as previously described (55). 4�,6-di-
amidino-2-phenylindole (ZLI-9557, ZSGB-Bio, China) was
used for DNA staining to reveal the nuclei. The following
primary antibodies used for immunohistochemical analyses
were as follows: rabbit anti-Pax6 (PRB-278P, Covance), rab-
bit anti-Sox2 (ab97959, Abcam), rabbit anti-Tbr2 (ab23345,
Abcam), mouse anti-HB9 and anti-Islet-1/2 (kindly provided
by Mengsheng Qiu). Secondary antibodies included horse-
radish peroxidase-labeled goat anti-mouse IgG (PV-6002,
ZSGB-Bio, China) and Alexa Fluor 594 (CA-11005, Molecu-
lar Probes).

For pulse labeling of cells in the S phase, the pregnant mice
were intraperitoneally injected with BrdU (5-bromo-2�-de-
oxyuridine, 75 mg/kg of body weight) at E13.5 and sacrificed 30
min (for proliferation) after injection. Immunofluorescence for
BrdU staining was 2 N HCl pretreated brain sections, followed
by standard immunofluorescence processes.
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